Pseudotype-Based Neutralization Assays for Influenza
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Emerging Role of Mucosal Vaccine in Preventing Infection with Avian Influenza a Viruses
viruses Review Emerging Role of Mucosal Vaccine in Preventing Infection with Avian Influenza A Viruses Tong Wang 1, Fanhua Wei 2 and Jinhua Liu 1,* 1 Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; [email protected] 2 College of Agriculture, Ningxia University, Yinchuan 750021, China; [email protected] * Correspondence: [email protected] Received: 22 July 2020; Accepted: 5 August 2020; Published: 7 August 2020 Abstract: Avian influenza A viruses (AIVs), as a zoonotic agent, dramatically impacts public health and the poultry industry. Although low pathogenic avian influenza virus (LPAIV) incidence and mortality are relatively low, the infected hosts can act as a virus carrier and provide a resource pool for reassortant influenza viruses. At present, vaccination is the most effective way to eradicate AIVs from commercial poultry. The inactivated vaccines can only stimulate humoral immunity, rather than cellular and mucosal immune responses, while failing to effectively inhibit the replication and spread of AIVs in the flock. In recent years, significant progresses have been made in the understanding of the mechanisms underlying the vaccine antigen activities at the mucosal surfaces and the development of safe and efficacious mucosal vaccines that mimic the natural infection route and cut off the AIVs infection route. Here, we discussed the current status and advancement on mucosal immunity, the means of establishing mucosal immunity, and finally a perspective for design of AIVs mucosal vaccines. Hopefully, this review will help to not only understand and predict AIVs infection characteristics in birds but also extrapolate them for distinction or applicability in mammals, including humans. -
Allosteric Integrase Inhibitor Potency Is Determined Through the Inhibition of HIV-1 Particle Maturation
Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation Kellie A. Juradoa, Hao Wanga, Alison Slaughterb, Lei Fengb, Jacques J. Kesslb, Yasuhiro Koha, Weifeng Wanga, Allison Ballandras-Colasa, Pratiq A. Patelc, James R. Fuchsc, Mamuka Kvaratskheliab, and Alan Engelmana,1 aDepartment of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02215; and bCenter for Retrovirus Research and Comprehensive Cancer Center and cDivision of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 Edited by Alan R. Rein, National Cancer Institute, Frederick, MD, and accepted by the Editorial Board April 1, 2013 (received for review January 14, 2013) Integration is essential for HIV-1 replication, and the viral integrase HIV-1 preferentially integrates along the bodies of active genes (IN) protein is an important therapeutic target. Allosteric IN inhib- (6), a trait that is largely attributable to an interaction between itors (ALLINIs) that engage the IN dimer interface at the binding site IN and the host protein lens epithelium-derived growth factor for the host protein lens epithelium-derived growth factor (LEDGF)/ (LEDGF)/transcriptional coactivator p75 (reviewed in refs. 7 and transcriptional coactivator p75 are an emerging class of small mole- 8). LEDGF/p75 functions as a bimodal tether during integration: cule antagonists. Consistent with the inhibition of a multivalent drug elements within its N-terminal region confer constitutive binding to target, ALLINIs display steep antiviral dose–response curves ex vivo. chromatin, whereas a downstream IN-binding domain (IBD) binds ALLINIs multimerize IN protein and concordantly block its assembly lentiviral IN proteins (9, 10). -
Patent Document US 06872395
