Craiginmoddie Wind Farm
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Scott Wilson Scotland: a History Volume 11 the Interchange Years
Doc 12.56: Scott Wilson Scotland: A History: Vol 11: The Interchange Years 2005-2009 JP McCafferty Scott Wilson Scotland: A History Volume 11 The Interchange Years 2005-2009 Transcribed and edited from ‘Interchange’ JP McCafferty 1 Doc 12.56: Scott Wilson Scotland: A History: Vol 11: The Interchange Years 2005-2009 JP McCafferty Significant or notable projects, people and events are highlighted as follows for ease of reference:- Projects/Disciplines People Issue/Date Actions Contents Background ......................................................................................................................................... 12 Interchange ......................................................................................................................................... 12 JP McCafferty [Find Issues 1-40; Fix Pics P 16, 21; Fix P 68 150 Header 2]...................................... 12 Interchange 41 [21.10.2005] ............................................................................................................... 13 The Environment section in Edinburgh is delighted to welcome Nicholas Whitelaw ..................... 13 Interchange 42 [28.10.2005] ............................................................................................................... 13 S W Renewable Energy at British Wind Energy Association [Wright; Morrison] ............................. 13 Interchange 43 [4.11.2005] ................................................................................................................. 14 Jobs: Civil -
Digest of United Kingdom Energy Statistics 2012
Digest of United Kingdom Energy Statistics 2012 Production team: Iain MacLeay Kevin Harris Anwar Annut and chapter authors A National Statistics publication London: TSO © Crown Copyright 2012 All rights reserved First published 2012 ISBN 9780115155284 Digest of United Kingdom Energy Statistics Enquiries about statistics in this publication should be made to the contact named at the end of the relevant chapter. Brief extracts from this publication may be reproduced provided that the source is fully acknowledged. General enquiries about the publication, and proposals for reproduction of larger extracts, should be addressed to Kevin Harris, at the address given in paragraph XXIX of the Introduction. The Department of Energy and Climate Change reserves the right to revise or discontinue the text or any table contained in this Digest without prior notice. About TSO's Standing Order Service The Standing Order Service, open to all TSO account holders, allows customers to automatically receive the publications they require in a specified subject area, thereby saving them the time, trouble and expense of placing individual orders, also without handling charges normally incurred when placing ad-hoc orders. Customers may choose from over 4,000 classifications arranged in 250 sub groups under 30 major subject areas. These classifications enable customers to choose from a wide variety of subjects, those publications that are of special interest to them. This is a particularly valuable service for the specialist library or research body. All publications will be dispatched immediately after publication date. Write to TSO, Standing Order Department, PO Box 29, St Crispins, Duke Street, Norwich, NR3 1GN, quoting reference 12.01.013. -
A Vision for Scotland's Electricity and Gas Networks
A vision for Scotland’s electricity and gas networks DETAIL 2019 - 2030 A vision for scotland’s electricity and gas networks 2 CONTENTS CHAPTER 1: SUPPORTING OUR ENERGY SYSTEM 03 The policy context 04 Supporting wider Scottish Government policies 07 The gas and electricity networks today 09 CHAPTER 2: DEVELOPING THE NETWORK INFRASTRUCTURE 13 Electricity 17 Gas 24 CHAPTER 3: COORDINATING THE TRANSITION 32 Regulation and governance 34 Whole system planning 36 Network funding 38 CHAPTER 4: SCOTLAND LEADING THE WAY – INNOVATION AND SKILLS 39 A vision for scotland’s electricity and gas networks 3 CHAPTER 1: SUPPORTING OUR ENERGY SYSTEM A vision for scotland’s electricity and gas networks 4 SUPPORTING OUR ENERGY SYSTEM Our Vision: By 2030… Scotland’s energy system will have changed dramatically in order to deliver Scotland’s Energy Strategy targets for renewable energy and energy productivity. We will be close to delivering the targets we have set for 2032 for energy efficiency, low carbon heat and transport. Our electricity and gas networks will be fundamental to this progress across Scotland and there will be new ways of designing, operating and regulating them to ensure that they are used efficiently. The policy context The energy transition must also be inclusive – all parts of society should be able to benefit. The Scotland’s Energy Strategy sets out a vision options we identify must make sense no matter for the energy system in Scotland until 2050 – what pathways to decarbonisation might targeting a sustainable and low carbon energy emerge as the best. Improving the efficiency of system that works for all consumers. -
