Plastic Injection Molding

Total Page:16

File Type:pdf, Size:1020Kb

Plastic Injection Molding DEUTSCHE NORM UDC[678.5/.8].067: 001.4: 621.753.1 (J( 1> .. November 1982 .. .!i!.!/ -.., DIN .;=.0 Plastics mouldings ~ .= g~ .':!,; Tolerances and acceptance conditions for linear dimensions 16901 ->."..- o~ U ~"5 ."," Kunststoff-Forrnteile; Toleranzen und Abnahmebedingungen wr Lãngenmasse Supersedes July 1973 edition ...<11eLe"' -e....c =~~li~- As it is current practice in standards published by Me International Organization forStandardization (ISO), the comma . .... ,.0.<:1 has been used throughout as a decimal marlcer. D";'i . "'" ãj"' li-." - ..~ ..:S~ It is not possible to take the tolerances for plastics mouldings from the ISO basie tolerances, since they are correlated . .c: with the nominal dimensions on the basis of other principies. , i=~I!u -="'<li 0-De ,. Dimensions in mm -c 1: .. 111 1 General 3 Concepts ~ Deviations from the nominal dimension cannot be Moulding shrinkage VS § avoided in the fabrication of plasticsmouldings. Moulding shrinlcage means the difference between the Dimensionaldeviationsoccurrin Zg . g in the produetion dimensions of the mould Lw at (23 :!:2) °C and those ~ ;2 process may result from a number of causes: of the mould ing LF, the latter having been stored for ~ aI Dispersion in the results of the processing 16 haurs after manufacture in standard atmosphere , This is dependent on DIN 50014 - 23/50.2 and tOOnmeasuredimmediately ~ after. '-"'" ~ - uniformity of the mouldingmaterial, 5.. - the machine setting, L,,\ ~ - the mouldtemperature, VS = (1 - Lw7 .100 [%) ~ - deformation of the mould under pressure. o Radial moulding shrinkage VSR g b)Condition of mould The radial moulding shrinkage is the moulding shrinkage - manufacturingtolerances for the dimensionsof in the direction of injection. I~ the mould (seeDIN167491, .ga. - wear on the mould, Tangential moulding shrinkage VST ~ - variationsinthe positionof movablepartsoftoo The tangential moulding shrinkage is the moulding shrlnk- mould. ~o age perpendicular to the direction of injection. ~ The tolerances in this standard are specified on the basis '2 of the above considerations and a large number of Mouldingshrinkagedifference t:NS ~ measurements derived from practical applications. The mouldingshrinkagedifference is the difference 00- :x ! tween the radial aOOtangential mouldingshrinkage ~ .1VS= VSR- VST 2 Field of application - ."i For other concepts: -ã The tolerances in this standard mouldings,eompressionmouldings.injection mouldings, ~ are applicable to the dimensionsof plastics mouldings mould~g materiais,see DIN 7708 Part 1 ~ producedfromthermoplastieand thermosettingmoulding compr~ion moulding, transfer moulding, extrusion, ,~ ~ materiais by compression moulding, transfer rnoulding, injection moulding,see DIN16 7QP ! compressioninjection moulding or injection moulding; toleranc:e, deviation. general tolerance, see DIN 7182 ~ are not applicable to extrusions, blow-moulded or foamed Part 1 and DIN 7168 Part 1 mouldings, deep drawn parts, sintered parts and parts tolerances of forro and position, see DIN 7184 Part 1 produced by a ehip removal machining processo and DIN 7168 Part 2. Table .1 gives the appropriate tolerance groups to be For concepts used in too field of highpolymer materiais, applied to the various moulding materiais. see DIN7724 "'o'5'1: 14:2 .~","~ "Oc'" ~ caC.. je O.. Continued on pagas 2 to 9 ca.. ~.:: c.!! ,g.ÉO aU ;;.!! '" c.., ~ - .."c ~,f~ Beulh Verlag GmbH. Berlin 30. has exclusive sale rights for German Standards (DIN-Normen) DIN 16901 Engl. Price group 7 03.90 Sales No. 0107 Page2 DIN 16901 4 Tolerances elements of the mould, e.g. wall thickness dimensions aOObottom thlekness dlmensions or dimensions deter- The tolerances shall apply to mouldings at the time of minec:lby the shims or mould slldes. acceptance;see elause5. Note: The tolerances on these dlmensions are greater Unless otherwise agreed, a reference must be made on than those on the mould.,elated dimensions the drawlng to the acceptance coOOitions as specified indause5. because the rnovable parts of the rnould do not always reach the same final posltlon when the 4.1 G Itolerances1) mould is dosed. The numbers specifiedin table 1, column 4, refer to the When the permisslble deviatlons are enterec:l agalnst the dimension, take care to ensure that appropriate tolerance group in table 2. the dlmensions Iying in the eloslng direction of