Interactions Across Spatial Scales Among Forest Dieback, Fire, and Erosion in Northern New Mexico Landscapes

Total Page:16

File Type:pdf, Size:1020Kb

Interactions Across Spatial Scales Among Forest Dieback, Fire, and Erosion in Northern New Mexico Landscapes University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Natural Resources Natural Resources, School of 10-3-2007 Interactions Across Spatial Scales among Forest Dieback, Fire, and Erosion in Northern New Mexico Landscapes Craig D. Allen US Geological Survey, Jemez Mountains Field Station, Los Alamos, New Mexico, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/natrespapers Part of the Natural Resources and Conservation Commons Allen, Craig D., "Interactions Across Spatial Scales among Forest Dieback, Fire, and Erosion in Northern New Mexico Landscapes" (2007). Papers in Natural Resources. 104. https://digitalcommons.unl.edu/natrespapers/104 This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Ecosystems (2007) 10: 797–808 DOI: 10.1007/s10021-007-9057-4 Interactions Across Spatial Scales among Forest Dieback, Fire, and Erosion in Northern New Mexico Landscapes Craig D. Allen* US Geological Survey, Jemez Mountains Field Station, Los Alamos, New Mexico 87544, USA ABSTRACT Ecosystem patterns and disturbance processes at trated by changes in historic fire regimes where one spatial scale often interact with processes at patch-scale grazing disturbance led to regional- another scale, and the result of such cross-scale scale collapse of surface fire activity and subsequent interactions can be nonlinear dynamics with recent increases in the scale of extreme fire events thresholds. Examples of cross-scale pattern-process in New Mexico. Vegetation dieback interacts with relationships and interactions among forest die- fire activity by modifying fuel amounts and con- back, fire, and erosion are illustrated from northern figurations at multiple spatial scales. Runoff and New Mexico (USA) landscapes, where long-term erosion processes are also subject to scale-depen- studies have recently documented all of these dis- dent threshold behaviors, exemplified by ecohy- turbance processes. For example, environmental drological work in semiarid New Mexico stress, operating on individual trees, can cause tree watersheds showing how declines in ground sur- death that is amplified by insect mortality agents to face cover lead to non-linear increases in bare propagate to patch and then landscape or even patch connectivity and thereby accelerated runoff regional-scale forest dieback. Severe drought and and erosion at hillslope and watershed scales. unusual warmth in the southwestern USA since Vegetation dieback, grazing, and fire can change the late 1990s apparently exceeded species-specific land surface properties and cross-scale hydrologic physiological thresholds for multiple tree species, connectivities, directly altering ecohydrological resulting in substantial vegetation mortality across patterns of runoff and erosion. The interactions millions of hectares of woodlands and forests in among disturbance processes across spatial scales recent years. Predictions of forest dieback across can be key drivers in ecosystem dynamics, as spatial scales are constrained by uncertainties illustrated by these studies of recent landscape associated with: limited knowledge of species-spe- changes in northern New Mexico. To better antic- cific physiological thresholds; individual and site- ipate and mitigate accelerating human impacts to specific variation in these mortality thresholds; and the planetary ecosystem at all spatial scales, positive feedback loops between rapidly-respond- improvements are needed in our conceptual and ing insect herbivore populations and their stressed quantitative understanding of cross-scale interac- plant hosts, sometimes resulting in nonlinear tions among disturbance processes. ‘‘pest‘‘ outbreak dynamics. Fire behavior also exhibits nonlinearities across spatial scales, illus- Key words: disturbance interactions; forest die- back; fire; erosion; fire history; cross-scale rela- Received 11 September 2006; accepted 10 April 2007; published online tionships; thresholds; New Mexico; southwestern 20 June 2007. *Corresponding author; e-mail: [email protected] USA. 797 798 C. D. Allen CLIMATE (drought, temperature); Figure 1. Diagram representing interactions