An Anthology of the Sampson-Ellison Photo Plots (1913 to 2003) and a Short History of the Great Basin Experiment Station

Total Page:16

File Type:pdf, Size:1020Kb

An Anthology of the Sampson-Ellison Photo Plots (1913 to 2003) and a Short History of the Great Basin Experiment Station United States Department Beginnings of Range of Agriculture Forest Service Management: An Anthology of the Rocky Mountain Research Station Sampson-Ellison Photo Plots General Technical (1913 to 2003) and a Short History Report RMRS-GTR-154 July 2005 of the Great Basin Experiment Station David A. Prevedel E. Durant McArthur Curtis M. Johnson Abstract ______________________________________ Prevedel, David A.; McArthur, E. Durant; Johnson, Curtis M. 2005. Beginnings of range management: an anthology of the Sampson-Ellison photo plots (1913 to 2003) and a short history of the Great Basin Experiment Station. Gen. Tech. Rep. RMRS-GTR-154. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 60 p. High-elevation watersheds on the Wasatch Plateau in central Utah were severely overgrazed in the late 1800s, resulting in catastrophic flooding and mudflows through adjacent communities. Affected citizens petitioned the Federal government to estab- lish a Forest Reserve (1902), and the Manti National Forest was established by the Transfer Act of 1905. The Great Basin Station, a forerunner of the Intermountain Forest and Range Experiment Station, was created in 1911 within this area to study the influence of rangeland vegetation on erosion and floods. This publication contains a collection of 12 recurring sets of photographs that started in 1913 on these depleted high-elevation rangelands. The sites were repho- tographed in the 1940s, 1972, 1990, and 2003. It is also a tribute to two men who pioneered the science of range management—Arthur W. Sampson and Lincoln Ellison. As Directors of the Experiment Station, they initiated and maintained the early photo sites and study plots. It was with these photograph records and study plots that many of the interpretations and guidelines for the management of high-elevation watersheds were developed. After 90 years, plant community changes on these high-elevation watersheds has led to a vegetation composition significantly different than the original condition. New plant communities have reached thresholds where yearly vegetative composition appears to be climate driven. Many of the higher elevation areas remain in unsatis- factory watershed health with active erosion. _______________ Keywords: rangeland photos, repeat photography, secondary succession, watershed health, high elevation watersheds, tall forb, Great Basin Experiment Station, Arthur Sampson, Lincoln Ellison Cover Photo: Sheep grazing on Wagon Road Ridge, 2004 (photo by Curt Johnson) The Authors ___________________________________ David A. Prevedel is Geographic Information Systems (GIS) and Remote Sensing Program Coordinator for the Intermountain Region of the USDA Forest Service in Ogden, UT. He holds a B.S. degree in range science from Utah State University. He was Range Conservationist on the Ferron Ranger District, Manti-LaSal National Forest, 1971 to 1976. E. Durant McArthur is Project Leader and Research Geneticist, Shrub Sciences Laboratory, and Scientist-in-Charge, Great Basin Experimental Range, USDA Forest Service, Rocky Mountain Research Station, Provo, UT. He holds an A.S. degree from Dixie College and B.S., M.S., and Ph.D. degrees from the University of Utah. Curtis M. Johnson is Regional Rangeland Ecosystem Specialist for the Intermoun- tain Region of the USDA Forest Service in Ogden, UT. He holds a B.S. degree in forest management from Humboldt State University and an M.S. degree in watershed management from the University of Arizona. Acknowledgments _____________________________ We gratefully acknowledge the cooperation between the Rocky Mountain Re- search Station and the Intermountain Region of the U.S. Department of Agriculture, Forest Service, in making this reference possible. We thank the following individuals for their indepth review and input, and for providing invaluable personal knowledge and suggestions on climate, disturbances, grazing effects, and vegetation and soils: Richard A. Gill, Assistant Professor of Environmental Science and Regional Planning at Washington State University, Pullman; Kimball T. Harper, Emeritus Professor, Department of Integrative Biology, Brigham Young University, Provo, UT; Gary Jorgensen, Range Technician, Great Basin Field Unit, Shrub Sciences Laboratory, Rocky Mountain Research Station, Ephraim, UT; Stephen Monsen, Research Botanist, Shrub Sciences Laboratory, Rocky Mountain Research Station, Provo, UT (retired); Robert M. Thompson, Range Conservationist, Manti-LaSal National Forest, Price, UT; David Tart, Regional Plant Ecologist, USDA Forest Service, Intermountain Region, Ogden, UT. And we especially thank Liane Ellison Norman, daughter of Lincoln Ellison, for her contributions to the biography of her father and for her remembrances of life at the Great Basin Station. Contents_____________________________________________________ Page Overview ..................................................................................................................................................... 1 Introduction: The Beginnings of Range Management ................................................................................. 2 Origin of Photographs ................................................................................................................................. 2 The Wasatch Plateau: Physical Characteristics.......................................................................................... 