17^ Anatomy of Alaba and Litiopa
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pelagic Sargassum Community Change Over a 40-Year Period: Temporal and Spatial Variability
Mar Biol (2014) 161:2735–2751 DOI 10.1007/s00227-014-2539-y ORIGINAL PAPER Pelagic Sargassum community change over a 40-year period: temporal and spatial variability C. L. Huffard · S. von Thun · A. D. Sherman · K. Sealey · K. L. Smith Jr. Received: 20 May 2014 / Accepted: 3 September 2014 / Published online: 14 September 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Pelagic forms of the brown algae (Phaeo- ranging across the Sargasso Sea, Gulf Stream, and south phyceae) Sargassum spp. and their conspicuous rafts are of the subtropical convergence zone. Recent samples also defining characteristics of the Sargasso Sea in the western recorded low coverage by sessile epibionts, both calcifying North Atlantic. Given rising temperatures and acidity in forms and hydroids. The diversity and species composi- the surface ocean, we hypothesized that macrofauna asso- tion of macrofauna communities associated with Sargas- ciated with Sargassum in the Sargasso Sea have changed sum might be inherently unstable. While several biological with respect to species composition, diversity, evenness, and oceanographic factors might have contributed to these and sessile epibiota coverage since studies were con- observations, including a decline in pH, increase in sum- ducted 40 years ago. Sargassum communities were sam- mer temperatures, and changes in the abundance and distri- pled along a transect through the Sargasso Sea in 2011 and bution of Sargassum seaweed in the area, it is not currently 2012 and compared to samples collected in the Sargasso possible to attribute direct causal links. Sea, Gulf Stream, and south of the subtropical conver- gence zone from 1966 to 1975. -
Central Mediterranean Sea) Subtidal Cliff: a First, Tardy, Report
Biodiversity Journal , 2018, 9 (1): 25–34 Mollusc diversity in Capo d’Armi (Central Mediterranean Sea) subtidal cliff: a first, tardy, report Salvatore Giacobbe 1 & Walter Renda 2 ¹Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Al - contres 31, 98166 Messina, Italy; e-mail: [email protected] 2Via Bologna, 18/A, 87032 Amantea, Cosenza, Italy; e-mail: [email protected] ABSTRACT First quantitative data on mollusc assemblages from the Capo d’Armi cliff, at the south en - trance of the Strait of Messina, provided a baseline for monitoring changes in benthic biod- iversity of a crucial Mediterranean area, whose depletion might already be advanced. A total of 133 benthic taxa have been recorded, and their distribution evaluated according to depth and seasonality. Bathymetric distribution showed scanty differences between the 4-6 meters and 12-16 meters depth levels, sharing all the 22 most abundant species. Season markedly affected species composition, since 42 taxa were exclusively recorded in spring and 35 in autumn, contrary to 56 shared taxa. The occurrence of some uncommon taxa has also been discussed. The benthic mollusc assemblages, although sampled in Ionian Sea, showed a clear western species composition, in accordance with literature placing east of the Strait the bound- ary line between western and eastern Mediterranean eco-regions. Opposite, occasional records of six mesopelagic species, which included the first record for this area of Atlanta helicinoi - dea -
(Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean. -
THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject. -
List of the Shells of Cuba in the . . . Museum
