Jenner Institute Complementary Vaccines Platform Technologies

Total Page:16

File Type:pdf, Size:1020Kb

Jenner Institute Complementary Vaccines Platform Technologies WHO R&D Blueprint: Janssen Vaccines – Jenner Institute complementary Vaccines Platform Technologies Janssen Vaccines: Jenner Institute: Olga Popova Prof. Sarah Gilbert Jerome Custers WHO Geneva, 21 July 2016 Background • Jenner Institute & Janssen Vaccines presented respective proposals to WHO R&D Blueprint Workshop in April 2016, and were invited to join forces for Round 2 submission • Example of alignment, coordination and partnership between public and private sector stakeholders • Understanding nature of vaccine development, established complementary end‐to‐end skills and capabilities • Long‐term, sustainable & consistent approach and funding • High‐level flexible proposal with illustrative examples • «Bona fide»: collaborative framework to be developed JOINTLY TOWARDS TANGIBLE OUTCOMES x GLOBAL PUBLIC HEALTH 2 Success factors • Available platforms and previous experience with pathogens • Ability to invest time and resources, leverage expertise, minimise opportunity costs and ensure business continuity • Appropriate and functionable operational model, speed • Lean governance, partner alignment and milestone orientation INTERNAL • Reliable & qualified partners, durable commitments • Long‐term reliable funding (min 5‐year horizon) • Resolving vaccination indemnification / liability issue • Consistency in pathogen prioritisation and defined, consistent pre‐ established endpoint commitment • Clear and accelerated / streamlined regulatory pathways, conditions & predictability of licensure EXTERNAL • Anticipated deployment plans and community engagement 3 Jenner ‐ Janssen Partnership: Vaccine Technology Platforms Janssen Vaccines Jenner Institute PER.C6® cell line technology for manufacturing Adenoviral vector technology Whole inactivated vaccines Chimpanzee‐derived adenovirus‐based Attenuated vaccines Extensively clinically tested Recombinant protein or subunit vaccines Thermostabilisation technology for storage at Adenoviral vectors temperatures up to 45C for six months, or ambient temperatures for much longer Modified Vaccinia viral vector technology Adenoviral vector technology Capacity to express multiple antigens Low‐seroprevalent adenovirus‐based Proprietary strong promoters and insertion Extensively clinically tested sites High capacity/low cost manufacturing using PER.C6® cell Access to manufacturing in immortal avian cell line technology lines Liquid formulation compatible with current vaccine Virus Like Particle Technology supply chains: HBsAg fusion VLPs produced in yeast o Current liquid formulation; 1 year stability at 2‐8C AP205 VLPs produced in E. coli o New formulation with at least 2 year real time in vitro stability at 2‐8C 4 The Jenner Institute founded 2005 • Global Health – vaccines that make a difference • HIV, TB, malaria, dengue, pandemic influenza • Emerging pathogens • Translational Research – rapid early clinical testing • 42 vaccines made for clinical trials • One Health – vaccines for humans and other animals 5 Human Vaccines Pipeline a portfolio approach Number Disease Area of GMP Preclinical Phase I Phase IIa Phase Ib Phase IIb Phase III Licensure Vaccines Oxford Patient Group /Endemic Area Malaria 19 TB 4 HCV 3 HIV 5 Pandemic Flu 2 Meningitis 1 RSV 3 Ebola 4 Prostate cancer 2 Staph aureus The busiest pipeline of any non-profit vaccine institute 6 Clinical BioManufacturing Facility University of Oxford This image cannot currently be displayed. This image cannot currently be displayed. 