If the deviationsare not speeifiedagainstthe number for the mould ali vary in the same dlrection, I.e. that thedimension inproductiondocuments, order documents, the bottom thickness for example increases when ete. a note must be ineludedreferringto this staOOard, the overall height of the moulding inereases. by specifyingDIN16901 8ndthe tolerancegroup given in table 2. For non-mould.,elated dimensions in the direction of elosing of the mould, the values speclfied in table 2 can Examplefor specifyingtolerance group 140: be increased If necessary in the case of compression Tolerances DIN 16901 -140 moulding. In sueh a case the dimensions shall be marked with these increased tolerances. 4.2 Deviationa specified against dimensions 2) .. In table 1, columns 5 aOO6, two series are given for -______n specifying tolerances &gainstdimensions. The figures in these refer to the appropriate tolerance group in table 2. I I "-' Series 1 tolerances can be complied with without special I measures. Series 2 tolerances require more extensiva measures in production. I The serias 1 aOO2 tolerances shall be divided into upper i + and lower deviations in accordance with technical require- 1// /' /' ments. I/'/ Example showing division of tolerance 0,8: +O0.8 or - 0.8O or -,+ O 4 or -+ 0.20.6 or -+ 0.50.3 ete . Note: If it is required that the tolerances be maintained Figure 1. Mould.,elateddimensions in respect of effects acting on the moulding from 4.5 Reduction01tolerances the environment or caused by the coOOition of For particulardimenslonstolerances narrowerthan those the moulding during the production process3), specifled in table 2 may be obtainable by specialme8- this shall be expressly agreed between the supplier sures. aOOthe CUStomeraOOspecified in drawings, order documents, ete. For precisionenglneeringat the present time the last two linesin table 2 applv. 4.3 Dimensionsrelated to the mould (seefigure 1) Dimensionsin table 2 related to the mould are in each 1) Formerly designated as: "Dlmensions without speci. casedimensionsin the same part of the mould. fled toleranceH " 2. Formerly designated as: "Oimensions wlth specified '--" 4.4 Dimensionsnot related to the mould (seefigure 2) tolerance" DimensionsIn table 2 not related to the mould are 3) These could be for example, temperature, atmospheric dimenslonsdetermlned by the interaction of movable humidity, gases aOOvapours, liquids ! i o +io .~ Õ ---- Directionof rnovementof mould slide Figure2. Non-mould-relateddimensions DIN 16901 Page3 4.6 Drafts 4.7 Tolerances of form anel posmon Since ali deviations apply to the nominal dimensions Deviations of form and position occurring after removal entered on the drawing.the drawing must clearlyshow from the mould are dependent on the shape of the mould the poiol on the draft taper to which the nominal among other things. dimensionapplies. Angular tolerances. tolerances of form aOOposition shall be specified in accordance with DIN 7184 Part 1 directly against the dimension or (where applicable} as general tolerances in accordancewlth DIN 7168 Part 1 and Part2. - I-- Example showing method of specifying general tolerance: i Angular tolerances. tolerances of form aOOposition DlN 7168 - mT __a 4.8 Tolerancesforparts produced by Figure3. Basieshapeof moulding chip removalmachiningprocesses For parts produced by chip removalmachiningprocesses. DIN7160. DIN 7161 aOODlN 7172 Part 1 appty. 4.9 Toterancesfor threads The followingshallbe usecJas a guideline:tolerance class i "coarse" for metric threads in accordancewith DIN 13 Part 14 and tolerance ctass"B" for pipe threads in accord- a ance with DIN ISO228 Part ,. Figure4. Plusvariation for draft Extra material comparedwith the basicshape 5 Acceptance conditions of the moulding Acceptance shal! not take place eartier than 16 hours after manufactureof the plasticsmouldingor after any required post-mouldingtreatment. The atmosphere used for acceptance shal!be staOOard atmosphere DIN50014 - 23/50-2.Forother temper- atures aOOrelativehumidities. the rneasuredvaluesmust j be corrected by taking into account the appropriate coefficientsof linearexpansion. Post-mouldingtreatrnent (coooitioningor heat treatment} shallbe agreedbetween the supplierand the cUstorner. Figure5. Minusvariation for draft For plastics parts made of mouldingmateriaisfor which Lossof material eomparedwith the basie the change in dimension - e.g. through moisture absorp- shape of the moulding tion or re-aystallization - hasto be taken into account i '" inside dimension in mekingthe measurernentsfor acceptarice,the type of post-mouldingtreatrnent must be spec:ifiedby agreement a '" outside dimension between the supplier aOOthe customer. It is advisable Too size of the required draft tapers must be speeified alsoto agreethat the specifiedtreatment coOOitionshall in the drawlng. apply also10the measurement. page4 D'IN16901 Table ,. Correlationof tolerance groupswith mouldingmateriais , 2 3 4 5 6 Moulding Tolerance groups Symbol materiais for for dimeRSions for in wherethe deviations Mouldingsmadefrom general b8sic accordence toler- are indicatedagainst material with ances the dimensioRS OIN Serias1 Series2 EP Epoxy resinmouldlngmateriais
Recommended publications
  • Media Information 2018
    Media information 2018 The global digital magazine and apps for injection moulders Injection World offers: 4 Comprehensive global coverage Injection World is the monthly magazine providing business, industry and technology news for injection 4 100% focused on injection moulding moulders, mould makers and product designers around the globe. It is accessed by thousands of readers every 4 In-depth market knowledge month free-of-charge online, on tablets, smartphones, and 4 Free access online and via apps via our free apps for the iPad, iPhone and Android devices. Injection World delivers relevant and up-to-date information on 4 Highly competitive advertisement rates the most important technical developments, market trends, 4 Live weblinks from all advertisements business news, design innovations and legislative announcements. And, unlike other general plastics magazines, 4 App viewable without internet connection it is 100% focused on the specific information needs of designers and producers of plastic mouldings. Published by our expert editorial team at AMI – the leading Visit www.injectionworld.com provider of databases, market intelligence and conferences for to see the latest issue and take out the global plastics processing industries – Injection World a free subscription benefits from access to our detailed databases of senior decision makers at injection moulding sites across Europe, the Americas, Asia and the Middle East. These global databases include key purchasers of injection moulding machines, moulds, ancillary equipment, polymers, additives and related services. Looking to access this market? Our advertisements are very competitively priced and include links directly to your website. If you are selling machinery, ancillary equipment, materials, additives or services to the injection moulding industry, then Injection World is the vehicle to promote your business globally.
    [Show full text]
  • Mechanical Properties of Rapid Manufacturing and Plastic Injection Molding
    Mechanical Properties of Rapid Manufacturing and Plastic Injection Molding A Thesis Presented to the Faculty of the Graduate School University of Missouri – Columbia In Partial Fulfillment Of the Requirements for the Degree Master of Science By JOSEPH CONRAD AHLBRANDT Dr. Luis G. Occeña, Thesis Advisor December 2014 The undersigned, appointed by the Dean of the Graduate School, have examined the thesis entitled MECHANICAL PROPERTIES OF RAPID MANUFACTURING AND PLASTIC INJECTION MOLDING Presented by Joseph C. Ahlbrandt A candidate for the degree of Master of Science And hereby certify that in their opinion it is worthy of acceptance Dr. Luis Occeña Dr. James Noble Dr. Yuyi Lin ACKNOWLEDGEMENTS Foremost, I owe many thanks to my advisor, Dr. Luis Occeña, for his continual support during my research and studies. Without him I would not have been able to study this subject and broaden my knowledge of manufacturing methods. The guidance and wisdom that he has provided me is priceless and there is no way I can thank him enough. I am also in debt to Mr. Mike Klote for introducing me to rapid prototyping in his course at Mizzou. He presented rapid prototyping in a way that intrigued me and inspired me to pursue research opportunities related to the subject. I also appreciate his willingness to answer many of my questions that have helped me complete my thesis. I would like to thank the Engineering Technical Services department at the University of Missouri for providing me with support and access to technology that was vital to the completion of my thesis. I could not have completed my research without the occasional assistance of Greg Emanuel and Michael Absheer.