£> • £!~ - ? -6 LIST / OF THE SHELLS OF CUBA THE COLLECTION OF THE BRITISH MUSEUM, & BY M. RAMON DE LA SAGRA. DESCRIBED BY Prof. ALCIDE D’ORBIGNY, In the “ Histoire de l’lle de Cuba.” LONDON: PRINTED BY ORDER OF THE TRUSTEES. 1854. PRINTED BY TAYEOR AND FRANCIS, RED LION COUkT, FLEET STREET. PREP AC E. The specimens of Shells in the following list marked B.M. were received from Professor Alcide d’Orbigny, as the type specimens described by him in the Mollusca part of the “ Histoire physique, politique et naturelle de Pile de Cuba, par M. Ramon de la Sagra, Directeur du Jardin botanique de la Havane, Correspondant de Plnstitut Royal de France.” Paris, 8 vo, with a folio Atlas. The specimens are on their original cartoons, named by M. d’Orbigny, and marked with their special habitats. JGPIN EDWARD GRAY. Sept. 1, 1854. LIST OF THE SHELLS OF CUBA. Class I. CEPHALOPODA CRYPTODIBRANCHIATA. Order I. ACETABULIEERA. Suborder I. Octopoda. Fam. 1. OCTOPID^L 1. Octopus vulgaris, Linn., Ramon de la Sagra , Moll. 11. t. l.f. 1. Sepia octopodia, Linn. Polypus octopodia, Leach, Octopus appendiculatus, Blainv. 2. Octopus tuberculatus, Blainv ., Ramon de la Sagra, Moll. 15. Octopus ruber, Rajinq.l B . 2 SHELLS OF CUBA. 3. Octopus rugosus, d’Orb., Ramon de la Sagra, Moll. 18. Sepia rugosa, Bose. Octopus granulatus, Ramie. Sepia granulosa, Bose. Octopus Bakeri, Feruss Octopus americanus, Blainv. 4. Philonexis Quoyanus, d’Orb., Ramon de la Sagra , Hist, de Cuba3 21. 5. Argonauta Argo, Linn., Sagra3 Cuba , 24. Ocythoe tuberculata, Rafinq. Ocythoe antiquorum, Leach. Octopus antiquorum, Blainv. -
Constructional Morphology of Cerithiform Gastropods
Paleontological Research, vol. 10, no. 3, pp. 233–259, September 30, 2006 6 by the Palaeontological Society of Japan Constructional morphology of cerithiform gastropods JENNY SA¨ LGEBACK1 AND ENRICO SAVAZZI2 1Department of Earth Sciences, Uppsala University, Norbyva¨gen 22, 75236 Uppsala, Sweden 2Department of Palaeozoology, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden. Present address: The Kyoto University Museum, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan (email: [email protected]) Received December 19, 2005; Revised manuscript accepted May 26, 2006 Abstract. Cerithiform gastropods possess high-spired shells with small apertures, anterior canals or si- nuses, and usually one or more spiral rows of tubercles, spines or nodes. This shell morphology occurs mostly within the superfamily Cerithioidea. Several morphologic characters of cerithiform shells are adap- tive within five broad functional areas: (1) defence from shell-peeling predators (external sculpture, pre- adult internal barriers, preadult varices, adult aperture) (2) burrowing and infaunal life (burrowing sculp- tures, bent and elongated inhalant adult siphon, plough-like adult outer lip, flattened dorsal region of last whorl), (3) clamping of the aperture onto a solid substrate (broad tangential adult aperture), (4) stabilisa- tion of the shell when epifaunal (broad adult outer lip and at least three types of swellings located on the left ventrolateral side of the last whorl in the adult stage), and (5) righting after accidental overturning (pro- jecting dorsal tubercles or varix on the last or penultimate whorl, in one instance accompanied by hollow ventral tubercles that are removed by abrasion against the substrate in the adult stage). Most of these char- acters are made feasible by determinate growth and a countdown ontogenetic programme. -
The Journal of Molluscan Studies
Downloaded from https://academic.oup.com/mollus/issue/55/1 by guest on 30 September 2021 The Journal of Molluscan Studies Edited by J. Taylor INDEX FOR VOLUME 55 1989 Downloaded from https://academic.oup.com/mollus/issue/55/1 by guest on 30 September 2021 Contents for Volume 55, 1989 Journal of Molluscan Studies VOLUME 55, 1989 Part 1, pp. 1-147 (published 3 March 1989) Part 2, pp. 149-311 (published 10 May 1989) Part 3, pp. 313-^*29 (published 10 August 1989) Part 4, pp. 431-553 (published 1 November 1989) CONTENTS page AGUIRRE, A., see VICARIO et al. ALLANSON, B.R., see VILLIERS & ALLANSON Downloaded from https://academic.oup.com/mollus/issue/55/1 by guest on 30 September 2021 BAILEY, S.E.R. Foraging behaviour of terrestrial gastropods: integrating field and labora- tory studies 263 BARKAI, A. & BRANCH, G.M. Growth and mortality of the mussels Choromytilus meridionalis (Krauss) and Aulacomya ater (Molina) as indicators of biotic conditions 329 BAUR, B. Growth and reproduction of the minute land snail Punctum pygmaeum (Drapamaud) 383 BERNARD, R.T.F., see HODGSON & BERNARD BERRY, A.J. Spawning season and egg production in Forth estuary Retusa obtusa (Opisthobranchia: Retusidae) 455 BODE, A. Production of the intertidal chiton Acanlhochitona crinita within a community of CoraUina tlongato (Rhodophyta) 37 BOUCHET, P. A review of poecilogony in gastropods 67 BOUKRAA, A., see GOMOT et al. BRANCH, G.M., see BARKAI & BRANCH BRONMARK, C. Interactions between epiphytes, macrophytes and freshwater snails: a review 299 BROWN, A.C., see TRUEMAN & BROWN BROWN, A.C., see VAN W1JK et al. -