7 Rapid Clinical Trial Capacity • Over 150 clinical trials undertaken in the last decade – over 100 of these with vaccines designed / manufactured in Oxford – over 2000 volunteers enrolled in UK trials per annum – Allows rapid down‐selection of the most promising candidates 8 Challenge Trials or controlled human microbial infections (CHMI) • Malaria – Sporozoite – Blood-stage • Influenza • BCG for TB • Typhoid • Paratyphoid • (RSV) 9 Overseas Trials • KEMRI‐Wellcome Programme, Kilifi, Kenya • Kenyan AIDS Vaccine Initiative Nairobi, Kenya • South African TB Vaccine Initiative, Western Cape • MRC Laboratories, The Gambia • Cheikh Anta Diop University, Dakar, Senegal • CNRFP, Ouagadougou, Burkina Faso • Uganda Virus Research Institute, Entebbe, Uganda • Patan Hospital, Kathmandu, Nepal 10 Replication‐Deficient Viral Vector Vaccines to Maximise both Humoral and Cellular Immunogenicity Rapid initial response plus extended duration of immunity 1 - 8 weeks Adenovirus Prime MVOxford Boost Malaria x 6, HCV, HIV, influenza, TB, RSV, Ebola, prostate cancer 11 Outbreak Pathogen Vaccine Progress Current status Pathogen Construct Immuno‐ Neutralisation Animal GMP Phase Made genicity Efficacy funded I/II Pandemic Flu Rift Valley Fever MERS Zika Chikungunya CCHF Lassa Ebola Zaire Ebola Sudan Ebola x2 + Marburg Marburg Nipah SARS 12 Strong T Cell Responses with a One Week Prime‐Boost Interval in Ebola ‐BN A Monovalent Chimpanzee Adenovirus Ebola Vaccine Boosted with MVA Ewer et al., NEJM 2016. 13 Antibody responses after prime and boost ‐BN A Monovalent Chimpanzee Adenovirus Ebola Vaccine Boosted with MVA Ewer et al., NEJM 2016. 14 ChAdOx1 RVF can be thermostabilised 512 Vaccine thermostabilised p=0.2 256 Stored at various ºC for 6 months 128 Vaccine reconstituted to same dose 64 Cattle immunised, single dose 32 Anti-RVFV antibodies measured Neutralising antibody titre 16 d ºC e 5ºC 80 25ºC 37ºC 45ºC 5 at - in cc va Un For thermostabilisation method see: Alcock R, et al Sci Transl Med 2010 Feb 17;2(19) 15 Jenner ‐ Janssen Partnership: Vaccine Technology Platforms Janssen Vaccines Jenner Institute PER.C6® cell line technology for manufacturing Adenoviral vector technology Whole inactivated vaccines Chimpanzee‐derived adenovirus‐based Attenuated vaccines Extensively clinically tested Recombinant protein or subunit vaccines Thermostabilisation technology for storage at Adenoviral vectors temperatures up to 45C for six months, or ambient temperatures for much longer Modified Vaccinia viral vector technology Adenoviral vector technology Capacity to express multiple antigens Low‐seroprevalent adenovirus‐based Proprietary strong promoters and insertion Extensively clinically tested sites High capacity/low cost manufacturing using PER.C6® cell Access to manufacturing in immortal avian cell line technology lines Liquid formulation compatible with current vaccine Virus Like Particle Technology supply chains: HBsAg fusion VLPs produced in yeast o Current liquid formulation; 1 year stability at 2‐8C AP205 VLPs produced in E. coli o New formulation with at least 2 year real time in vitro stability at 2‐8C 16 Janssen Vaccines expertise • Proven technology platforms, expert teams • PER.C6® cell line unique characteristics and ability to apply for multiple pathogens • Process development, manufacturing capabilities and scale up (>1 mio Ebola vaccine regimens in 1 year, potential for >300.000 doses / week). Optimised temperature stability for field use • Clinical development capabilities and know‐how in potentially affected areas and resource‐limited settings • Managing multilateral partnerships (eg. Ebola IMI) 17 Core Technology Platforms Supporting Janssen Vaccine Development PER.C6® cell line technology . For the manufacturing of: – Whole inactivated virus vaccines – Attenuated virus vaccines – Viral vectors – Protein vaccines and monoclonal antibodies . Highly permissive to human and animal viruses . Culturing at high cell density results in increased volumetric productivities lowering demand of scale and COGs 18 Development of the PER.C6® cell line History of the PER.C6® cell line . Primary human retinoblasts were obtained in 1985 from a healthy donor . Immortalized using adenovirus E1A/E1B in 1995 . Human cell substrates have been used for the manufacture of numerous live attenuated vaccines in the past 40 years . To date >60 material and IP licenses granted for applications with gene therapy vectors, vaccines and recombinant proteins . Tested in compliance with applicable regulations and guidances from US FDA, EU, ICH and WHO . Biologics Master File available at FDA 19 PER.C6® cells: for the replication of human viruses for vaccine manufacturing Picornaviridae