PEEK Plastic Injection Molding Items for Industrial Equipment . It Is High Requirement and High Using Temperature Part
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Media Information 2018
Media information 2018 The global digital magazine and apps for injection moulders Injection World offers: 4 Comprehensive global coverage Injection World is the monthly magazine providing business, industry and technology news for injection 4 100% focused on injection moulding moulders, mould makers and product designers around the globe. It is accessed by thousands of readers every 4 In-depth market knowledge month free-of-charge online, on tablets, smartphones, and 4 Free access online and via apps via our free apps for the iPad, iPhone and Android devices. Injection World delivers relevant and up-to-date information on 4 Highly competitive advertisement rates the most important technical developments, market trends, 4 Live weblinks from all advertisements business news, design innovations and legislative announcements. And, unlike other general plastics magazines, 4 App viewable without internet connection it is 100% focused on the specific information needs of designers and producers of plastic mouldings. Published by our expert editorial team at AMI – the leading Visit www.injectionworld.com provider of databases, market intelligence and conferences for to see the latest issue and take out the global plastics processing industries – Injection World a free subscription benefits from access to our detailed databases of senior decision makers at injection moulding sites across Europe, the Americas, Asia and the Middle East. These global databases include key purchasers of injection moulding machines, moulds, ancillary equipment, polymers, additives and related services. Looking to access this market? Our advertisements are very competitively priced and include links directly to your website. If you are selling machinery, ancillary equipment, materials, additives or services to the injection moulding industry, then Injection World is the vehicle to promote your business globally. -
Mechanical Properties of Rapid Manufacturing and Plastic Injection Molding
Mechanical Properties of Rapid Manufacturing and Plastic Injection Molding A Thesis Presented to the Faculty of the Graduate School University of Missouri – Columbia In Partial Fulfillment Of the Requirements for the Degree Master of Science By JOSEPH CONRAD AHLBRANDT Dr. Luis G. Occeña, Thesis Advisor December 2014 The undersigned, appointed by the Dean of the Graduate School, have examined the thesis entitled MECHANICAL PROPERTIES OF RAPID MANUFACTURING AND PLASTIC INJECTION MOLDING Presented by Joseph C. Ahlbrandt A candidate for the degree of Master of Science And hereby certify that in their opinion it is worthy of acceptance Dr. Luis Occeña Dr. James Noble Dr. Yuyi Lin ACKNOWLEDGEMENTS Foremost, I owe many thanks to my advisor, Dr. Luis Occeña, for his continual support during my research and studies. Without him I would not have been able to study this subject and broaden my knowledge of manufacturing methods. The guidance and wisdom that he has provided me is priceless and there is no way I can thank him enough. I am also in debt to Mr. Mike Klote for introducing me to rapid prototyping in his course at Mizzou. He presented rapid prototyping in a way that intrigued me and inspired me to pursue research opportunities related to the subject. I also appreciate his willingness to answer many of my questions that have helped me complete my thesis. I would like to thank the Engineering Technical Services department at the University of Missouri for providing me with support and access to technology that was vital to the completion of my thesis. I could not have completed my research without the occasional assistance of Greg Emanuel and Michael Absheer. -
Optimizing Injection Molding Parameters of Different Halloysites Type-Reinforced Thermoplastic Polyurethane Nanocomposites Via Taguchi Complemented with ANOVA