4 Terrain and Geology ................................................................................................................................ 4 Soils ......................................................................................................................................................... 4 Existing Vegetation .................................................................................................................................. 6 Climate ..................................................................................................................................................... 7 Area Grazing and Management (Administrative) History ............................................................................ 7 Sampson-Ellison Ecological Interpretations ................................................................................................ 10 Interpretation of the Photo Record .............................................................................................................. 14 Site A: Head of Big Bear Creek Looking East at Danish Knoll ................................................................ 14 Site B: Head of Big Bear Creek Looking West ........................................................................................ 16 Site C: Danish Knoll Enclosure ................................................................................................................ 18 Site D: South Side of Danish Knoll Enclosure ......................................................................................... 20 Site E: Area Between Danish Knoll and Cox’s Knoll on Wagon Ridge Road .......................................... 22 Site F: Cox’s Knoll Snowbank .................................................................................................................. 24 Site G: Wagon Road Ridge East of Cox’s Knoll ...................................................................................... 28 Site H: Wagon Road Ridge Near White Knoll, Five and One-Half Miles East of the Plateau Crest ........ 30 Site I: Wagon Road Ridge Near White Knoll, 100 Yards East of Photo Site H ....................................... 32 Site J: Looking Northeast From the North Side of Danish Knoll .............................................................. 34 Site K: One-Half Mile North of Danish Knoll, Looking North Into Little Pete’s Hole ................................. 36 Site L: Tom’s Ridge ................................................................................................................................. 39 Observations ............................................................................................................................................... 42 Conclusions................................................................................................................................................. 44 Recommendations ...................................................................................................................................... 46 References .................................................................................................................................................. 47 Appendix A: Plant Species Cited ................................................................................................................ 48 Appendix B: Current Plant Species on Protected Areas and Photo Points ................................................ 48 Alpine Cattle Pasture Enclosure, West Side (Protected) ......................................................................... 48 Elks Knoll RNA, West Side (Protected) ................................................................................................... 48 Photo Site A ............................................................................................................................................. 48 Photo Site B ............................................................................................................................................
Recommended publications
  • Crater Lake National Park
    CRATER LAKE NATIONAL PARK • OREGON* UNITED STATES DEPARTMENT OF THE INTERIOR NATIONAL PARK SERVICE UNITED STATES DEPARTMENT OF THE INTERIOR HAROLD L. ICKES, Secretary NATIONAL PARK SERVICE ARNO B. CAMMERER, Director CRATER LAKE NATIONAL PARK OREGON OPEN EARLY SPRING TO LATE FALL UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1935 RULES AND REGULATIONS The park regulations are designed for the protection of the natural beauties and scenery as well as for the comfort and convenience of visitors. The following synopsis is for the general guidance of visitors, who are requested to assist the administration by observing the rules. Full regula­ tions may be seen at the office of the superintendent and ranger station. Fires.—Light carefully, and in designated places. Extinguish com­ pletely before leaving camp, even for temporary absence. Do not guess your fire is out—know it. Camps.—Use designated camp grounds. Keep the camp grounds clean. Combustible rubbish shall be burned on camp fires, and all other garbage and refuse of all kinds shall be placed in garbage cans or pits provided for the purpose. Dead or fallen wood may be used for firewood. Trash.—Do not throw paper, lunch refuse, kodak cartons, chewing- gum paper, or other trash over the rim, on walks, trails, roads, or elsewhere. Carry until you can burn in camp or place in receptacle. Trees, Flowers, and Animals.—The destruction, injury, or disturb­ ance in any way of the trees, flowers, birds, or animals is prohibited. Noises.—Be quiet in camp after others have gone to bed. Many people come here for rest.