OVERGRAZING by livestock across spatial scales for three different disturbance processes (forest dieback, fire, erosion) in northern New Mexico landscapes, building upon Figure 1(a) in Peters and others (2007). Dashed black arrows represent High tree density, death of Patchy stand- Landscape-scale pattern-process feedbacks within three individual trees scale mortality forest mortality different spatial scale domains, with one Treefall example of pattern and process shown for FOREST each domain for each disturbance. Solid black DIEBACK arrows indicate the overarching direct effects Physiological tree stress, Beetle population Beetle outbreak of widespread environmental drivers or beetles attack weak grows rapidly, overwhelms even disturbances (climate, overgrazing) on and dying trees colonizing more trees healthy trees patterns and processes at all scales. Blue Between-patch Long-distance fire Within-patch surface and canopy spread beyond L fuel arrows indicate the point at which altered fuel connectivity fuel connectivity connections feedbacks at finer spatial scales induce changes in feedbacks at broader scales (for FIRE example, fine-scale changes cascade to broader scales), and also where changes at Fire ignition and Torching and between- Explosive crown fire. broader scales overwhelm pattern-process surface fire spread patch fire spread Self-generated weather relationships at finer scales. Red dashed arrows Grass cover, within- Percolating network L-scale illustrate some text examples of amplifying patch bare connectivity of bare IC patches connectivity of (positive feedback) interactions between sediment flux disturbance processes, within and between EROSION spatial scales; green dashed arrows illustrate dampening (negative feedback) interactions Runoff and erosion, Hillslope between disturbance processes. L landscape; drier microsite, Net loss of water and runoff/erosion IC intercanopy (interspaces between tree within IC patch soil from watershed canopies). Fine Intermediate Broad SPATIAL SCALE their emphasis on the importance of the interaction INTRODUCTION of disturbance transfer processes with spatial het- Ecosystem patterns and disturbance processes at erogeneity (Peters and others 2007). This paper one spatial scale often interact with processes at illustrates examples of nonlinear interactions across another scale, and the result of such cross-scale spatial scales among forest dieback, fire, and ero- interactions can be nonlinear dynamics with sion from landscapes in the southwestern USA thresholds (Gunderson and Holling 2002). Such (Figure 1), particularly northern New Mexico, interactions change the pattern-process relation- where long-term studies centered on Bandelier ships across scales such that fine-scale processes can National Monument in the Jemez Mountains have influence a broad spatial extent, or broad-scale recently documented all of these disturbance pro- drivers can interact with fine-scale processes to cesses (Allen 1989). determine system dynamics (Peters and others Methods used to develop the presented examples 2007). Non-linear disturbance propagation and include: dendrochronological dating of fire scars amplification across spatial scales commonly in- (Touchan and others 1996) and tree population volve positive feedback loops or spatial pattern- demographies (Swetnam and Betancourt 1998), process thresholds, differing from linear relation- weekly dendrometer measurements of ponderosa ships observed with simple repetition of patterns pine (Pinus ponderosa) and pin˜ on (Pinus edulis) tree- from fine to broad scales. Cross-scale interactions growth since 1991 and 1993 (CD Allen, unpub- involving disturbance processes are increasingly lished data), monitoring of basal cover of herba- recognized as important drivers of ecosystem ceous vegetation at centimeter resolution along dynamics (Nepstad and others 2001; Turner 2005; 3 km of permanently marked line-intercept tran- Burkett and others 2005; Bodin and others 2006; sects since 1991 (CD Allen, unpublished data), Peters and others 2007). Spatially explicit ap- photographic and remote-sensing delineation of proaches differ from non-spatial approaches in forest dieback (Allen and Breshears 1998; Bres- Cross-Scale Disturbance Interactions in New Mexico 799 Figure 2. Extent of Pinus 0 100 200 Km edulis dieback from 1997 to 2004 in the Four Corners N states of Arizona, New Mexico, Colorado, and Utah. Based upon annual aerial insect pest inventories by the US Forest Service. 