GB Wholesale Market Summary April 2021
GB Wholesale Market Summary April 2021 Published May 2021 Aurora offers power market forecasts and market intelligence spanning Europe’s key markets, Australia and the US Comprehensive Power Power Market Bespoke Market Services Forecast Reports forecasts Market forecast Power market Aurora can provide ✓ reports ✓ forecast reports ✓ power market forecasts upon Forecast data in Forecast data in request ✓ Excel ✓ Excel Global energy ✓ Analyst support ✓ market forecast reports Strategic insight ✓ reports Regular subscriber ✓ group meetings ✓ Policy updates ✓ Bilateral workshops ✓ Analyst support Source: Aurora Energy Research 2 Month-on-month Year-on-year Monthly value1 Slide reference(s) E x e c u t i v e change change Power prices + 12.4 + 43.5 66.6 5, 6 £/MWh (23.0%) (188.9%) S u m m a r y Gas prices + 3.1 + 13.8 18.5 7 £/MWh (20.3%) (291.4%) Carbon2 prices + 3.4 + 21.0 56.5 7 ▪ April saw power prices rise to £67/MWh £/tCO2 (6.4%) (58.9%) driven by increased gas and carbon Transmission demand - 2.1 + 3.4 prices 20.8 10 TWh (9.2%) (19.3%) ▪ Monthly transmission power demand in Low carbon3 generation - 1.0 - 0.9 April decreased to 21 TWh due to 10.8 11, 12 warmer temperatures TWh (8.5%) (7.6%) Thermal4 generation + 1.1 + 5.14 ▪ Despite lower demand and higher gas 10.4 11, 12 and carbon prices, thermal generation in TWh (11.8%) (97.7%) April increased to 11 TWh due to lower Carbon emissions + 0.3 + 2.1 renewables output 4.5 14 MtCO2e (7.9%) (85.7%) ▪ Higher thermal generation thus resulted Grid carbon intensity + 33.9 + 84.5 239.9 14 in a rise in emissions to 5 MtCO2e gCO2e/kWh (16.5%) (54.4%) Wind load factors5 24.0 - 16 p.p. -
Appendix Contents
Electricity Ten Year Statement 2020 Electricity Ten Year Statement 2020 1 Appendix Contents To demonstrate the impact of future changes on the transmission network a set of winter peak power flow C diagrams are presented in Appendix C. These show snapshots of present and future power flows along major circuit routes for the Leading the Way Scenario as well as future reinforcements based on 2019 NOA results. New transmission circuits and substations that Power flow diagrams are still to be built are shown in the future year’s diagrams. They represent one scenario and could change. The diagrams are not completely geographically precise and should not be used for detailed planning purposes. Appendix C C1 – GB Power Flow Diagram Leading the Way 2020/21..........2 C2 – GB Power Flow Diagram Leading the Way 2022/23..........3 C3 – GB Power Flow Diagram Leading the Way 2024/25..........4 C4 – GB Power Flow Diagram Leading the Way 2026/27..........5 C5 – GB Power Flow Diagram Leading the Way 2029/30..........6 A ppendi x C x C ppendi A 2 Figure C1: GB Power Flow Diagram Leading the Way 2020/21 Substation 400kV Substations 275 kV Substations 132kV Substations Circuit 400kV 275kV 220kV 132kV Dounreay Thurso South Offshore AC Cable Connagil Spittal 200 Offshore DC Cable 39 Mybster Interconnector (as of September 2020 IC register) Beatrice Cassley Stornoway Dunbeath Gordonbush Strathbrora Offshore Wind Projects Lairg Brora Round 1 Harris Loch Buidhe Shin Caithness Moray HVDC Round 2 Grudie Bridge Mossford Fyrish Alness Round 2.5 Corriemoillie Fraserburgh Luichart Orrin 98 Elgin Dorenell Macduff St. -
Annual Review 2006 Annual Review 2006
Annual Review 2006 Annual Review 2006 BWEA Events 2007 15 March 2007: BWEA Marine 07 BWEA’s 4th Annual Wave and Tidal Energy Conference London, UK 7 June 2007: BWEA Offshore 07 BWEA’s 6th Annual UK Offshore Wind Conference Liverpool, UK 9-11 October 2007: BWEA29 The Industry’s 29th Annual Conference and Exhibition Glasgow, UK For further information on attending, sponsoring or speaking at BWEA events visit www.bwea.com 2 Annual Review 2006 Contents BWEA is the UK’s leading renewable energy Foreword from CEO 4-5 association. Established in 1978, BWEA now has 2006 Planning Review 6-7 Approaching the 2nd gigawatt over 330 companies in membership, active in the UK wind, wave and tidal stream industries. BWEA Record Year of Delivery 8-13 is at the forefront of the development of these Statistical overview of 14-15 wind farms sectors, protecting members’ interests and promoting their industries to Government, Onshore 16-19 business and the media. Wales 20-21 Wind energy has now started a major expansion Small Wind 22-25 in the UK and will be the single greatest Offshore 26-29 contributor to the Government’s 10% 2010 Marine 30-33 renewable energy target and 20% 2020 Grid and Technical 34-37 renewable aspiration. Together, wind, wave Health and Safety 38-40 and tidal power can supply 21% of the country’s projected electricity supplies by 2020, resulting in Communications 42-47 over £16 billion of investment in UK plc. Energy Review 48-50 Publications 51-57 Events 58-61 Finance Review 62-63 Front cover credits BWEA Staff 64 Burton Wold wind farm -
Transmission Networks Connections Update