    [Show full text]
  • Optimizing Injection Molding Parameters of Different Halloysites Type-Reinforced Thermoplastic Polyurethane Nanocomposites Via Taguchi Complemented with ANOVA
    materials Article Optimizing Injection Molding Parameters of Different Halloysites Type-Reinforced Thermoplastic Polyurethane Nanocomposites via Taguchi Complemented with ANOVA Tayser Sumer Gaaz 1,2,*, Abu Bakar Sulong 1,*, Abdul Amir H. Kadhum 3, Mohamed H. Nassir 4 and Ahmed A. Al-Amiery 3 1 Department of Mechanical & Materials Engineering, Faculty of Engineering & Built Environment, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia 2 Department of Machinery Equipment Engineering Techniques, Technical College Al-Musaib, Al-Furat Al-Awsat Technical University, Al-Musaib 51009, Babil, Iraq 3 Department of Chemical & Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; [email protected] (A.A.H.K.); [email protected] (A.A.A.-A.) 4 Program of Chemical Engineering, Taylor’s University-Lakeside Campus, Subang Jaya 47500, Selangor, Malaysia; [email protected] * Correspondence: [email protected] (T.S.G.); [email protected] (A.B.S.); Tel.: +60-11-210-60892 (T.S.G.); +60-38-921-6678 (A.B.S.); Fax: +60-38-925-9659 (A.B.S.) Academic Editor: Naozumi Teramoto Received: 7 October 2016; Accepted: 17 November 2016; Published: 22 November 2016 Abstract: Halloysite nanotubes-thermoplastic polyurethane (HNTs-TPU) nanocomposites are attractive products due to increasing demands for specialized materials. This study attempts to optimize the parameters for injection just before marketing. The study shows the importance of the preparation of the samples and how well these parameters play their roles in the injection. The control parameters for injection are carefully determined to examine the mechanical properties and the density of the HNTs-TPU nanocomposites.
    [Show full text]
  • Thermoplastic Polyurethane Elastomers (TPU) Elastollan®– Processing Recommendations
    Thermoplastic Polyurethane Elastomers (TPU) Elastollan®– Processing Recommendations Technical Information Contents General Storage 4 Recommendations Drying 5 Colouring 6 Additives 6 Use of Regrind 6 Post-treatment 7 Health & Safety at Work 8 Disposal 8 Processing Machine Design 9 Injection Moulding Processing Parameters 10 Mould Design 12 Shrinkage 14 Inserts 14 Special Processing Methods 15 Trouble Shooting Guidelines 15 Processing Machine Design 16 Extrusion Processing Parameters 17 Die Design 18 Cooling and Calibration 19 Extrusion Techniques 20 Special Processing Methods 22 Trouble Shooting Guidelines 22 Finishing Procedures Welding 23 Bonding 23 Surface Finishing 23 2 Contents Machining Machining Parameters 24 Drilling 24 Turning 25 Milling 25 Cutting 25 Grinding 25 Punching 25 Quality 26 Management Index of Key Terms 27 Edition: November 2011 3 General Recommendations Storage Elastollan is the protected trade mark Moisture absorption of our thermoplastic polyurethane Polyester-TPU elastomers (TPU). These materials Hardness 80 Shore A – 64 Shore D are used for injection moulding, 0,80 extrusion and blow moulding. 0,70 ] 1 % 0,60 The following recommendations [ should be observed in the process- 0,50 ing of Elastollan materials. 0,40 Humidity Elastollan grades are supplied uncol- 0,30 oured, in diced, cylindrical or lentil- 0,20 2 shaped form. The materials are 0,10 hygroscopic i.e. dry Elastollan, when 0,00 exposed to the atmosphere will 0 12345678 rapidly absorb moisture. Polyether- Time [h] based Elastollan grades absorb 1 – Standard atmosphere 40°C/92% rel. hum. more rapidly moisture than polyester- 2 – Standard atmosphere based grades. 23°C/50% rel. hum. Fig.1 Figures 1 and 2 show the rate of moisture absorption.