3000 2500 2000 1500 1000 Acres (1,000) Acres 500 17. 32. 0.3 12. 36. 0 1997 1998 1999 2000 2001 2002 2003 2004 Year hears and others 2005), aerial surveys of forest be attributable to a single cause. For example, veg- insect pest activity (US Forest Service 2003), and etation dieback (and associated insect outbreaks) detailed multi-scale measurements of runoff and have affected millions of hectares of forests and erosion since 1993 (Wilcox and others 2003). These woodlands in the Southwest since the late 1990s diverse methods provide multiple perspectives on (Figure 2), a period of severe drought and unusual ecosystem patterns and processes across
Recommended publications
  • Protect Us from Climate Change
    INTRODUCTION This project documents both the existing value and potential of New England’s working forest lands: Value – not only in terms of business opportunities, jobs and income – but also nonfinancial values, such as enhanced wildlife populations, recreation opportunities and a healthful environment. This project of the New England Forestry Foundation (NEFF) is aimed at enhancing the contribution the region’s forests can make to sustainability, and is intended to complement other efforts aimed at not only conserving New England’s forests, but also enhancing New England’s agriculture and fisheries. New England’s forests have sustained the six-state region since colonial settlement. They have provided the wood for buildings, fuel to heat them, the fiber for papermaking, the lumber for ships, furniture, boxes and barrels and so much more. As Arizona is defined by its desert landscapes and Iowa by its farms, New England is defined by its forests. These forests provide a wide range of products beyond timber, including maple syrup; balsam fir tips for holiday decorations; paper birch bark for crafts; edibles such as berries, mushrooms and fiddleheads; and curatives made from medicinal plants. They are the home to diverse and abundant wildlife. They are the backdrop for hunting, fishing, hiking, skiing and camping. They also provide other important benefits that we take for granted, including clean air, potable water and carbon storage. In addition to tangible benefits that can be measured in board feet or cords, or miles of hiking trails, forests have been shown to be important to both physical and mental health. Beyond their existing contributions, New England’s forests have unrealized potential.
    [Show full text]
  • Forest Dieback/Damages in European State Forests and Measures to Combat It Several EUSTAFOR Members Have Recently Experienced An
    Forest dieback/damages in European State Forests and measures to combat it Several EUSTAFOR members have recently experienced and reported on severe cases of forest dieback, caused by different biotic and abiotic agents. To get a better overview of these events and their consequences, with a view to a possible exchange of experiences among EUSTAFOR members as well as the development of proposals on how to communicate on these issues, the EUSTAFOR Office sent a short questionnaire to SFMOs in Europe. What follows is a comprehensive summary of the key information we received from our members. Results Out of 19 responses, 17 experienced forest dieback/damage to their forests. Only Romania and Ireland reported no forest dieback. However, Coillte (Ireland) is experiencing the problem with certain species, so they answered accordingly. Due to EUSTAFOR’s membership structure in some countries, we received input from more than one organization in that country. For example, in Germany, five different regional forest enterprises responded to the survey and, in Bulgaria, information came from two sources: the governing body - Executive Forest Agency (Ministry of Agriculture and Foods) and from one of the regional forestry enterprises. The reporting period relates to the most current available data. For the majority of the reports, this is 2018-2019. A few members, however, reported data that is a bit older. Figure 1: Map of members that answered the survey European State Forest Association AISBL Phone: +32 (0)2 239 23 00 European Forestry House Fax: +32 (0)2 219 21 91 Rue du Luxembourg 66 www.eustafor.eu 1000 Brussels, Belgium VAT n° BE 0877.545.