    [Show full text]
  • The Contours of Cold
    CutBank Volume 1 Issue 77 CutBank 77 Article 49 Fall 2012 The Contours of Cold Kate Harris Follow this and additional works at: https://scholarworks.umt.edu/cutbank Part of the Creative Writing Commons Let us know how access to this document benefits ou.y Recommended Citation Harris, Kate (2012) "The Contours of Cold," CutBank: Vol. 1 : Iss. 77 , Article 49. Available at: https://scholarworks.umt.edu/cutbank/vol1/iss77/49 This Prose is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in CutBank by an authorized editor of ScholarWorks at University of Montana. For more information, please contact [email protected]. KATE HARRIS THE CONTOURS OF COLD 1. Storms I am an equation balancing heat loss w ith gain, and tw o legs on skis. In both cases the outcome is barely net positive. T he darker shade of blizzard next to me is my expedition mate Riley, leaning blunt-faced and shivering into the wind. Snow riots and seethes over a land incoherent with ice. The sun, beaten and fugitive, beams with all the wattage of a firefly. Riley and I ski side by side and on different planets, each alone in a privacy of storm. Warmth is a hypothesis, a taunt, a rumor, a god we no longer believe in but still yearn for, banished as we are to this cold weld of ice to rock to sky. Despite appearances, this is a chosen exile, a pilgrimage rather than a penance. I have long been partial to high latitudes and altitudes, regions of difficult beauty and prodigal light.
    [Show full text]
  • Masada National Park Sources Jews Brought Water to the Troops, Apparently from En Gedi, As Well As Food
    Welcome to The History of Masada the mountain. The legion, consisting of 8,000 troops among which were night, on the 15th of Nissan, the first day of Passover. ENGLISH auxiliary forces, built eight camps around the base, a siege wall, and a ramp The fall of Masada was the final act in the Roman conquest of Judea. A made of earth and wooden supports on a natural slope to the west. Captive Roman auxiliary unit remained at the site until the beginning of the second Masada National Park Sources Jews brought water to the troops, apparently from En Gedi, as well as food. century CE. The story of Masada was recorded by Josephus Flavius, who was the After a siege that lasted a few months, the Romans brought a tower with a commander of the Galilee during the Great Revolt and later surrendered to battering ram up the ramp with which they began to batter the wall. The The Byzantine Period the Romans at Yodfat. At the time of Masada’s conquest he was in Rome, rebels constructed an inner support wall out of wood and earth, which the where he devoted himself to chronicling the revolt. In spite of the debate Romans then set ablaze. As Josephus describes it, when the hope of the rebels After the Romans left Masada, the fortress remained uninhabited for a few surrounding the accuracy of his accounts, its main features seem to have been dwindled, Eleazar Ben Yair gave two speeches in which he convinced the centuries. During the fifth century CE, in the Byzantine period, a monastery born out by excavation.
    [Show full text]
  • The Science of Fringe Exploring: Chain Reactions
    THE SCIENCE OF FRINGE EXPLORING: CHAIN REACTIONS A SCIENCE OLYMPIAD THEMED LESSON PLAN SEASON 3 - EPISODE 3: THE PLATEAU Overview: Students will learn about chain reactions, where small changes result in additional changes, leading to a self-propagating chain of events. Grade Level: 9–12 Episode Summary: The Fringe team investigates a series of deadly accidents that they determine are being caused by complex chains of seemingly innocuous events. As they find evidence regarding who could have calculated all of the variables involved in starting the chain reactions, they themselves are setup to be the victims of one of the scenarios. Related Science Olympiad Event: Mission Possible - Prior to the competition, participants will design, build, test and document a "Rube Goldberg-like device" that completes a required Final Task using a sequence of consecutive tasks. Learning Objectives: Students will understand the following: • A chain reaction is a sequence of reactions or events where an individual reaction product or event result triggers additional reactions or events to take place. • Chain reactions are dependent upon variables such as initial conditions, timing, and energy transfer in order to propagate. • The complexity of a chain reaction can range from very little (as in the case of falling dominos) to very extreme (as in the case of cascading failures in a power grid). Episode Scenes of Relevance: • The initial chain reaction accident • Lincoln, Charlie and Olivia discussing the cause of the accident • View the above scenes: http://www.fox.com/fringe/fringe-science • © FOX/Science Olympiad, Inc./FringeTM/Warner Brothers Entertainment, Inc. All rights reserved.