Flaviviridae Paramyxoviridae PV1, 2, 3 ZIKV PI 1,2,3 Coxs A9, B2, B4 WNV NDV Echovirus, 7, 11 JEV Measles EV71 YF RSV Togaviridae Herpesviridae Adenoviridae SF HSV‐1 Human AdV Sindbis HSV‐2 Ape AdV Rhabdoviridae Reoviridae Poxviridae VSV Rhesus RV Vaccinia Rabies Human RV Orthomyxoviridae Bunyaviridae Influenza Hantaan 20 PER.C6® cells support substantially higher production of poliovirus than VERO cells Sabin strain yields are greatly enhanced on the PER.C6® cell platform Sanders et al., 2015. Vaccine 33 (48): 6611–6616 Sabin strain yields on the PER.C6® cell platform are maintained at larger scale and provides a high capacity, low cost option for Sabin‐IPV manufacturing Strain Scale # of runs Average Productivity at harvest (D antigen/ml) # doses / ml* Sabin 1 10L 7 2285 > 200 Sabin 2 10L 5 379 > 25 Sabin 3 10L 3 3098 > 40 *Dose assumption: Type 1:2:3 = 10:15:70 D antigen units/dose 21 HIV vaccine development: PER.C6®-derived vaccines provide protection against SHIV challenge Ad26 prime – Env GP140 boost vaccinations in NHP provide increased protection in stringent SHIV-SF162P3 and SIVmac251 challenge models (Science. July 2015 and unpublished data) • NHP study #13-19: BIDMC/MHRP/Janssen collaboration • The Ad26/Ad26+gp140 HIV vaccine regimen provides substantial protection against repetitive (6) rectal SHIV challenges
Recommended publications
  • Old Road Campus
    Old Road Campus 4a, 4b, 4c, U5 n o t Oxford City Centre g OLD ROAD n i d 4a, 4b, 4c, U5 a e H K O L L A D R O W AD E M I L 4,4a,4b,4c, U1X,U5 A41 42 4,4a,4b,4c,U5 Rin D 4 g R oad 6 7 1 13 3 11 C H U R C H I L L 900 D 2 R I 700, 900 V E E O x f o 5 A C rd 12 C i ty 10 C e n t re B 8 CAR PARK C 9 h u r c R F h i O l l O S H E o V s N E p L i T t DRI a VE ENTRANCE ROOSEVELT DRIVE l 900, ST2 Index 1 The Triangle Nursery 9 Old Road Campus Estates Annexe 13 Boundary Brook House Interserve Joint Research Office Kennedy Institute 2 - Research Services, Medical Sciences Division Old Road Campus Research Building 10 - Clinical Trials and Research Governance 3 New Richards Building Department of Oncology - Human Tissue Governance CRUK/MRC Oxford Institute for Radiation Oncology - Medical Sciences Division Business Development 4 NDM Research Building Institute of Biomedical Engineering Nuffield Department of Primary Care Health Sciences Target Discovery Institute Jenner Institute Medical Sciences Divisional Safety Officers Centre for Tropical Medicine and Global Health Bodleian Knowledge Centre (Library Services) Medical Sciences Division IT Services 5 Wellcome Centre for Human Genetics (WHG) Ludwig Institute for Cancer Research Structural Genomics Consortium 6 Henry Wellcome Building for Molecular Physiology Nuffield Department of Surgical Sciences Loading Bays and Delivery Offices of the Nuffield Professor of Medicine ENTRANCE VIA BUILDING 5 11 Big Data Institute A Wellcome Trust Centre for Human Genetics 7 Henry Wellcome Building for Particle Imaging
    [Show full text]
  • Assessment Report COVID-19 Vaccine Astrazeneca EMA/94907/2021
    29 January 2021 EMA/94907/2021 Committee for Medicinal Products for Human Use (CHMP) Assessment report COVID-19 Vaccine AstraZeneca Common name: COVID-19 Vaccine (ChAdOx1-S [recombinant]) Procedure No. EMEA/H/C/005675/0000 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2021. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 7 1.1. Submission of the dossier ..................................................................................... 7 1.2. Steps taken for the assessment of the product ........................................................ 9 2. Scientific discussion .............................................................................. 12 2.1. Problem statement ............................................................................................. 12 2.1.1. Disease or condition ........................................................................................ 12 2.1.2. Epidemiology and risk factors ........................................................................... 12 2.1.3. Aetiology and pathogenesis .............................................................................