materials Article Optimizing Injection Molding Parameters of Different Halloysites Type-Reinforced Thermoplastic Polyurethane Nanocomposites via Taguchi Complemented with ANOVA Tayser Sumer Gaaz 1,2,*, Abu Bakar Sulong 1,*, Abdul Amir H. Kadhum 3, Mohamed H. Nassir 4 and Ahmed A. Al-Amiery 3 1 Department of Mechanical & Materials Engineering, Faculty of Engineering & Built Environment, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia 2 Department of Machinery Equipment Engineering Techniques, Technical College Al-Musaib, Al-Furat Al-Awsat Technical University, Al-Musaib 51009, Babil, Iraq 3 Department of Chemical & Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; [email protected] (A.A.H.K.); [email protected] (A.A.A.-A.) 4 Program of Chemical Engineering, Taylor’s University-Lakeside Campus, Subang Jaya 47500, Selangor, Malaysia; [email protected] * Correspondence: [email protected] (T.S.G.); [email protected] (A.B.S.); Tel.: +60-11-210-60892 (T.S.G.); +60-38-921-6678 (A.B.S.); Fax: +60-38-925-9659 (A.B.S.) Academic Editor: Naozumi Teramoto Received: 7 October 2016; Accepted: 17 November 2016; Published: 22 November 2016 Abstract: Halloysite nanotubes-thermoplastic polyurethane (HNTs-TPU) nanocomposites are attractive products due to increasing demands for specialized materials. This study attempts to optimize the parameters for injection just before marketing. The study shows the importance of the preparation of the samples and how well these parameters play their roles in the injection. The control parameters for injection are carefully determined to examine the mechanical properties and the density of the HNTs-TPU nanocomposites. -
Statement on the Registration of Polymers Under REACH Authored by and Signed by Members of the Scientific Community, April 2021
Statement on the registration of polymers under REACH Authored by and signed by members of the scientific community, April 2021 People and the environment are widely exposed to polymers, the main constituents of plastics, as these chemicals continue to build up in terrestrial and ocean ecosystems and production is predicted to continue increasing (Geyer et al., 2017), resulting in emissions to our waterways of up to 53 million metric tons (Mt) per year by 2030 (Borrelle et al., 2020). Apart from plastics, polymeric substances are present in many other materials, products and applications, including but not limited to silicones, coatings, paints, detergents, household and personal care products, agricultural fertilizers and wastewater treatment, often leading to direct releases into the environment. Although polymers are manufactured and used in Europe in extremely high quantities (e.g. plastic production in Europe has been around 60 million tonnes per year over the last years (PlasticsEurope, 2020)), not enough is known about their identity, uses, physical, chemical, and hazardous properties, particularly because polymers have so far been exempt from registration under the European chemicals regulations REACH. To finally initiate the polymer registration process, currently the European Commission (EC) is developing a proposal on how and which polymers to register (Wood and PFA-Brussels, 2020). As scientists working in the fields of polymer chemistry, ecotoxicology, environmental chemistry, conservation biology, environmental sciences, -
High Temperature Resin Alwa Ht Resin
PRODUCT ANNOUNCEMENT: HIGH TEMPERATURE RESIN ALWA HT RESIN ALWA HT RESIN is a resin-based on isocyanate and epoxy (EP), which reacts after adding a catalyst. ALWA HT RESIN offers a range of possibilities for producers of fibre-reinforced materials (e.g., glass fibre, kevlar and carbon), semi-finished and finished goods. The system is also suitable for prepreg and reaction compounds. ALWA HT RESIN is particularly interesting for the aerospace and aircraft industry as well for the rail transport, automotive and electronics industry. The application area of “epic” resins are electro casting resins, lamination and injection technology (RTM procedure), vacu- um infusion, casting and ramming compounds, impregnation resin, casting and injection moulding process as well as prepreg technologies, among others. ALWA HT RESIN is offered in two versions. 1) ALWA HT RESIN M100 with approx. 50 mPa s 2) ALWA HT RESIN M2200 with approx. 2200 mPa s The resins can be mixed with one another which enables a flexible adjustment of the viscosity. In addition, two catalysts are available: one catalyst with a fast and one with a low curing rate. These can also be mixed together which allows a flexible adjustment of the pot life. After adding the cata- lyst, the material cures at room temperature. In that intermediate B-condition the material is very brittle. Three-dimensional networks are formed, which are characterized by a high density. That tri- merisation is the prerequisite for the final mechanical values and consistencies. The tempering should be executed in stages up to 180 °C. After tempering a highly cross-linked duroplast is the re- sult. -