    [Show full text]
  • A Contribution to the Geologic History of the Floridian Plateau
    Jy ur.H A(Lic, n *^^. tJMr^./*>- . r A CONTRIBUTION TO THE GEOLOGIC HISTORY OF THE FLORIDIAN PLATEAU. BY THOMAS WAYLAND VAUGHAN, Geologist in Charge of Coastal Plain Investigation, U. S. Geological Survey, Custodian of Madreporaria, U. S. National IMuseum. 15 plates, 6 text figures. Extracted from Publication No. 133 of the Carnegie Institution of Washington, pages 99-185. 1910. v{cff« dl^^^^^^ .oV A CONTRIBUTION TO THE_^EOLOGIC HISTORY/ OF THE/PLORIDIANy PLATEAU. By THOMAS WAYLAND YAUGHAn/ Geologist in Charge of Coastal Plain Investigation, U. S. Ge6logical Survey, Custodian of Madreporaria, U. S. National Museum. 15 plates, 6 text figures. 99 CONTENTS. Introduction 105 Topography of the Floridian Plateau 107 Relation of the loo-fathom curve to the present land surface and to greater depths 107 The lo-fathom curve 108 The reefs -. 109 The Hawk Channel no The keys no Bays and sounds behind the keys in Relief of the mainland 112 Marine bottom deposits forming in the bays and sounds behind the keys 1 14 Biscayne Bay 116 Between Old Rhodes Bank and Carysfort Light 117 Card Sound 117 Barnes Sound 117 Blackwater Sound 117 Hoodoo Sound 117 Florida Bay 117 Gun and Cat Keys, Bahamas 119 Summary of data on the material of the deposits 119 Report on examination of material from the sea-bottom between Miami and Key West, by George Charlton Matson 120 Sources of material 126 Silica 126 Geologic distribution of siliceous sand in Florida 127 Calcium carbonate 129 Calcium carbonate of inorganic origin 130 Pleistocene limestone of southern Florida 130 Topography of southern Florida 131 Vegetation of southern Florida 131 Drainage and rainfall of southern Florida 132 Chemical denudation 133 Precipitation of chemically dissolved calcium carbonate.
    [Show full text]
  • Orpheus in the Netherworld in the Plateau of Western North America: the Voyage of Peni
    1 Guy Lanoue Unversité de Montréal Orpheus in the Netherworld in The Plateau of Western North America: The Voyage of Peni GUY LANOUE UNIVERSITA' DI CHIETI "G. D'ANNUNZIO" 1991 2 Guy Lanoue Unversité de Montréal Orpheus in the Netherworld in The Plateau of Western North America: The Voyage of Peni Like all myths, the myth of Orpheus can be seen as a combination of several basic themes: the close relationship with the natural world (particularly birds, whose song Orpheus the lyre-player perhaps imitates), his death, in some early versions, at the hands of women (perhaps linked to his reputed introduction of homosexual practices, or, more romantically, his shunning of all women other than Eurydice; his body was dismembered, flung into the sea and his head was said to have come to rest at Lesbos), and especially the descent to the underworld to rescue Eurydice1 (the failure of which by virtue of Orpheus' looking backwards into the Land of Shades and away from his destination, the world of men, links the idea of the rebirth of the soul -- immortality -- with an escape from the domain of culture into nature, the 'natural' music of the Thracian [barbaric and hence uncultured] bird-tamer Orpheus2). Although the particular combination that we know as the drama of Orpheus in the underworld perhaps arose from various non-Hellenic strands of beliefs (and was popularized only in later Greek literature), several other partial combinations of similar mythic elements can be found in other societies. In this paper, I will explore several correspondences between the Greek Orpheus and the North American Indian version of the descent to the underworld, especially among those people who lived in the mountains and plateaus of western North America, whose myths and associated rituals about trips to a netherworld played a particularly important role in their religious and political lives.