    [Show full text]
  • FAO Forestry Paper 120. Decline and Dieback of Trees and Forests
    FAO Decline and diebackdieback FORESTRY of tretreess and forestsforests PAPER 120 A globalgIoia overviewoverview by William M. CieslaCiesla FADFAO Forest Resources DivisionDivision and Edwin DonaubauerDonaubauer Federal Forest Research CentreCentre Vienna, Austria Food and Agriculture Organization of the United Nations Rome, 19941994 The designations employedemployed and the presentation of material inin thisthis publication do not imply the expression of any opinion whatsoever onon the part ofof thethe FoodFood andand AgricultureAgriculture OrganizationOrganization ofof thethe UnitedUnited Nations concerning the legallega! status ofof anyany country,country, territory,territory, citycity oror area or of itsits authorities,authorities, oror concerningconcerning thethe delimitationdelimitation ofof itsits frontiers or boundarboundaries.ies. M-34M-34 ISBN 92-5-103502-492-5-103502-4 All rights reserved. No part of this publicationpublication may be reproduced,reproduced, stored in aa retrieval system, or transmittedtransmitted inin any form or by any means, electronic, mechani-mechani­ cal, photocopying or otherwise, without the prior permission of the copyrightownecopyright owner.r. Applications for such permission, withwith aa statement of the purpose andand extentextent ofof the reproduction,reproduction, should bebe addressed toto thethe Director,Director, Publications Division,Division, FoodFood andand Agriculture Organization ofof the United Nations,Nations, VVialeiale delle Terme di Caracalla, 00100 Rome, Italy.Italy. 0© FAO FAO 19941994
    [Show full text]
  • The Effect of Alternative Forest Management Models on the Forest Harvest and Emissions As Compared to the Forest Reference Level
    Article The Effect of Alternative Forest Management Models on the Forest Harvest and Emissions as Compared to the Forest Reference Level 1,2, 1 3 1, 1 Mykola Gusti * , Fulvio Di Fulvio , Peter Biber , Anu Korosuo y and Nicklas Forsell 1 International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria; [email protected] (F.D.F.); [email protected] (A.K.); [email protected] (N.F.) 2 International Information Department of the Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, 12 Bandera Str., 79013 Lviv, Ukraine 3 Chair of Forest Growth and Yield Science, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany; [email protected] * Correspondence: [email protected] Current affiliation: European Commission, Joint Research Centre, TP 261, Via E. Fermi 2749, y I-21027 Ispra, Italy. Received: 2 June 2020; Accepted: 21 July 2020; Published: 23 July 2020 Abstract: Background and Objectives: Under the Paris Agreement, the European Union (EU) sets rules for accounting the greenhouse gas emissions and removals from forest land (FL). According to these rules, the average FL emissions of each member state in 2021–2025 (compliance period 1, CP1) and in 2026–2030 (compliance period 2, CP2) will be compared to a projected forest reference level (FRL). The FRL is estimated by modelling forest development under fixed forest management practices, based on those observed in 2000–2009. In this context, the objective of this study was to estimate the effects of large-scale uptake of alternative forest management models (aFMMs), developed in the ALTERFOR project (Alternative models and robust decision-making for future forest management), on forest harvest and forest carbon sink, considering that the proposed aFMMs are expanded to most of the suitable areas in EU27+UK and Turkey.
    [Show full text]
  • Limiting the High Impacts of Amazon Forest Dieback with No-Regrets Science and Policy Action PERSPECTIVE David M
    PERSPECTIVE Limiting the high impacts of Amazon forest dieback with no-regrets science and policy action PERSPECTIVE David M. Lapolaa,1, Patricia Pinhob, Carlos A. Quesadac, Bernardo B. N. Strassburgd,e, Anja Rammigf, Bart Kruijtg, Foster Brownh,i, Jean P. H. B. Omettoj, Adriano Premebidak, Jos ´eA. Marengol, Walter Vergaram, and Carlos A. Nobren Edited by B. L. Turner, Arizona State University, Tempe, AZ, and approved October 1, 2018 (received for review May 8, 2018) Large uncertainties still dominate the hypothesis of an abrupt large-scale shift of the Amazon forest caused by climate change [Amazonian forest dieback (AFD)] even though observational evidence shows the forest and regional climate changing. Here, we assess whether mitigation or adaptation action should be taken now, later, or not at all in light of such uncertainties. No action/later action would result in major social impacts that may influence migration to large Amazonian cities through a causal chain of climate change and forest degradation leading to lower river-water levels that affect transportation, food security, and health. Net-present value socioeconomic damage over a 30-year period after AFD is estimated between US dollar (USD) $957 billion (×109) and $3,589 billion (compared with Gross Brazilian Amazon Product of USD $150 bil- lion per year), arising primarily from changes in the provision of ecosystem services. Costs of acting now would be one to two orders of magnitude lower than economic damages. However, while AFD mitigation alternatives—e.g., curbing deforestation—are attainable (USD $64 billion), their efficacy in achieving a forest resilience that prevents AFD is uncertain.