    [Show full text]
  • Injection Moulding Part Design for Dummies‰ PROTO LABS‰ SPECIAL EDITION
    These materials are © 2012 John Wiley & Sons, Inc . Any dissemination, distribution, or unauthorized use is strictly prohibited. Injection Moulding Part Design FOR DUMmIES‰ PROTO LABS‰ SPECIAL EDITION by Thom Tremblay These materials are © 2012 John Wiley & Sons, Inc . Any dissemination, distribution, or unauthorized use is strictly prohibited. Injection Moulding Part Design For Dummies,® Proto Labs® Special Edition Published by John Wiley & Sons, Inc. 111 River Street Hoboken, NJ 07030-5774 www.wiley.com Copyright © 2012 by John Wiley & Sons, Inc., Hoboken, NJ Published by John Wiley & Sons, Inc., Hoboken, NJ No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions. Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!, The Dummies Way, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without written permission. Proto Labs is a registered trademark of Proto Labs, Inc., and may not be used without Proto Labs, Inc.’s permission.
    [Show full text]
  • Mechanical Properties of Acrylonitrile Butadiene Styrene Thermoplastic Polymer Matrix with Carbon Nanotubes
    Oct 14th – 16th 2015, Brno, Czech Republic, EU MECHANICAL PROPERTIES OF ACRYLONITRILE BUTADIENE STYRENE THERMOPLASTIC POLYMER MATRIX WITH CARBON NANOTUBES Jan VÁCHA1, Martin BORŮVKA1 1Technical university of Liberec, Studentská 2, Liberec 1, 461 17, [email protected], [email protected] Abstract This paper examines the mechanical properties of the composite of thermoplastic polymer matrix with carbon nanotubes. As the basic polymer matrix was used acrylonitrile butadiene styrene (ABS) to which were added the nanoparticles in a given percentage by weight in the form of nanotubes. Composite was injected into the Arburg injection molding machine. For evaluation were measured harness, impact and tensile test. These tests are compared with polymeric materials without added nanofiller. In conclusion is evaluated and compared influence on the mechanical properties of polymer matrix with carbon nanotubes and without fillers. Keywords carbon nanotubes, nanocomposites, mechanical properties 1. INTRODUCTION In the past ten years, extensive research and development have been carried out in the field of polymer composite production. On an industrial scale, melt processing has become the method of choice to incorporate color pigments or fillers. Nowadays, a wide variety of melt compounding technology is available which is applicable to polymer-CNT composite production [1]. Carbon nanotubes have a many properties (mechanical and physical) that make them attractive for use in a broad spectrum of applications, especially as filler for nanocomposites. There are two kinds of carbon nanotubes: single-walled carbon nanotubes (SWCNTs) with one graphene layer and multi-walled carbon nanotubes (MWCNTs) with many graphene layers wrapped onto themselves, see fig. 1. They can be produced in various ways such as chemical vapour deposition (CVD) laser ablation, arc discharge, solar energy and molten salt electrolysis.
    [Show full text]
  • Co-Injecting Bioplastics: Investigating Process Engineering and Performance
    Co-Injecting Bioplastics: Investigating Process Engineering and Performance by Nicholas Hotz A Thesis Presented to The University of Guelph In partial fulfillment of requirements for the degree of Master of Applied Science in Engineering Guelph, Ontario, Canada © Nicholas Hotz, April, 2015 Abstract Co-Injecting Bioplastics: Investigating Process Engineering and Performance Nicholas Hotz Advisors: Dr. Amar K. Mohanty University of Guelph, 2015 Dr. Manjusri Misra Mechanical performance improvement of brittle bioplastic polylactic acid (PLA) was investigated through the use of a novel processing method: co-injection moulding. Co-injection moulding produces layered products with distinct core and skin phases. PLA toughening was attempted via encapsulation in a polycaprolactone (PCL) skin. Select co-injection operating parameters were assessed regarding their ability to influence product morphology. Injection speeds and skin melt temperature were observed to have negative effects on core content and advancement, while core ratio had a positive influence. These results were used to develop samples with up to 60% biobased PLA content. Comparable PLA/PCL blend samples were produced for mechanical testing. Co- injection products had better tensile strength and stiffness compared to similar blends, but the layered structure was less adept at resisting flexural stress. Impact resistance improved with co- injection compared to neat PLA. Co-injection was identified as a functional bioplastics processing method which results in unique mechanical behaviour. Acknowledgements Many thanks to my advisors, Dr. Amar Mohanty and Dr. Manjusri Misra, for giving me the opportunity to advance my academic career in an interesting and challenging scientific field. Their confidence in my abilities has been very supportive and I am appreciative of all the valuable experiences I have gained that have helped me to develop as a researcher and as a person.