Finella Pupoides Ordine Caenogastropoda Adams A., 1860 Famiglia Obtortionidae
Identificazione e distribuzione nei mari italiani di specie non indigene Classe Gastropoda Finella pupoides Ordine Caenogastropoda Adams A., 1860 Famiglia Obtortionidae SINONIMI RILEVANTI Eufenella pupoides A. Adams, 1860 DESCRIZIONE COROLOGIA / AFFINITA’ Senza dati. Conchiglia di piccole dimensioni, allungata e con 7-8 giri convessi. La protoconca presenta due piccoli giri lisci. L'apertura è piriforme, il labbro è DISTRIBUZIONE ATTUALE liscio. Presenta una ampia variabilità nella forma Indo-Pacifico, Mediterraneo: Israele, Libano, (esemplari molto allungati) e nel colore (dal giallo Turchia, Cipro. uniforme al castano scuro o con trattini a intermittenza a metà della spira). PRIMA SEGNALAZIONE IN MEDITERRANEO 1958, Haifa, Israele (Barash & Danin, 1977). COLORAZIONE Conchiglia di colore biancastra con spire di colore PRIMA SEGNALAZIONE IN ITALIA brunastro. - FORMULA MERISTICA - ORIGINE Indo-Pacifico TAGLIA MASSIMA - VIE DI DISPERSIONE PRIMARIE STADI LARVALI Penetrazione attraverso il Canale di Suez. La larva è di tipo planctotrofica VIE DI DISPERSIONE SECONDARIE SPECIE SIMILI - - STATO DELL ’INVASIONE CARATTERI DISTINTIVI Established. - Identificazione e distribuzione nei mari italiani di specie non indigene HABITAT MOTIVI DEL SUCCESSO Sconosciuti. Vive su substrati sabbiosi-fangosi. In Turchia è stata rinvenuta su praterie di Posidonia oceanica (Ozturk et al., 2006). SPECIE IN COMPETIZIONE - PARTICOLARI CONDIZIONI AMBIENTALI IMPATTI Sconosciute. - DANNI ECOLOGICI BIOLOGIA - Sconosciuta. DANNI ECONOMICI - IMPORTANZA PER L ’UOMO Sconosciuta BANCA DEI CAMPIONI - PRESENZA IN G -BANK - PROVENIENZA DEL CAMPIONE TIPOLOGIA : (MUSCOLO / ESEMPLARE INTERO / CONGELATO / FISSATO ECC ) LUOGO DI CONSERVAZIONE CODICE CAMPIONE Identificazione e distribuzione nei mari italiani di specie non indigene BIBLIOGRAFIA Barash A. and Danin Z., 1977. Additions to the knowledge of Indo-Pacific Mollusca in the Mediterranean. Conchiglie, 13 (5-6): 85-116. -
Malacologia, 1993, 35(2); 261-313
^;^2_ MALACOLOGIA, 1993, 35(2); 261-313 PHYLOGENETIC RELATIONSHIPS AND GENERIC REVIEW OF THE BITTIINAE (PROSOBRANCHIA: GERITHIOIDEA) Richard S. Houbrick Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. ABSTRACT The anatomy of seven members of the Bittium group is described, clarifying the status of the genus-level taxa comprising it. Bittium reticulatum, the type species of Bittium Gray, is described in depth, thereby establishing criteria for comparisons with other taxa of Bitliinae. The type species of Stylidium Dell and LirobiWum Bartsch, and representatives of Bittiolum Cossmann and Cacozeliana Strand are examined and compared with Bittium, s.s. Results of anatomical studies and a phylogenetic analysis using the Hennig86 and CLADOS programs, with Cehtt)ium as an outgroup, establish monophyly for Bitliinae Cossmann and reveal six different genus-level taxa. A new genus, ittibittium, from the Indo-Pacific, is proposed. Synonymies of each genus- level taxon and representative species examined are presented. Brief accounts of the ecology and zoogeography of each taxon are given. Two taxa formerly attributed to the 6/ff/um-group are herein excluded from it and referred to Cerithium Bruguière. These are Cerithium zebrum Kiener, 1841, and Cerithium boeticum Pease, 1861. The subfamily Bittiinae Cossmann, 1906, is thought to comprise nine genera (four of which were not included in phylogenetic analyses) : Bittium Gray, 1847; Bittiolum Cossmann, 1906; Ittibittium gen. n., Stylidium Dalí, 1907; Lirobit- tium Bartsch, 1911 ; Cacozeliana Strand, 1928; Argyropeza Melvill & Standen, 1901 ; Varicopeza Gründel, 1976; Zebittium Finlay, 1927. The genus Cassiella Gofas, 1987, of uncertain place- ment, is included as a possible member of the group. -