Food Packaging Technology
FOOD PACKAGING TECHNOLOGY Edited by RICHARD COLES Consultant in Food Packaging, London DEREK MCDOWELL Head of Supply and Packaging Division Loughry College, Northern Ireland and MARK J. KIRWAN Consultant in Packaging Technology London Blackwell Publishing © 2003 by Blackwell Publishing Ltd Trademark Notice: Product or corporate names may be trademarks or registered Editorial Offices: trademarks, and are used only for identification 9600 Garsington Road, Oxford OX4 2DQ and explanation, without intent to infringe. Tel: +44 (0) 1865 776868 108 Cowley Road, Oxford OX4 1JF, UK First published 2003 Tel: +44 (0) 1865 791100 Blackwell Munksgaard, 1 Rosenørns Allè, Library of Congress Cataloging in P.O. Box 227, DK-1502 Copenhagen V, Publication Data Denmark A catalog record for this title is available Tel: +45 77 33 33 33 from the Library of Congress Blackwell Publishing Asia Pty Ltd, 550 Swanston Street, Carlton South, British Library Cataloguing in Victoria 3053, Australia Publication Data Tel: +61 (0)3 9347 0300 A catalogue record for this title is available Blackwell Publishing, 10 rue Casimir from the British Library Delavigne, 75006 Paris, France ISBN 1–84127–221–3 Tel: +33 1 53 10 33 10 Originated as Sheffield Academic Press Published in the USA and Canada (only) by Set in 10.5/12pt Times CRC Press LLC by Integra Software Services Pvt Ltd, 2000 Corporate Blvd., N.W. Pondicherry, India Boca Raton, FL 33431, USA Printed and bound in Great Britain, Orders from the USA and Canada (only) to using acid-free paper by CRC Press LLC MPG Books Ltd, Bodmin, Cornwall USA and Canada only: For further information on ISBN 0–8493–9788–X Blackwell Publishing, visit our website: The right of the Author to be identified as the www.blackwellpublishing.com Author of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. -
Peeling Back the Print Industry's Plastic Problem
greenHAT | Lamination: Peeling back the print industry’s plastic problem LAMINATION Peeling back the print industry’s plastic problem A report by Sophie McDonald Peeling back the print industry’s plastic problem Contents The plastic problem 3 What about recycling? 5 Are there any green alternatives? 8 The verdict 12 What do the people in print have to say? 13 Where does Green Hat stand? 15 Summary • Vast amounts of printed materials are coated in plastic lamination. This is often unnecessary and purely used to improve appearance. • Plastic and paper can’t be recycled together. Laminates should be removed and disposed of separately before recycling the paper element. • It’s unclear whether eco-friendly laminates match up to their claims. They may not be properly identified and processed by waste management facilities and end up going to incineration or landfill. • Avoiding lamination altogether is the best solution. • Green Hat avoid lamination wherever possible and aim to spread further awareness of this issue in the print industry. Photo by Ron Dyar on Unsplash Cover by Bank Phrom on Unsplash 2 Peeling back the print industry’s plastic problem The Plastic problem 3 Peeling back the print industry’s plastic problem The Plastic Problem Plastic pollution is the conversation on everyone’s lips. Generally speaking, most of us can agree that single-use plastics spell bad news. As a society we’ve greatly increased our awareness of the negative environmental impacts of daily items like straws, takeaway coffee cups and plastic bottles. And we know it’s pointless to create a product that will last for hundreds of years, yet only be used for a matter of minutes. -
Thermoplastic Polyurethane Elastomers (TPU) Elastollan®– Processing Recommendations