    [Show full text]
  • Chadox1 Ncov-19 Vaccine Prevents SARS-Cov-2 Pneumonia in Rhesus Macaques
    Article ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques https://doi.org/10.1038/s41586-020-2608-y Neeltje van Doremalen1,4, Teresa Lambe2,4, Alexandra Spencer2, Sandra Belij-Rammerstorfer2, Jyothi N. Purushotham1,2, Julia R. Port1, Victoria A. Avanzato1, Trenton Bushmaker1, Received: 13 May 2020 Amy Flaxman2, Marta Ulaszewska2, Friederike Feldmann3, Elizabeth R. Allen2, Hannah Sharpe2, Accepted: 24 July 2020 Jonathan Schulz1, Myndi Holbrook1, Atsushi Okumura1, Kimberly Meade-White1, Lizzette Pérez-Pérez1, Nick J. Edwards2, Daniel Wright2, Cameron Bissett2, Ciaran Gilbride2, Published online: 30 July 2020 Brandi N. Williamson1, Rebecca Rosenke3, Dan Long3, Alka Ishwarbhai2, Reshma Kailath2, Check for updates Louisa Rose2, Susan Morris2, Claire Powers2, Jamie Lovaglio3, Patrick W. Hanley3, Dana Scott3, Greg Saturday3, Emmie de Wit1, Sarah C. Gilbert2,5 ✉ & Vincent J. Munster1,5 ✉ Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 20191,2 and is responsible for the coronavirus disease 2019 (COVID-19) pandemic3. Vaccines are an essential countermeasure and are urgently needed to control the pandemic4. Here we show that the adenovirus-vector-based vaccine ChAdOx1 nCoV-19, which encodes the spike protein of SARS-CoV-2, is immunogenic in mice and elicites a robust humoral and cell-mediated response. This response was predominantly mediated by type-1 T helper cells, as demonstrated by the profling of the IgG subclass and the expression of cytokines. Vaccination with ChAdOx1 nCoV-19 (using either a prime-only or a prime–boost regimen) induced a balanced humoral and cellular immune response of type-1 and type-2 T helper cells in rhesus macaques.
    [Show full text]
  • Astrazeneca-Oxford Vaccine Approved for Use in the U.K
    P2JW366000-6-A00100-17FFFF5178F ****** THURSDAY,DECEMBER 31,2020~VOL. CCLXXVI NO.154 WSJ.com HHHH $4.00 DJIA 30409.56 À 73.89 0.2% NASDAQ 12870.00 À 0.2% STOXX 600 400.25 g 0.3% 10-YR. TREAS. À 3/32 , yield 0.926% OIL $48.40 À $0.40 GOLD $1,891.00 À $10.50 EURO $1.2300 YEN 103.21 Deadly Attack at Airport Targets New Yemen Government U.S. IPO What’s News Market Reaches Business&Finance Record nvestorspiled into IPOs Iat a record rate in 2020, with companies raising Total $167.2 billion via 454 of- ferings on U.S. exchanges this year through Dec. 24. Few see signs of letup Few expect the euphoria after companies raise to wear off soon. A1 more than $167 billion Detenteisending in the global fight over tech taxes, despite pandemic with Franceresuming collec- tion of itsdigital-services tax BY MAUREEN FARRELL and the U.S. poised to retali- atewith tariffs.Other coun- Defying expectations,inves- tries areset to join the fray. A1 S tors piled intoinitial public of- China finished 2020 PRES feringsatarecordrateiN with a 10th consecutive TED 2020, and few expect the eu- month of expansion in its CIA phoria to wear off soon. manufacturing sector. A7 SO Companies raised $167.2 AS TheEUand China agreed TENSIONS HIGH: People fled after an explosion Wednesday at the airport in Aden, Yemen, moments after members of the billion through 454 offerings in principle on an invest- country’s newly sworn-in cabinet arrived. At least 22 people were killed, but all the members of the cabinet were safe.