    [Show full text]
  • Vascular Plant List Whatcom County Whatcom County. Whatcom County, WA
    Vascular Plant List Whatcom County Whatcom County. Whatcom County, WA. List covers plants found in Whatcom County. Combination of plant lists of areas within Whatcom County, made by various observers over several years, with numerous additions by Jim Duemmel. Plants collected in Whatcom County found in the UW and WSU herbariums have been added to the list. 1175 spp., 223 introduced. Prepared by Don Knoke 2004. These lists represent the work of different WNPS members over the years. Their accuracy has not been verified by the Washington Native Plant Society. We offer these lists to individuals as a tool to enhance the enjoyment and study of native plants. * - Introduced Scientific Name Common Name Family Name Abies amabilis Pacific silver fir Pinaceae Abies grandis Grand fir Pinaceae Abies lasiocarpa Sub-alpine fir Pinaceae Abies procera Noble fir Pinaceae Acer circinatum Vine maple Aceraceae Acer glabrum Douglas maple Aceraceae Acer macrophyllum Big-leaf maple Aceraceae Achillea millefolium Yarrow Asteraceae Achlys triphylla Vanilla leaf Berberidaceae Aconitum columbianum Monkshood Ranunculaceae Actaea rubra Baneberry Ranunculaceae Adenocaulon bicolor Pathfinder Asteraceae Adiantum pedatum Maidenhair fern Polypodiaceae Agoseris aurantiaca Orange agoseris Asteraceae Agoseris glauca Mountain agoseris Asteraceae Agropyron caninum Bearded wheatgrass Poaceae Agropyron repens* Quack grass Poaceae Agropyron spicatum Blue-bunch wheatgrass Poaceae Agrostemma githago* Common corncockle Caryophyllaceae Agrostis alba* Red top Poaceae Agrostis exarata*
    [Show full text]
  • North Cascades National Park — 50 Years
    VOLUME 42, NO. 2 Summer 2018 Journal of the Douglasia WASHINGTON NATIVE PLANT SOCIETY To promote the appreciation and conservation of Washington’s native plants and their habitats through study, education, and advocacy. North Cascades National Park — 50 Years Summer 2018 • DOUGLASIA Douglasia VOLUME 42, NO. 2 SUMMER 2018 journal of the washington native plant society About This Issue WNPS Fellows* by David Giblin Clay Antieau Joe Miller** William Barker** Margaret Miller** Sometime last year WNPS Fellow Fred Weinmann sug- Nelsa Buckingham** Mae Morey gested that the summer 2018 Douglasia issue be dedicated to Pamela Camp Brian O. Mulligan** Tom Corrigan** Ruth Peck Ownbey** the flora of Washington’s national parks. The editorial board Melinda Denton** Jim Riley thought this was a great idea, so here it is. Thanks to Fred for Lee Ellis Gary Smith the inspiring idea and to all of the authors for sharing their Betty Jo Fitzgerald** Ron Taylor** knowledge about the plants, people, and resources affiliated Mary Fries** Richard Tinsley Amy Jean Gilmartin** Ann Weinmann with these parks. Al Hanners** Fred Weinmann Lynn Hendrix** * WNPS Fellow is the highest WNPS President Don Schaechtel provides a delightful Karen Hinman** honor given to a member by reminiscence of his more than 30 years of hiking, climbing, Marie Hitchman our society. This title is given and botanizing throughout Washington’s three national parks. Catherine Hovanic to those who have made Two articles in this issue remind us of the significant contribu- Art Kermoade** outstanding contributions to Don Knoke** the understanding and/or tions that amateur botanists have made at two of these parks.
    [Show full text]
  • Annotated Checklist of Vascular Flora, Cedar Breaks National
    National Park Service U.S. Department of the Interior Natural Resource Program Center Annotated Checklist of Vascular Flora Cedar Breaks National Monument Natural Resource Technical Report NPS/NCPN/NRTR—2009/173 ON THE COVER Peterson’s campion (Silene petersonii), Cedar Breaks National Monument, Utah. Photograph by Walter Fertig. Annotated Checklist of Vascular Flora Cedar Breaks National Monument Natural Resource Technical Report NPS/NCPN/NRTR—2009/173 Author Walter Fertig Moenave Botanical Consulting 1117 W. Grand Canyon Dr. Kanab, UT 84741 Editing and Design Alice Wondrak Biel Northern Colorado Plateau Network P.O. Box 848 Moab, UT 84532 February 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientifi c community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifi cally credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. The Natural Resource Technical Report series is used to disseminate the peer-reviewed results of scientifi c studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service’s mission. The reports provide contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. Current examples of such reports include the results of research that addresses natural resource management issues; natural resource inventory and monitoring activities; resource assessment reports; scientifi c literature reviews; and peer- reviewed proceedings of technical workshops, conferences, or symposia.