    [Show full text]
  • Chapter 4: IPCC SRCCL
    Final Government Distribution Chapter 4: IPCC SRCCL 1 Chapter 4: Land Degradation 2 3 Coordinating Lead Authors: Lennart Olsson (Sweden), Humberto Barbosa (Brazil) 4 Lead Authors: Suruchi Bhadwal (India), Annette Cowie (Australia), Kenel Delusca (Haiti), Dulce 5 Flores-Renteria (Mexico), Kathleen Hermans (Germany), Esteban Jobbagy (Argentina), Werner Kurz 6 (Canada), Diqiang Li (China), Denis Jean Sonwa, (Cameroon), Lindsay Stringer (United Kingdom) 7 Contributing Authors: Timothy Crews (United States of America), Martin Dallimer (United 8 Kingdom), Joris Eekhout (The Netherlands), Karlheinz Erb (Italy), Eamon Haughey (Ireland), Richard 9 Houghton (United States of America), Mohammad Mohsin Iqbal (Pakistan), Francis X. Johnson 10 (United States of America), Woo-Kyun Lee (Korea), John Morton (United Kingdom), Felipe Garcia 11 Oliva (Mexico), Jan Petzold (Germany), Muhammad Rahimi (Iran), Florence Renou-Wilson (Ireland), 12 Anna Tengberg (Sweden), Louis Verchot (Colombia/United States of America), Katharine Vincent 13 (South Africa) 14 Review Editors: José Manuel Moreno Rodriguez (Spain), Carolina Vera (Argentina) 15 Chapter Scientist: Aliyu Salisu Barau (Nigeria) 16 Date of Draft: 28/04/2019 17 Subject to Copy-editing Do Not Cite, Quote or Distribute 4-1 Total pages: 184 Final Government Distribution Chapter 4: IPCC SRCCL 1 2 Table of Contents 3 Chapter 4: Land Degradation ......................................................................................... 4-1 4 4.1 Executive Summary ............................................................................................
    [Show full text]
  • Russian Forests and Climate Change
    Russian forests and What Science Can Tell Us climate change Pekka Leskinen, Marcus Lindner, Pieter Johannes Verkerk, Gert-Jan Nabuurs, Jo Van Brusselen, Elena Kulikova, Mariana Hassegawa and Bas Lerink (editors) What Science Can Tell Us 11 2020 What Science Can Tell Us Sven Wunder, Editor-In-Chief Georg Winkel, Associate Editor Pekka Leskinen, Associate Editor Minna Korhonen, Managing Editor The editorial office can be contacted at [email protected] Layout: Grano Oy Recommended citation: Leskinen, P., Lindner, M., Verkerk, P.J., Nabuurs, G.J., Van Brusselen, J., Kulikova, E., Hassegawa, M. and Lerink, B. (eds.). 2020. Russian forests and climate change. What Science Can Tell Us 11. European Forest Institute. ISBN 978-952-5980-99-8 (printed) ISBN 978-952-7426-00-5 (pdf) ISSN 2342-9518 (printed) ISSN 2342-9526 (pdf) https://doi.org/10.36333/wsctu11 Supported by: This publication was produced with the financial support of the European Union’s Partnership Instrument and the German Federal Ministry for the Environment, Na- ture Conservation, and Nuclear Safety (BMU) in the context of the International Cli- mate Initiative (IKI). The contents of this publication are the sole responsibility of the European Forest Institute and do not necessarily reflect the views of the funders. Russian forests and What Science Can Tell Us climate change Pekka Leskinen, Marcus Lindner, Pieter Johannes Verkerk, Gert-Jan Nabuurs, Jo Van Brusselen, Elena Kulikova, Mariana Hassegawa and Bas Lerink (editors) Contents Authors ..............................................................................................................................