    [Show full text]
  • Transcriptomic Profiling of Dromedary Camels Immunised with a MERS
    veterinary sciences Article Transcriptomic Profiling of Dromedary Camels Immunised with a MERS Vaccine Candidate Sharif Hala 1,2,3, Paolo Ribeca 4 , Haya A. Aljami 1,2, Suliman A. Alsagaby 5 , Ibrahim Qasim 6, Sarah C. Gilbert 7 and Naif Khalaf Alharbi 1,2,* 1 Vaccine Development Unit, Department of Infectious Disease Research, King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia; [email protected] (S.H.); [email protected] (H.A.A.) 2 King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia 3 Pathogen Genomics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia 4 Biomathematics and Statistics Scotland, The James Hutton Institute, Edinburgh EH9 3FD, UK; [email protected] 5 Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; [email protected] 6 Ministry of Environment, Water and Agriculture (MEWA), Riyadh 11481, Saudi Arabia; [email protected] 7 The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX1 4BH, UK; [email protected] * Correspondence: [email protected] Abstract: Middle East Respiratory Syndrome coronavirus (MERS-CoV) infects dromedary camels and zoonotically infects humans, causing a respiratory disease with severe pneumonia and death. With no approved antiviral or vaccine interventions for MERS, vaccines are being developed for Citation: Hala, S.; Ribeca, P.; Aljami, camels to prevent virus transmission into humans. We have previously developed a chimpanzee H.A.; Alsagaby, S.A.; Qasim, I.; adenoviral vector-based vaccine for MERS-CoV (ChAdOx1 MERS) and reported its strong humoral Gilbert, S.C.; Alharbi, N.K.
    [Show full text]
  • Clinical Advances in Viral-Vectored Influenza Vaccines
    vaccines Review Clinical Advances in Viral-Vectored Influenza Vaccines Sarah Sebastian and Teresa Lambe * The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 DQ, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1865-617621 Received: 19 April 2018; Accepted: 21 May 2018; Published: 24 May 2018 Abstract: Influenza-virus-mediated disease can be associated with high levels of morbidity and mortality, particularly in younger children and older adults. Vaccination is the primary intervention used to curb influenza virus infection, and the WHO recommends immunization for at-risk individuals to mitigate disease. Unfortunately, influenza vaccine composition needs to be updated annually due to antigenic shift and drift in the viral immunogen hemagglutinin (HA). There are a number of alternate vaccination strategies in current development which may circumvent the need for annual re-vaccination, including new platform technologies such as viral-vectored vaccines. We discuss the different vectored vaccines that have been or are currently in clinical trials, with a forward-looking focus on immunogens that may be protective against seasonal and pandemic influenza infection, in the context of viral-vectored vaccines. We also discuss future perspectives and limitations in the field that will need to be addressed before new vaccines can significantly impact disease levels. Keywords: viral vectors; influenza; clinical trials 1. Introduction Influenza virus is a respiratory pathogen that causes annual influenza epidemics affecting an estimated 15% of the global population with up to 645,000 deaths annually [1,2]. In addition, pandemic variants of the Influenza A virus (IAV) have been associated with upwards of 50 million deaths worldwide [3].
    [Show full text]
  • Annual Meeting
    Volume 97 | Number 5 Volume VOLUME 97 NOVEMBER 2017 NUMBER 5 SUPPLEMENT SIXTY-SIXTH ANNUAL MEETING November 5–9, 2017 The Baltimore Convention Center | Baltimore, Maryland USA The American Journal of Tropical Medicine and Hygiene The American Journal of Tropical astmh.org ajtmh.org #TropMed17 Supplement to The American Journal of Tropical Medicine and Hygiene ASTMH FP Cover 17.indd 1-3 10/11/17 1:48 PM Welcome to TropMed17, our yearly assembly for stimulating research, clinical advances, special lectures, guests and bonus events. Our keynote speaker this year is Dr. Paul Farmer, Co-founder and Chief Strategist of Partners In Health (PIH). In addition, Dr. Anthony Fauci, Director of the National Institute of Allergy and Infectious Diseases, will deliver a plenary session Thursday, November 9. Other highlighted speakers include Dr. Scott O’Neill, who will deliver the Fred L. Soper Lecture; Dr. Claudio F. Lanata, the Vincenzo Marcolongo Memorial Lecture; and Dr. Jane Cardosa, the Commemorative Fund Lecture. We are pleased to announce that this year’s offerings extend beyond communicating top-rated science to direct service to the global community and a number of novel events: • Get a Shot. Give a Shot.® Through Walgreens’ Get a Shot. Give a Shot.® campaign, you can not only receive your free flu shot, but also provide a lifesaving vaccine to a child in need via the UN Foundation’s Shot@Life campaign. • Under the Net. Walk in the shoes of a young girl living in a refugee camp through the virtual reality experience presented by UN Foundation’s Nothing But Nets campaign.