    [Show full text]
  • Washington Flora Checklist a Checklist of the Vascular Plants of Washington State Hosted by the University of Washington Herbarium
    Washington Flora Checklist A checklist of the Vascular Plants of Washington State Hosted by the University of Washington Herbarium The Washington Flora Checklist aims to be a complete list of the native and naturalized vascular plants of Washington State, with current classifications, nomenclature and synonymy. The checklist currently contains 3,929 terminal taxa (species, subspecies, and varieties). Taxa included in the checklist: * Native taxa whether extant, extirpated, or extinct. * Exotic taxa that are naturalized, escaped from cultivation, or persisting wild. * Waifs (e.g., ballast plants, escaped crop plants) and other scarcely collected exotics. * Interspecific hybrids that are frequent or self-maintaining. * Some unnamed taxa in the process of being described. Family classifications follow APG IV for angiosperms, PPG I (J. Syst. Evol. 54:563?603. 2016.) for pteridophytes, and Christenhusz et al. (Phytotaxa 19:55?70. 2011.) for gymnosperms, with a few exceptions. Nomenclature and synonymy at the rank of genus and below follows the 2nd Edition of the Flora of the Pacific Northwest except where superceded by new information. Accepted names are indicated with blue font; synonyms with black font. Native species and infraspecies are marked with boldface font. Please note: This is a working checklist, continuously updated. Use it at your discretion. Created from the Washington Flora Checklist Database on September 17th, 2018 at 9:47pm PST. Available online at http://biology.burke.washington.edu/waflora/checklist.php Comments and questions should be addressed to the checklist administrators: David Giblin ([email protected]) Peter Zika ([email protected]) Suggested citation: Weinmann, F., P.F. Zika, D.E. Giblin, B.
    [Show full text]
  • Full Issue, Vol. 58 No. 1
    Great Basin Naturalist Volume 58 Number 1 Article 13 1-30-1998 Full Issue, Vol. 58 No. 1 Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation (1998) "Full Issue, Vol. 58 No. 1," Great Basin Naturalist: Vol. 58 : No. 1 , Article 13. Available at: https://scholarsarchive.byu.edu/gbn/vol58/iss1/13 This Full Issue is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. T H E GREAT BASIN naturalistnaturalist moe A VOLUME 58 n2naN I1 JANUARY 1998 BRIGHAM YOUNG university GREAT BASIN naturalist httpwwwlibbyuedu amsnms editor assistant editor RICHARD W BAUMANN NATHAN M SMITH 290 MLBM 190 MLBM PO box 20200 PO box 26879 brigham young university brigham young university provo UT 84602020084602 0200 provo UT 84602687984602 6879 8013785053801 378 5053 8013786688801 378 6688 FAX 8013783733801 378 3733 emailE mail nmshbllibyuedunmshbll1byuedu associate editors BRUCE D ESHELMAN STANLEY D SMITH department of biological sciences university of department of biology wisconsin whitewater whitewater w1WIwa 53190 university of nevada las vegas las vegas NV 89154400489154 4004 JEFFREY J JOHANSEN department of biology john carroll university PAUL T TUELLER university heights OH 44118 department of environmental resource sciences university of nevada reno 1000 valley
    [Show full text]
  • Appendix 6 Biological Report (PDF)
    Biological Constraints Analysis Tahoe Donner 5-Year Trail Implementation Plan Truckee, Nevada County, CA Nevada County File Number ___ Prepared for: Tahoe Donner Association Forrest Huisman, Director of Capital Projects 11509 Northwoods Boulevard Truckee, California 96161 530-587-9487 Prepared by: Micki Kelly Kelly Biological Consulting PO Box 1625 Truckee, CA 96160 530-582-9713 June 2015, Revised December 2015 Biological Constraints Report, Tahoe Donner Trails 5-Year Implementation Plan December 2015 Table of Contents 1.0 INFORMATION SUMMARY ..................................................................................................................................... 1 2.0 PROJECT AND PROPERTY DESCRIPTION ................................................................................................................. 4 2.1 SITE OVERVIEW ............................................................................................................................................................ 4 2.2 REGULATORY FRAMEWORK ............................................................................................................................................. 4 2.2.1 Special-Status Species ...................................................................................................................................... 5 2.2.2 Wetlands and Waters of the U.S. ..................................................................................................................... 6 2.2.3 Waters of the State .........................................................................................................................................
    [Show full text]