    [Show full text]
  • 4 Air Pollution Impacts on Forests in a Changing Climate
    GLOBAL ENVIRONMENTAL CHANGES 4 Air Pollution Impacts on Forests in a Changing Climate Convening lead author: Martin Lorenz Lead authors: Nicholas Clarke and Elena Paoletti Contributing authors: Andrzej Bytnerowicz, Nancy Grulke, Natalia Lukina, Hiroyuki Sase and Jeroen Staelens Abstract: Growing awareness of air pollution effects on forests has, from the early 1980s on, led to intensive forest damage research and monitoring. This has fostered air pollution control, especially in Europe and North America, and to a smaller extent also in other parts of the world. At several forest sites in these regions, there are first indications of a recovery of forest soil and tree conditions that may be attributed to improved air quality. This caused a decrease in the attention paid by politicians and the public to air pollution effects on forests. But air pollution continues to affect the structure and functioning of forest ecosystems not only in Europe and North America but even more so in parts of Russia, Asia, Latin America, and Africa. At the political level, however, attention to climate change is focussed on questions of CO2 emission and carbon sequestration. But ecological interactions between air pollution including CO2 and O3 concentrations, extreme temperatures, drought, insects, pathogens, and fire, as well as the impact of ecosystem management practices, are still poorly under- stood. Future research should focus on the interacting impacts on forest trees and ecosystems. The integrative effects of air pollution and climatic change, in particular elevated O3, altered nutrient, temperature, water availability, and elevated CO2, will be key issues for impact research. An important improvement in our understanding might be obtained by the combination of long-term multidisciplinary experiments with ecosystem-level monitoring, and the integration of the results with ecosystem modelling within a multiple-constraint framework.
    [Show full text]
  • Predicting Forest Dieback in Maine, USA: a Simple Model Based on Soil Frost and Drought
    687 Predicting forest dieback in Maine, USA: a simple model based on soil frost and drought Allan N.D. Auclair, Warren E. Heilman, and Blondel Brinkman Abstract: Tree roots of northern hardwoods are shallow rooted, winter active, and minimally frost hardened; dieback is a winter freezing injury to roots incited by frost penetration in the absence of adequate snow cover and exacerbated by drought in summer. High soil water content greatly increases conductivity of frost. We develop a model based on the sum of z-scores of soil frost (December–February) and drought in summer (May–September) that accurately predicts timing and severity of dieback on sugar maple (Acer saccharum Marsh.), Betula spp., Fraxinus spp., and red spruce (Picea rubens Sarg.) in Maine, USA, during 1920–1995. Discrepancies between predicted and actual dieback relate largely to tree popu- lation dynamics. Extraordinary levels of dieback on Betula during 1935–1950 occurred under low stress but in mature pop- ulations; under high climate stress during 1951–1975, younger surviving Betula proved resistant and showed little dieback. Severe dieback in Acer stands during 1975–1995 may relate to extensive partial cutting, leaving stands open to frost and high water tables. Widespread use of forwarder feller/buncher and wheeled skidders after 1960 commonly left hummocky, irregular surfaces subject to pooling and accelerated frost penetration. Silvicultural applications include modifying harvest- ing practices to minimize frost complications and use of the model to track and map climatic risk to avoid conditions and locales subject to dieback. Re´sume´ : Les racines des feuillus nordiques sont peu profondes, actives en hiver et a` peine endurcies au froid; le de´pe´ris- sement est le re´sultat de dommages aux racines dus au gel hivernal qui pe´ne`tre dans le sol a` cause d’un couvert nival in- suffisant et ces dommages sont aggrave´s par la se´cheresse estivale.
    [Show full text]
  • Potential Streamflow Changes from Forest Decline Due to Air Pollution
    Internationales Symposion INTERPRAEVENT 1988 – GRAZ Tagungspublikation, Band 1, Seite 51-65 Potential Streamflow Changes from Forest Decline Due to Air Pollution Mögliche Änderungen des Abflusses durch Waldsterben in Zusam- menhang mit Luftverschmutzung R.M.Rice and J.Lewis, Arcata, CA, U.S.A. SUMMARY In recent years, serious die-back of forest trees has been reported in western Europe and eastern North America. One presumed cause of the forest decline is air pollution and acid deposition. Concern has been expressed that adverse hydrolo- gic responses might occur in forested watersheds as the result of reduced evapotranspiration and increased discharge. Accor ding to one hypothesis, elevated soil-water storage might increase peak flows and cause stream channel damage or down- stream flooding. This hypothesis is explored by reviewing the literature, recomputing published data, and simulating the effects of forest removal on streamflow. This study suggests that, although significant increases in water yield may result form a reduction in forest cover, hydrologic changes are un- likely to be large enough to cause downstream damage. This optimistic conclusion is based on the small increases that might be expected with even the most abrupt reduction in forest cover, and the likelihood that changes will be gradual and that pollution-intolerant trees will be replaced by more resistant plants through natural selection. – 51 – ZUSAMMENFASSUNG In vergangenen Jahren wurde in Westeuropa and östlichen Nordamerika über schwerwiegendes Absterben der Waldbäume be- richtet. Eine der Hauptursachen dieses Waldsterbens ist die Luftverschmutzung and sauereAblagerungen. Es ist der Befürch- tunq Ausdruck gegeben worden, daβ sich die hydrologischen Verhältnisse in den bewaldeten Einzugsgebieten ändern werden.