    [Show full text]
  • Sir Bryn Terfel Premieres John Rutter's 'Joseph's Carol', Dedicated to the Oxford Vaccine Team in Celebratory Concert Fr
    Sir Bryn Terfel premieres John Rutter’s ‘Joseph’s Carol’, dedicated to the Oxford vaccine team in celebratory concert from the Oxford Philharmonic Orchestra Friday 18 December 2020, 18:30 Streamed on Oxford Philharmonic Orchestra’s YouTube Channel: bit.ly/OPOVaccineTribute Elgar Chanson de Matin William Henry Monk Abide with Me Rodgers & Hammerstein You’ll Never Walk Alone John Rutter Joseph’s Carol WORLD PREMIERE John Rutter Look to the Day Handel Hallelujah Chorus Sir Bryn Terfel bass-baritone Oxford Philharmonic Orchestra Maxim Vengerov violin Choir of Merton College, Oxford John Rutter conductor Alexandra Lowe soprano Marios Papadopoulos conductor Alexander Olleson treble John Suchet presenter In recognition of the formidable work accomplished by the team of scientists at the University of Oxford on their Covid-19 vaccine, the Oxford Philharmonic Orchestra will stream a celebratory concert on Friday 18 December, recorded in the city’s historic Sheldonian Theatre. Performed by bass-baritone Sir Bryn Terfel, the short concert features the premiere of John Rutter’s Joseph’s Carol, written in tribute to the Oxford Vaccine Group, the Jenner Institute and the RECOVERY team. The words by John Rutter recount the long and weary journey of Joseph and Mary to Bethlehem before the birth of the baby Jesus, echoing the programme’s journey from struggle through to hope. Bryn Terfel also joins the Orchestra and the Choir of Merton College, Oxford, in a rousing programme from Rodgers & Hammerstein’s You’ll Never Walk Alone (with Jette Parker Young Artist Alexandra Lowe) to Handel’s Hallelujah Chorus. Sir Bryn and the Orchestra are also joined in the hymn of comfort, Abide with Me, by chorister Alexander Olleson of Christ Church Cathedral Choir, the recent winner of BBC Young Chorister Of The Year 2020.
    [Show full text]
  • Immunomodulatory Effects of the Hepatitis C Virus (HCV) Core Protein
    Immunomodulatory Effects of the Hepatitis C Virus (HCV) Core Protein By Rachel Elizabeth Owen A thesis submitted for the degree of Doctor of Philosophy at the University of London September 2003 The Edward Jenner Institute for Vaccine Research University College London ProQuest Number: U642330 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U642330 Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract Hepatitis C virus establishes a persistent infection in approximately 80% of infected individuals. It is unclear why the immune system is frequently unable to mediate a response capable of controlling HCV replication. Dendritic cells (DCs) may be an extrahepatic site of viral replication and it is hypothesised that expression of the core protein within DCs may impair their functions resulting in inadequate immune responses. To investigate potential immunomodulatory effects of the core protein on DCs, replication-deficient adenoviral vectors co-expressing different versions of the core protein (full-length, truncated and a version lacking residues 125-144) with GFP were constructed. Whilst these adenoviruses were being generated, experiments were carried out with an adenoviral vector expressing all the HCV structural proteins (Ad- CE1E2).