I 1111111111111111 11111 111111111111111 1111111111 1111111111 lll111111111111111 US006872395B2 (12) United States Patent (10) Patent No.: US 6,872,395 B2 Kawaoka (45) Date of Patent: Mar.29,2005 (54) VIRUSES COMPRISING MUTANT ION Mena, I., et al., "Rescue of a Synthetic Choramphenicol CHANNEL PROTEIN Acetyltransferase RNA into influenza Virus-Like Particles obtained from recombinant plasmids", J. of Virology, vol. (75) Inventor: Yoshihiro Kawaoka, Madison, WI 70, No. 8, XP002150091, 5016-5024, (Aug. 1996). (US) Neumann, G., et al., "Generation of influenza A Viruses entirely from cloned cDNAs", Proc. of the Nat'l Aca. of (73) Assignee: Wisconsin Alumni Research Sciences, USA, vol. 96, XP002150093, 9345-9350, (Aug. Foundation, Madison, WI (US) 1999). ( *) Notice: Subject to any disclaimer, the term of this Neumann, G., et al., "Plasmid-Driven Formation of Influ patent is extended or adjusted under 35 enza Virus-Like Particles", J. of Virology, vol. 74, No. 1, U.S.C. 154(b) by O days. XP002150094, 547-551, (Jan. 2000). Neumann, G., et al., "RNA Polymerase I-Mediated Expres sion of Influenza Viral RNA Molecules", Virology, vol. 202, (21) Appl. No.: 09/834,095 No. 1, XP000952667, 477-479, (Jul. 1994). (22) Filed: Apr. 12, 2001 Neirynck, S., et al., "A universal influenza A vaccine based on the extracellular domain of the M2 protein", Nature (65) Prior Publication Data Medicine, 5 (10), pp. 1157-1163, (Oct. 1999). US 2003/0194694 Al Oct. 16, 2003 Piller, S. C., et al., "Vpr protein of human immunodeficiency virus type 1 forms cation-selective channels in planar lipid Related U.S. Application Data bilayers", PNAS, 93, pp. -
Development and Effects of Influenza Antiviral Drugs
molecules Review Development and Effects of Influenza Antiviral Drugs Hang Yin, Ning Jiang, Wenhao Shi, Xiaojuan Chi, Sairu Liu, Ji-Long Chen and Song Wang * Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; [email protected] (H.Y.); [email protected] (N.J.); [email protected] (W.S.); [email protected] (X.C.); [email protected] (S.L.); [email protected] (J.-L.C.) * Correspondence: [email protected] Abstract: Influenza virus is a highly contagious zoonotic respiratory disease that causes seasonal out- breaks each year and unpredictable pandemics occasionally with high morbidity and mortality rates, posing a great threat to public health worldwide. Besides the limited effect of vaccines, the problem is exacerbated by the lack of drugs with strong antiviral activity against all flu strains. Currently, there are two classes of antiviral drugs available that are chemosynthetic and approved against influenza A virus for prophylactic and therapeutic treatment, but the appearance of drug-resistant virus strains is a serious issue that strikes at the core of influenza control. There is therefore an urgent need to develop new antiviral drugs. Many reports have shown that the development of novel bioactive plant extracts and microbial extracts has significant advantages in influenza treat- ment. This paper comprehensively reviews the development and effects of chemosynthetic drugs, plant extracts, and microbial extracts with influenza antiviral activity, hoping to provide some refer- ences for novel antiviral drug design and promising alternative candidates for further anti-influenza drug development. -
The Hepatitis C Virus P7 Protein Forms an Ion Channel That Is Inhibited by Long-Alkyl-Chain Iminosugar Derivatives
The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives Davor Pavlovic´*, David C. A. Neville*, Olivier Argaud*, Baruch Blumberg†, Raymond A. Dwek*, Wolfgang B. Fischer*, and Nicole Zitzmann*‡ *Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; and †Fox Chase Cancer Center, Philadelphia, PA 19111 Contributed by Baruch Blumberg, March 17, 2003 We show that hepatitis C virus (HCV) p7 protein forms ion channels data have been obtained by introducing mutations into an in black lipid membranes. HCV p7 ion channels are inhibited by infectious cDNA clone of BVDV. An in-frame deletion of the long-alkyl-chain iminosugar derivatives, which have antiviral ac- entire p7 does not affect RNA replication but leads to the tivity against the HCV surrogate bovine viral diarrhea virus. HCV p7 production of noninfectious virions. However, infective viral presents a potential target for antiviral therapy. particles can be generated by complementing p7 in trans (9), which suggests that the