    [Show full text]
  • Development of 3D Printing Raw Materials from Plastic Waste. a Case Study on Recycled Polyethylene Terephthalate
    applied sciences Article Development of 3D Printing Raw Materials from Plastic Waste. A Case Study on Recycled Polyethylene Terephthalate Alaeddine Oussai 1,* , Zoltán Bártfai 2 and László Kátai 1 1 Department of Mechanics and Machinery, Faculty of Mechanical Engineering, Szent Istvan University, Pater Karoly utca 1, 2100 Gödöllo, Hungary; [email protected] 2 Department of Agriculture and Food Machinery, Faculty of Mechanical Engineering, Szent Istvan University, Pater Karoly utca 1, 2100 Gödöllo, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-703-575-637 Abstract: Fused Deposition Modelling (FDM) is the most common 3D printing technology. An object formed through continuous layering until completion is known as an additive process while other processes with different methods are also relevant. In this paper, mechanical properties were analysed using two distinct kinds of printed polyethylene terephthalate (PET) as tensile test specimens. The materials used consist of recycled PET and virgin PET. An assessment of all the forty test pieces of both kinds of PET was undertaken. A comparison of the test samples’ tensile strength values, difference in stress-strain curves, and elongation at break was also carried out. The reasoning behind the fracturing of test pieces that printed with different settings is presented in part by the depiction of the fractured specimens following the tensile test. An optimal route was revealed to be 3D printing with recycled PET, as per the mechanical testing. The hardness of the recycled filament decreased to 6%, while the tensile strength and shear strength increased to 14.7 and 2.8%, respectively.
    [Show full text]
  • Hdpe) Material
    OPTIMIZATION OF INJECTION MOULDING PROCESS PARAMETER FOR REDUCING SHRINKAGE OF HIGH DENSITY POLYETHYLENE (HDPE) MATERIAL 1HARSHAL P.KALE, 2UMESH V. HAMBIRE 1Student of Government Engineering College Aurangabad, Maharashtra, India 2Assistant Professor of Government Engineering College Aurangabad, Maharashtra, India E-mail: [email protected], [email protected] Abstract - Injection molding is an important polymer processing operation in the plastic industry. In this process, polymer is injected into a mold cavity, and solidifies to the shape of the mold. Optimizing the parameters of the injection molding process is critical to enhance productivity. For process optimization, parameters must operate at optimum levels for acceptable performance. Taguchi method is one of the methods of optimization, in which orthogonal array is generated based on experimental design. Optimization of injection molding process parameters will be carried out using high density polyethylene (HDPE) as the molding material Injection moulding has been a challenging process for many plastic components manufacturers and researchers to produce plastics products meeting the requirements at very economical cost. Since there is global competition in injection moulding industry, so using trial and error approach to determine process parameters for injection moulding is no longer hold good enough. Since plastic is widely used polymer due to its high production rate, low cost and capability to produce intricate parts with high precision. It is much difficult to set optimal process parameter levels which may cause defects in articles, such as shrinkage, warpage, line defects. Determining optimal process parameter setting critically influences productivity, quality and cost of production in plastic injection moulding (PIM) industry. In this paper optimal injection moulding condition for minimum shrinkage were determined by the DOE technique of Taguchi methods.