    [Show full text]
  • Viral Vectors for COVID-19 Vaccine Development
    viruses Review Viral Vectors for COVID-19 Vaccine Development Kenneth Lundstrom PanTherapeutics, CH1095 Lutry, Switzerland; [email protected] Abstract: Vaccine development against SARS-CoV-2 has been fierce due to the devastating COVID- 19 pandemic and has included all potential approaches for providing the global community with safe and efficient vaccine candidates in the shortest possible timeframe. Viral vectors have played a central role especially using adenovirus-based vectors. Additionally, other viral vectors based on vaccinia viruses, measles viruses, rhabdoviruses, influenza viruses and lentiviruses have been subjected to vaccine development. Self-amplifying RNA virus vectors have been utilized for lipid nanoparticle-based delivery of RNA as COVID-19 vaccines. Several adenovirus-based vaccine candidates have elicited strong immune responses in immunized animals and protection against challenges in mice and primates has been achieved. Moreover, adenovirus-based vaccine candidates have been subjected to phase I to III clinical trials. Recently, the simian adenovirus-based ChAdOx1 vector expressing the SARS-CoV-2 S spike protein was approved for use in humans in the UK. Keywords: SARS-CoV-2; COVID-19; vaccines; adenovirus; preclinical immunization; clinical trials; approved vaccine 1. Introduction Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread quickly around the world, causing the COVID-19 pandemic, which has seen more than 100 million infections, 2.15 million deaths and a severely damaged global economy [1]. The severity Citation: Lundstrom, K. Viral and spread of COVID-19 were unprecedented compared to previous coronavirus outbreaks Vectors for COVID-19 Vaccine for SARS-CoV in 2004–2005 [2] and Middle East Respiratory Coronavirus (MERS-CoV) Development.
    [Show full text]
  • 'Astrazeneca' Covid-19 Vaccine
    Medicines Law & Policy How the ‘Oxford’ Covid-19 vaccine became the ‘AstraZeneca’ Covid-19 vaccine By Christopher Garrison 1. Introduction. The ‘Oxford / AstraZeneca’ vaccine is one of the world’s leading hopes in the race to end the Covid-19 pandemic. Its history is not as clear, though, as it may first seem. The media reporting about the vaccine tends to focus either on the very small (non-profit, academic) Jenner Institute at Oxford University, where the vaccine was first invented, or the very large (‘Big Pharma’ firm) AstraZeneca, which is now responsible for organising its (non-profit) world-wide development, manufacture and distribution. However, examining the intellectual property (IP) path of the vaccine from invention to manufacture and distribution reveals a more complex picture that involves other important actors (with for-profit perspectives). Mindful of the very large sums of public money being used to support Covid-19 vaccine development, section 2 of this note will therefore contextualise the respective roles of the Jenner Institute, AstraZeneca and these other actors, so that their share of risk and (potential) reward in the project can be better understood. Section 3 provides comments as well as raising some important questions about what might yet be done better and what lessons can be learned for the future. 2. History of the ‘Oxford / AstraZeneca’ vaccine. 2.1 Oxford University and Oxford University Innovation Ltd. The Bayh-Dole Act (1980) was hugely influential in the United States and elsewhere in encouraging universities to commercially exploit the IP they were generating by setting up ‘technology transfer’ offices.
    [Show full text]
  • Job Description and Person Specificationselection Criteria
    Job title Senior Postdoctoral Scientist Division Medical Sciences Department Nuffield Department of Medicine, Jenner Institute Clinical Centre for Vaccinology and Translational Medicine Location (CCVTM), Old Road Campus, Headington, Oxford, OX3 7LE Grade 8: £41,526 - £49,553 per annum with a discretionary range Grade and salary to £54,131 per annum Hours Full time Contract type Fixed-term contract for 20 months, in the first instance Reporting to Professor Christine Rollier & Professor Cal MacLennan Vacancy reference 147960 Additional Position funded by US funding information Development of a Gonococcal Outer Membrane Vesicle Vaccine Research topic from Lead Optimization to Phase 1 Clinical Trial Principal Investigator Professor Christine Rollier & Professor Cal MacLennan / supervisor Project team Gonococcal Vaccine Group http://www.jenner.ac.uk/ Project web site Funding partner US funding 1. Gottlieb SL, et al. Gonococcal vaccines: public health value and preferred product characteristics; report of a WHO global stakeholder consultation, January 2019. Vaccine 2020; 38: 4362-4373. 2. Micoli, F et al. Comparative immunogenicity and efficacy of equivalent outer membrane vesicle and glycoconjugate vaccines against nontyphoidal Salmonella. PNAS 2018; Recent publications 115: 10428-33. 3. Folegatti PM, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020; 396: 467-478. 4. Marsay L, et al. A novel meningococcal outer membrane vesicle vaccine with constitutive expression of FetA: A phase I clinical trial. J Infect 2015; 71: 326-37. The Role The Gonococcal Vaccine Project is based at the Jenner Institute, University of Oxford, and utilizes a novel outer membrane vesicle (OMV) technology to develop a vaccine against gonorrhoea.
    [Show full text]