pestivirus p7 is essential for the epatitis C virus (HCV) is the major cause of chronic production of infective progeny virus. Interestingly, noninfec- Hhepatitis with a significant risk of end-stage liver cirrhosis tive BVDV particles also are created by treatment with and hepatocellular carcinoma (1). HCV belongs to the family long-alkyl-chain iminosugar derivatives (3). Flaviviridae, which consists of three genera: flaviviruses, pesti- Recently, HCV p7 has been shown to be a polytopic mem- viruses, and hepaciviruses. In the absence of both a suitable small brane protein that crosses the membrane twice and has its N and animal model and a reliable in vitro infectivity assay for HCV, C termini oriented toward the extracellular environment (10). -
An Anti-Cancer Binary System Activated by Bacteriophage HK022 Integrase
bioRxiv preprint doi: https://doi.org/10.1101/147736; this version posted June 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. An anti-cancer binary system activated by bacteriophage HK022 Integrase Amer Elias, Itay Spector1, Natasha Gritsenko, Yael Zilberstein2, Rena Gorovits3, Gali Prag, Mikhail Kolot* Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv 69978, Israel 1 Histospeck, Rishon LeZion PO Box: 75321, Israel 2 Sackler cellular & molecular imaging center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel 3 Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel *Corresponding author: Mikhail Kolot Tel-Aviv University Department of Biochemistry & Molecular Biology Tel-Aviv 69978 Israel Tel.: +972-3-6406695 Fax: +972-3-6406834 E-mail: [email protected] Key words: DTA toxin, cancer therapy, binary system, site-specific recombination, bacteriophage HK022; Integrase, lung cancer, gene delivery 1 bioRxiv preprint doi: https://doi.org/10.1101/147736; this version posted June 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Cancer gene therapy is a great promising tool for cancer therapeutics due to the specific targeting based on the cancerous gene expression background. Binary systems based on site- specific recombination are one of the most effective potential approaches for cancer gene therapy. -
Lentivirus and Lentiviral Vectors Fact Sheet
Lentivirus and Lentiviral Vectors Family: Retroviridae Genus: Lentivirus Enveloped Size: ~ 80 - 120 nm in diameter Genome: Two copies of positive-sense ssRNA inside a conical capsid Risk Group: 2 Lentivirus Characteristics Lentivirus (lente-, latin for “slow”) is a group of retroviruses characterized for a long incubation period. They are classified into five serogroups according to the vertebrate hosts they infect: bovine, equine, feline, ovine/caprine and primate. Some examples of lentiviruses are Human (HIV), Simian (SIV) and Feline (FIV) Immunodeficiency Viruses. Lentiviruses can deliver large amounts of genetic information into the DNA of host cells and can integrate in both dividing and non- dividing cells. The viral genome is passed onto daughter cells during division, making it one of the most efficient gene delivery vectors. Most lentiviral vectors are based on the Human Immunodeficiency Virus (HIV), which will be used as a model of lentiviral vector in this fact sheet. Structure of the HIV Virus The structure of HIV is different from that of other retroviruses. HIV is roughly spherical with a diameter of ~120 nm. HIV is composed of two copies of positive ssRNA that code for nine genes enclosed by a conical capsid containing 2,000 copies of the p24 protein. The ssRNA is tightly bound to nucleocapsid proteins, p7, and enzymes needed for the development of the virion: reverse transcriptase (RT), proteases (PR), ribonuclease and integrase (IN). A matrix composed of p17 surrounds the capsid ensuring the integrity of the virion. This, in turn, is surrounded by an envelope composed of two layers of phospholipids taken from the membrane of a human cell when a newly formed virus particle buds from the cell. -
693.Full.Pdf