    [Show full text]
  • Kaunas University of Technology Injection
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KTUePubl (Repository of Kaunas University of Technology) KAUNAS UNIVERSITY OF TECHNOLOGY MECHANICAL ENGINEERING AND DESIGN FACULTY Dinesh Manickam INJECTION MOLDING OF ABS PLASTICS Final project for Master degree Supervisor Assoc. Prof. Dr. Regita Bendikiene KAUNAS, 2015 KAUNAS UNIVERSITY OF TECHNOLOGY MECHANICAL ENGINEERING AND DESIGN FACULTY INJECTION MOLDING OF ABS PLASTICS Final project for Master degree Mechanical Engineering (621H30001) Supervisor Assoc. Prof. Dr. Regita Bendikiene Reviewer Assoc. Prof. Dr. Rasa Kandrotaite Janutiene Project made by Dinesh Manickam KAUNAS, 2015 KAUNAS UNIVERSITY OF TECHNOLOGY MECHANICAL ENGINEERING AND DESIGN FACULTY (Faculty) Dinesh Manickam (Student's name, surname) Mechanical Engineering (code 621H30001) (Title and code of study programme) Injection molding of ABS plastics DECLARATION OF ACADEMIC HONESTY 1 June 2015 Kaunas I confirm that a final project by me, Dinesh Manickam, on the subject "Injection molding of ABS plastics" is written completely by myself; all provided data and research results are correct and obtained honestly. None of the parts of this thesis have been plagiarized from any printed or Internet sources, all direct and indirect quotations from other resources are indicated in literature references. No monetary amounts not provided for by law have been paid to anyone for this thesis. I understand that in case of a resurfaced fact of dishonesty penalties will be applied to me according to the procedure effective at Kaunas University of Technology. (name and surname filled in by hand) (signature) TABLE OF CONTENTS 1. INTRODUCTION 02 2. ABS PLASTICS AND EQUIPMENT USED TO PRODUCE IT 04 2.1 Properties of ABS plastics 04 2.2 Polymerization process 08 2.3 Post processing method 10 2.4 Applications, Advantages and Disadvantages of ABS 11 2.5 Injection molding 13 2.6 Quality control and safety modeling 23 3.
    [Show full text]
  • Reaction Injection Moulding of Syndiotactic Polystyrene: the Effect of Reaction Parameters on Monomer Conversion and Polymer Properties
    Reaction Injection Moulding of Syndiotactic Polystyrene: The Effect of Reaction Parameters on Monomer Conversion and Polymer Properties Colin Li Pi Shan A ehesis subrnitted to the Department oÇChemistry in conformity with the requirements for the degree of Mas ter of Science (Engineering) Queen's University Kingston, Ontario, Canada September 1997 copyright O Colin Li Pi Shan, 1997 National Library Bibliothèque nationale I*I of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. rue Wellington OttawON K1AON4 Ottawa ON K1A ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sel1 reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la fome de microfiche/^ de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur consenre la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Abstract The primyy objective of this research wu to investigate the narure of the conversion limitation in the developrnent of a novel syndionctic polystyrene (sPS) rel-ctioii injection mouldiiig @Ili) pmcess. By vqing the reaction p*Lu;uIieteeof the estent of mising, reaction rime wd mould wall tempenture, the effects on the monorner conversion ünd polymer properties were determinrd.
    [Show full text]
  • Energy Recovery from Polyethylene Terephthalate(PET) Recycling Process
    DOI 10.7603/s40707-013-0012-9 GSTF International Journal of Engineering Technology (JET) Vol.2 No.4, April 2014 Energy Recovery from Polyethylene Terephthalate(PET) Recycling Process Radin Maya Saphira Radin Mohamed (Author) Gazala Sanusi Misbah (Co-Author) Department of Water and Environmental Engineering, Department of Water and Environmental Engineering, Faculty of Civil and Environmental Engineering, Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia 86400 Parit Raja, Batu Pahat, Johor, Malaysia [email protected] [email protected] Anwaruddin Ahmed Wurochekke (Co-Author) Amir Hashim bin Mohd. Kassim (Co-Author) Department of Water and Environmental Engineering, Department of Water and Environmental Engineering, Faculty of Civil and Environmental Engineering, Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia 86400 Parit Raja, Batu Pahat, Johor, Malaysia [email protected] [email protected] Received 27 Mar 2014 Accepted 03 Apr 2014 Abstract— Solid waste generation especially from plastics municipal solid waste may not be too much of a problem due to increase every year due to the current consumption habit in the its degradability while the plastic solid waste is quite society. The improper disposal of plastics has been a major problematic [4]. Because this is non-biodegradable substance concern to environment as they are not easily degradable. In this therefore it stays long in the environment. Plastics are organic study, energy derived from Polyethylene Terephthalate (PET) polymeric materials consisting of giant organic molecules plastic bottle recycling process were studied.
    [Show full text]