Thermoplastic Polyurethane Elastomers (TPU) Elastollan®– Processing Recommendations Technical Information Contents General Storage 4 Recommendations Drying 5 Colouring 6 Additives 6 Use of Regrind 6 Post-treatment 7 Health & Safety at Work 8 Disposal 8 Processing Machine Design 9 Injection Moulding Processing Parameters 10 Mould Design 12 Shrinkage 14 Inserts 14 Special Processing Methods 15 Trouble Shooting Guidelines 15 Processing Machine Design 16 Extrusion Processing Parameters 17 Die Design 18 Cooling and Calibration 19 Extrusion Techniques 20 Special Processing Methods 22 Trouble Shooting Guidelines 22 Finishing Procedures Welding 23 Bonding 23 Surface Finishing 23 2 Contents Machining Machining Parameters 24 Drilling 24 Turning 25 Milling 25 Cutting 25 Grinding 25 Punching 25 Quality 26 Management Index of Key Terms 27 Edition: November 2011 3 General Recommendations Storage Elastollan is the protected trade mark Moisture absorption of our thermoplastic polyurethane Polyester-TPU elastomers (TPU). These materials Hardness 80 Shore A – 64 Shore D are used for injection moulding, 0,80 extrusion and blow moulding. 0,70 ] 1 % 0,60 The following recommendations [ should be observed in the process- 0,50 ing of Elastollan materials. 0,40 Humidity Elastollan grades are supplied uncol- 0,30 oured, in diced, cylindrical or lentil- 0,20 2 shaped form. The materials are 0,10 hygroscopic i.e. dry Elastollan, when 0,00 exposed to the atmosphere will 0 12345678 rapidly absorb moisture. Polyether- Time [h] based Elastollan grades absorb 1 – Standard atmosphere 40°C/92% rel. hum. more rapidly moisture than polyester- 2 – Standard atmosphere based grades. 23°C/50% rel. hum. Fig.1 Figures 1 and 2 show the rate of moisture absorption. -
Enhanced Bimodal PE Makes the Impossible Possible
Enhanced Bimodal PE makes the impossible possible Steven Sheu Borouge Pte Ltd. Oct. 2006, Shanghai 1 Borouge reference line 2006 © 2006 Borouge Pte Ltd BorstarBorstar TechnologyTechnology Dual reactor, bimodal Fraction % 12345 process Processability Mechanical Broad molecular weight lubricant strength distribution tie molecules Taste, Odour, Smoke, Processability, Combines good Migration melt strength, swell, processability and good orientation development mechanical strength Tailored comonomer addition Low taste & odour Bimodal Improved low temperature properties Wide range of MFR and Conventional densities achievable Molecular weight 1. To be avoided 2 Necessary to bring down pro-cessing forces (extrusion) and to protect fraction (4) from being degraded. To avoid melt fracture (poor surface properties). This fraction is, however, mechani- cally weak and has to be rein-forced by (4). 4. Necessary to get high enough tie chain concentrations for toughness and strength. 5. Impact melt strength and modify rheological behaviour of the polymer melt. 2 Borouge reference line 2006 © 2006 Borouge Pte Ltd H:TAPPIConfChina WhatWhat isis Different?Different? Enhanced Bimodal PE LDPE LLDPE m-LLDPE 3 Borouge reference line 2006 © 2006 Borouge Pte Ltd H:TAPPIConfChina BimodalBimodal PEPE ProcessProcess TechnologiesTechnologies Loop - GP GP - GP Double slurry loop Dual/triple slurry tank Dual/triple solution * Borstar * Unipol II * Atofina * Hostalen * Dowlex * Evolue * Solvay * Mitsui CX * Adv. Sclairtech * Spherilene * Showa Denko * Equistar- -
Injection Moulding Part Design for Dummies‰ PROTO LABS‰ SPECIAL EDITION
These materials are © 2012 John Wiley & Sons, Inc . Any dissemination, distribution, or unauthorized use is strictly prohibited. Injection Moulding Part Design FOR DUMmIES‰ PROTO LABS‰ SPECIAL EDITION by Thom Tremblay These materials are © 2012 John Wiley & Sons, Inc . Any dissemination, distribution, or unauthorized use is strictly prohibited. Injection Moulding Part Design For Dummies,® Proto Labs® Special Edition Published by John Wiley & Sons, Inc. 111 River Street Hoboken, NJ 07030-5774 www.wiley.com Copyright © 2012 by John Wiley & Sons, Inc., Hoboken, NJ Published by John Wiley & Sons, Inc., Hoboken, NJ No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions. Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!, The Dummies Way, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without written permission. Proto Labs is a registered trademark of Proto Labs, Inc., and may not be used without Proto Labs, Inc.’s permission. -