Vol. 4, 693-696, Marc/i /998 Clinical Cancer Research 693 Inhibition of Cell Growth and Telomerase Activity of Breast Cancer Cells in Vitro by 3’-Azido-3’-deoxythymidine1 Stella M. Melana, James F. Holland, and target for cancer treatment (9). Recently, the effect of AZT on Beatriz G-T. Pogo2 Chinese hamster ovary cells that display telomerase activity was investigated. AZT was preferentially incorporated into telomeric Department of Medicine, Division of Neoplastic Diseases [S. M. M.. J. F. H.. B. G-T. P.]. and Department of Microbiology [B. G-T. P.]. DNA and Z-DNA-containing regions (2). AZT. alone or in Mount Sinai School of Medicine, New York, New York 10029 combination with other antimetabolites, also inhibited the growth of human bladder cancer and colon cancer cell lines (10). Furthermore, AZT was shown to cause progressive te- ABSTRACT lomere shortening in immortalized B and T human lymphocytic The effect of zidovudine (3’-azido-3’-deoxythymidine; cell lines ( 1 1 ). Taken together. these results have stimulated AZT) was investigated in four breast cancer cell lines, a T4 further research on the effect of AZT on cancer cells. We have, cell leukemia, and a normal breast cell line in vitro. AZT therefore, investigated the effect of AZT on breast cancer cells inhibited the growth of all tumoral cell lines, but it did so in that possess tebomerase activity. The results indicated that AZT a wide range of concentrations. The growth of a normal inhibits breast cancer cell growth. anchorage-independent breast cell line was also inhibited, although it required a growth. -
Distribution of Prophages in the Oenococcus Oeni Species
microorganisms Article Distribution of Prophages in the Oenococcus oeni Species Olivier Claisse , Amel Chaïb, Fety Jaomanjaka ,Cécile Philippe, Yasma Barchi, Patrick M. Lucas and Claire Le Marrec * Unité de Recherche Œnologie, Bordeaux INP, University of Bordeaux, INRAE, ISVV, F-33882 Bordeaux, France; [email protected] (O.C.); [email protected] (A.C.); [email protected] (F.J.); [email protected] (C.P.); [email protected] (Y.B.); [email protected] (P.M.L.) * Correspondence: [email protected]; Tel.: +33-557-575-831 Abstract: Oenococcus oeni is the most exploited lactic acid bacterium in the wine industry and drives the malolactic fermentation of wines. Although prophage-like sequences have been identified in the species, many are not characterized, and a global view of their integration and distribution amongst strains is currently lacking. In this work, we analyzed the complete genomes of 231 strains for the occurrence of prophages, and analyzed their size and positions of insertion. Our data show the limited variation in the number of prophages in O. oeni genomes, and that six sites of insertion within the bacterial genome are being used for site-specific recombination. Prophage diversity patterns varied significantly for different host lineages, and environmental niches. Overall, the findings highlight the pervasive presence of prophages in the O. oeni species, their role as a major source of within-species bacterial diversity and drivers of horizontal gene transfer. Our data also have implications for enhanced understanding of the prophage recombination events which occurred during evolution of O. oeni, as well as the potential of prophages in influencing the fitness of these bacteria in their distinct niches. -
Vpr Mediates Immune Evasion and HIV-1 Spread by David R. Collins A
Vpr mediates immune evasion and HIV-1 spread by David R. Collins A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Microbiology and Immunology) in the University of Michigan 2015 Doctoral Committee: Professor Kathleen L. Collins, Chair Professor David M. Markovitz Associate Professor Akira Ono Professor Alice Telesnitsky © David R. Collins ________________________________ All Rights Reserved 2015 Dedication In loving memory of Sullivan James and Aiko Rin ii Acknowledgements I am very grateful to my mentor, Dr. Kathleen L. Collins, for providing excellent scientific training and guidance and for directing very exciting and important research. I am in the debt of my fellow Collins laboratory members, present and former, for their daily