    [Show full text]
  • Changing Climate Reallocates the Carbon Debt of Frequent‐Fire Forests
    Received: 11 June 2020 | Accepted: 24 July 2020 DOI: 10.1111/gcb.15318 PRIMARY RESEARCH ARTICLE Changing climate reallocates the carbon debt of frequent-fire forests 1 2,3 4 Marissa J. Goodwin | Malcolm P. North | Harold S. J. Zald | Matthew 1 D. Hurteau 1Department of Biology, University of New Mexico, Albuquerque, NM, USA Abstract 2Pacific Southwest Research Station, USDA Ongoing climate change will alter the carbon carrying capacity of forests as they Forest Service, Mammoth Lakes, CA, USA adjust to climatic extremes and changing disturbance regimes. In frequent-fire forests, 3Department of Plant Sciences, University of California, Davis, CA, USA increasing drought frequency and severity are already causing widespread tree mortal- 4Department of Forestry and Wildland ity events, which can exacerbate the carbon debt that has developed as a result of fire Resources, Humboldt State University, exclusion. Forest management techniques that reduce tree density and surface fuels Arcata, CA, USA decrease the risk of high-severity wildfire and may also limit drought-induced mortal- Correspondence ity by reducing competition. We used a long-term thinning and burning experiment in Matthew D. Hurteau, Department of Biology, University of New Mexico, a mixed-conifer forest to investigate the effects of the 2012–2015 California drought Albuquerque, NM 87131, USA. on forest carbon dynamics in each treatment, including the carbon emissions from Email: [email protected] a second-entry prescribed fire that followed the drought. We assessed differences Funding information in carbon stability and tree survival across treatments, expecting that both carbon California Department of Forestry and Fire Protection, Grant/Award Number: stability and survival probability would increase with increasing treatment intensity 8GG14803 (decreasing basal area).
    [Show full text]
  • Exploring the Likelihood and Mechanism of a Climate-Change-Induced Dieback of the Amazon Rainforest
    Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest Yadvinder Malhia,1, Luiz E. O. C. Araga˜ oa, David Galbraithb, Chris Huntingfordc, Rosie Fisherd, Przemyslaw Zelazowskia, Stephen Sitche, Carol McSweeneya, and Patrick Meirb aEnvironmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom; bSchool of GeoSciences, University of Edinburgh, Edinburgh EH8 9XP, United Kingdom; cCentre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom; dDepartment of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom; and eMet Office Hadley Centre, Joint Centre for Hydro-Meteorological Research, Wallingford OX10 8BB, United Kingdom Edited by Hans Joachim Schellnhuber, Potsdam Institute for Climate Impact Research, Potsdam, Germany, and approved December 15, 2008 (received for review June 10, 2008) We examine the evidence for the possibility that 21st-century nonlinearities, thresholds, and feedbacks and determine which climate change may cause a large-scale ‘‘dieback’’ or degradation components of this system are open to manipulation and man- of Amazonian rainforest. We employ a new framework for eval- agement in a manner beneficial to the long-term sustainability of uating the rainfall regime of tropical forests and from this deduce the Amazonian social ecological system. precipitation-based boundaries for current forest viability. We In this paper, we ask 3 questions. First, what are the climatic then examine climate simulations by 19 global climate models thresholds that favor the current presence of a forest as opposed (GCMs) in this context and find that most tend to underestimate to savanna? Second, what do climate models say about the likely current rainfall.
    [Show full text]