Mechanical Properties of Acrylonitrile Butadiene Styrene Thermoplastic Polymer Matrix with Carbon Nanotubes
Oct 14th – 16th 2015, Brno, Czech Republic, EU MECHANICAL PROPERTIES OF ACRYLONITRILE BUTADIENE STYRENE THERMOPLASTIC POLYMER MATRIX WITH CARBON NANOTUBES Jan VÁCHA1, Martin BORŮVKA1 1Technical university of Liberec, Studentská 2, Liberec 1, 461 17, [email protected], [email protected] Abstract This paper examines the mechanical properties of the composite of thermoplastic polymer matrix with carbon nanotubes. As the basic polymer matrix was used acrylonitrile butadiene styrene (ABS) to which were added the nanoparticles in a given percentage by weight in the form of nanotubes. Composite was injected into the Arburg injection molding machine. For evaluation were measured harness, impact and tensile test. These tests are compared with polymeric materials without added nanofiller. In conclusion is evaluated and compared influence on the mechanical properties of polymer matrix with carbon nanotubes and without fillers. Keywords carbon nanotubes, nanocomposites, mechanical properties 1. INTRODUCTION In the past ten years, extensive research and development have been carried out in the field of polymer composite production. On an industrial scale, melt processing has become the method of choice to incorporate color pigments or fillers. Nowadays, a wide variety of melt compounding technology is available which is applicable to polymer-CNT composite production [1]. Carbon nanotubes have a many properties (mechanical and physical) that make them attractive for use in a broad spectrum of applications, especially as filler for nanocomposites. There are two kinds of carbon nanotubes: single-walled carbon nanotubes (SWCNTs) with one graphene layer and multi-walled carbon nanotubes (MWCNTs) with many graphene layers wrapped onto themselves, see fig. 1. They can be produced in various ways such as chemical vapour deposition (CVD) laser ablation, arc discharge, solar energy and molten salt electrolysis. -
Co-Injecting Bioplastics: Investigating Process Engineering and Performance
Co-Injecting Bioplastics: Investigating Process Engineering and Performance by Nicholas Hotz A Thesis Presented to The University of Guelph In partial fulfillment of requirements for the degree of Master of Applied Science in Engineering Guelph, Ontario, Canada © Nicholas Hotz, April, 2015 Abstract Co-Injecting Bioplastics: Investigating Process Engineering and Performance Nicholas Hotz Advisors: Dr. Amar K. Mohanty University of Guelph, 2015 Dr. Manjusri Misra Mechanical performance improvement of brittle bioplastic polylactic acid (PLA) was investigated through the use of a novel processing method: co-injection moulding. Co-injection moulding produces layered products with distinct core and skin phases. PLA toughening was attempted via encapsulation in a polycaprolactone (PCL) skin. Select co-injection operating parameters were assessed regarding their ability to influence product morphology. Injection speeds and skin melt temperature were observed to have negative effects on core content and advancement, while core ratio had a positive influence. These results were used to develop samples with up to 60% biobased PLA content. Comparable PLA/PCL blend samples were produced for mechanical testing. Co- injection products had better tensile strength and stiffness compared to similar blends, but the layered structure was less adept at resisting flexural stress. Impact resistance improved with co- injection compared to neat PLA. Co-injection was identified as a functional bioplastics processing method which results in unique mechanical behaviour. Acknowledgements Many thanks to my advisors, Dr. Amar Mohanty and Dr. Manjusri Misra, for giving me the opportunity to advance my academic career in an interesting and challenging scientific field. Their confidence in my abilities has been very supportive and I am appreciative of all the valuable experiences I have gained that have helped me to develop as a researcher and as a person.