support, encouragement and assistance. In particular, I am thankful to Dr. Michael Mashiba for pioneering our laboratory’s investigation of Vpr, which laid the framework for this dissertation, and for key contributions to Chapter II and Appendix. I am grateful to Jay Lubow and Dr. Zana Lukic for their collaboration and contributions to ongoing work related to this dissertation. I also thank the members of my thesis committee, Dr. Akira Ono, Dr. Alice Telesnitsky, and Dr. David Markovitz for their scientific and professional guidance. Finally, this work would not have been possible without the unwavering love and support of my family, especially my wife Kali and our wonderful feline companions Ayumi, Sully and Aiko, for whom I continue to endure life’s -
Virus-Host Interactomics: New Insights and Opportunities for Antiviral Drug Discovery
de Chassey et al. Genome Medicine 2014, 6:115 http://genomemedicine.com/content/6/11/115 REVIEW Virus-host interactomics: new insights and opportunities for antiviral drug discovery Benoît de Chassey1, Laurène Meyniel-Schicklin1, Jacky Vonderscher1, Patrice André2,3,4 and Vincent Lotteau3,4* Abstract The current therapeutic arsenal against viral infections remains limited, with often poor efficacy and incomplete coverage, and appears inadequate to face the emergence of drug resistance. Our understanding of viral biology and pathophysiology and our ability to develop a more effective antiviral arsenal would greatly benefit from a more comprehensive picture of the events that lead to viral replication and associated symptoms. Towards this goal, the construction of virus-host interactomes is instrumental, mainly relying on the assumption that a viral infection at the cellular level can be viewed as a number of perturbations introduced into the host protein network when viral proteins make new connections and disrupt existing ones. Here, we review advances in interactomic approaches for viral infections, focusing on high-throughput screening (HTS) technologies and on the generation of high-quality datasets. We show how these are already beginning to offer intriguing perspectives in terms of virus-host cell biology and the control of cellular functions, and we conclude by offering a summary of the current situation regarding the potential development of host-oriented antiviral therapeutics. Introduction the virus life-cycle. These proteins -
Intestinal Virome Changes Precede Autoimmunity in Type I Diabetes-Susceptible Children,” by Guoyan Zhao, Tommi Vatanen, Lindsay Droit, Arnold Park, Aleksandar D
Correction MEDICAL SCIENCES Correction for “Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children,” by Guoyan Zhao, Tommi Vatanen, Lindsay Droit, Arnold Park, Aleksandar D. Kostic, Tiffany W. Poon, Hera Vlamakis, Heli Siljander, Taina Härkönen, Anu-Maaria Hämäläinen, Aleksandr Peet, Vallo Tillmann, Jorma Ilonen, David Wang, Mikael Knip, Ramnik J. Xavier, and Herbert W. Virgin, which was first published July 10, 2017; 10.1073/pnas.1706359114 (Proc Natl Acad Sci USA 114: E6166–E6175). The authors wish to note the following: “After publication, we discovered that certain patient-related information in the spreadsheets placed online had information that could conceiv- ably be used to identify, or at least narrow down, the identity of children whose fecal samples were studied. The article has been updated online to remove these potential privacy concerns. These changes do not alter the conclusions of the paper.” Published under the PNAS license. Published online November 19, 2018. www.pnas.org/cgi/doi/10.1073/pnas.1817913115 E11426 | PNAS | November 27, 2018 | vol. 115 | no. 48 www.pnas.org Downloaded by guest on September 26, 2021 Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children Guoyan Zhaoa,1, Tommi Vatanenb,c, Lindsay Droita, Arnold Parka, Aleksandar D. Kosticb,2, Tiffany W. Poonb, Hera Vlamakisb, Heli Siljanderd,e, Taina Härkönend,e, Anu-Maaria Hämäläinenf, Aleksandr Peetg,h, Vallo Tillmanng,h, Jorma Iloneni, David Wanga,j, Mikael Knipd,e,k,l, Ramnik J. Xavierb,m, and