An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department. -
Florida Keys Species List
FKNMS Species List A B C D E F G H I J K L M N O P Q R S T 1 Marine and Terrestrial Species of the Florida Keys 2 Phylum Subphylum Class Subclass Order Suborder Infraorder Superfamily Family Scientific Name Common Name Notes 3 1 Porifera (Sponges) Demospongia Dictyoceratida Spongiidae Euryspongia rosea species from G.P. Schmahl, BNP survey 4 2 Fasciospongia cerebriformis species from G.P. Schmahl, BNP survey 5 3 Hippospongia gossypina Velvet sponge 6 4 Hippospongia lachne Sheepswool sponge 7 5 Oligoceras violacea Tortugas survey, Wheaton list 8 6 Spongia barbara Yellow sponge 9 7 Spongia graminea Glove sponge 10 8 Spongia obscura Grass sponge 11 9 Spongia sterea Wire sponge 12 10 Irciniidae Ircinia campana Vase sponge 13 11 Ircinia felix Stinker sponge 14 12 Ircinia cf. Ramosa species from G.P. Schmahl, BNP survey 15 13 Ircinia strobilina Black-ball sponge 16 14 Smenospongia aurea species from G.P. Schmahl, BNP survey, Tortugas survey, Wheaton list 17 15 Thorecta horridus recorded from Keys by Wiedenmayer 18 16 Dendroceratida Dysideidae Dysidea etheria species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 19 17 Dysidea fragilis species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 20 18 Dysidea janiae species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 21 19 Dysidea variabilis species from G.P. Schmahl, BNP survey 22 20 Verongida Druinellidae Pseudoceratina crassa Branching tube sponge 23 21 Aplysinidae Aplysina archeri species from G.P. Schmahl, BNP survey 24 22 Aplysina cauliformis Row pore rope sponge 25 23 Aplysina fistularis Yellow tube sponge 26 24 Aplysina lacunosa 27 25 Verongula rigida Pitted sponge 28 26 Darwinellidae Aplysilla sulfurea species from G.P. -
Caenogastropoda
13 Caenogastropoda Winston F. Ponder, Donald J. Colgan, John M. Healy, Alexander Nützel, Luiz R. L. Simone, and Ellen E. Strong Caenogastropods comprise about 60% of living Many caenogastropods are well-known gastropod species and include a large number marine snails and include the Littorinidae (peri- of ecologically and commercially important winkles), Cypraeidae (cowries), Cerithiidae (creep- marine families. They have undergone an ers), Calyptraeidae (slipper limpets), Tonnidae extraordinary adaptive radiation, resulting in (tuns), Cassidae (helmet shells), Ranellidae (tri- considerable morphological, ecological, physi- tons), Strombidae (strombs), Naticidae (moon ological, and behavioral diversity. There is a snails), Muricidae (rock shells, oyster drills, etc.), wide array of often convergent shell morpholo- Volutidae (balers, etc.), Mitridae (miters), Buccin- gies (Figure 13.1), with the typically coiled shell idae (whelks), Terebridae (augers), and Conidae being tall-spired to globose or fl attened, with (cones). There are also well-known freshwater some uncoiled or limpet-like and others with families such as the Viviparidae, Thiaridae, and the shells reduced or, rarely, lost. There are Hydrobiidae and a few terrestrial groups, nota- also considerable modifi cations to the head- bly the Cyclophoroidea. foot and mantle through the group (Figure 13.2) Although there are no reliable estimates and major dietary specializations. It is our aim of named species, living caenogastropods are in this chapter to review the phylogeny of this one of the most diverse metazoan clades. Most group, with emphasis on the areas of expertise families are marine, and many (e.g., Strombidae, of the authors. Cypraeidae, Ovulidae, Cerithiopsidae, Triphori- The fi rst records of undisputed caenogastro- dae, Olividae, Mitridae, Costellariidae, Tereb- pods are from the middle and upper Paleozoic, ridae, Turridae, Conidae) have large numbers and there were signifi cant radiations during the of tropical taxa.