Transmission Networks Connections Update May 2015 SHE-T–TO SPT–TO NG–TO/SO SHE-T–TO SPT–TO NG–TO/SO Back to Contents TNCU – May 2015 Page 01 Contents Foreword ////////////////////////////////////////////////////////////////// 02 1. Introduction /////////////////////////////////////////////////////////// 03 2. Connection timescales ///////////////////////////////////////////// 04 Illustrative connection timescales /////////////////////////////////////// 04 Connections by area /////////////////////////////////////////////////////// 05 3. GB projects by year ///////////////////////////////////////////////// 06 Contracted overall position /////////////////////////////////////////////// 08 Renewable projects status by year ///////////////////////////////////// 10 Non-Renewable projects status by year – Excluding Nuclear /// 11 Non-Renewable projects status by year – Nuclear only ////////// 12 Interconnector projects status by year //////////////////////////////// 13 4. Additional data by transmission owner ///////////////////////// 14 National Grid Electricity Transmission plc //////////////////////////// 16 Scottish Hydro Electricity Transmission plc ////////////////////////// 18 Scottish Power Transmission Limited ///////////////////////////////// 20 5. Connection locations /////////////////////////////////////////////// 22 Northern Scotland projects map //////////////////////////////////////// 25 Southern Scotland projects map /////////////////////////////////////// 28 Northern England projects map ///////////////////////////////////////// -
Adverse Health Issues and Industrial Wind Turbines
ADVERSE HEALTH ISSUES AND INDUSTRIAL WIND TURBINES. This document has vital and fresh information on a subject which has been systematically ignored by authorities to date. A renewable energy technology has health issues which are already affecting many world-wide and rising numbers in the UK. Two useful recent interviews are also now available. 1.With Professor Alec Salt http://www.2gb.com/article/alan-jones-%E2%80%93- professor-alec-salt 2. Sky News - between Alan Jones and Senator Chris Back, (who is both a parliamentarian and a Vet, who is well aware of the health problems with industrial wind turbines). See:- http://www.youtube.com/watch?v=dUl64O5PeoU In addition Dr. Chris Hanning, formerly Consultant in Sleep Medicine, University Hospitals of Leicester is willing to be contacted through Susan Crosthwaite. Contact details. 01465 831363. Email [email protected] His statement from article in the BMJ 2012;344:e1527 doi: 10.1136/bmj.e1527 (Published 8 March 2012) is that :- “The evidence for adequate sleep as a prerequisite for human health, particularly child health, is overwhelming. Governments have recently paid much attention to the effects of environmental noise on sleep duration and quality, and to how to reduce such noise.1 However, governments have also imposed noise from industrial wind turbines on large swathes of peaceful countryside.” N.B. At a meeting last December Fergus Ewing confirmed that there is no central data base for turbines approved, in planning, awaiting outcomes of appeals or PLIs or in scoping - nor could he say when we will have enough. Many areas are being 'cased' by developers quietly so that communities are 'hit' with shocking applications when much of the application preparation is already done. -
'C' Dumfries & Galloway Wind Farm Landscape Capacity Study
Part 1 Wind Energy Development: Development Management Considerations Appendix ‘C’ Dumfries & Galloway Wind Farm Landscape Capacity DUMFRIES AND GALLOWAY COUNCIL Study Local Development Plan Supplementary Guidance Adopted 22nd June 2017 www.dumgal.gov.uk DUMFRIES AND GALLOWAY (turbines >150m) in selected upland landscapes already influence character and views, cumulative Executive Summary and considers scope for the repowering of issues likely to be associated with additional The Dumfries and Galloway Wind Farm Landscape existing wind farms involving replacement with development are identified and this informs the Capacity Study (DGWLCS) assesses the sensitivity substantially larger turbines. guidance set out for each landscape character type/ of landscape character types, and more locally area. Section C includes two supporting studies; a Detailed sensitivity assessments are based on defined character areas, to different sizes of wind review of the existing regional landscape character defined landscape character types/areas. However, turbine development. It also considers scope for assessment; and an assessment of opportunities for potential indirect effects on landscape character offshore wind energy developments, based on a repowering existing schemes with larger turbines and/or on views can extend over a wide area, regional coastal character assessment. The study and for introducing turbines in excess of 150m in including other nearby landscape character types/ was revised and updated in 2016 in response to the height. areas or in some cases adjacent authorities. As considerable amount of wind farm development a result, sensitivity assessments for individual Summary of Findings: The landscape of Dumfries in Dumfries and Galloway and the continuing proposals may need to consider both the ‘host’ and Galloway is notably diverse with the contrast demand for larger turbines. -
Craiginmoddie Wind Farm
Craiginmoddie Wind Farm Environmental Impact Assessment Report Chapter 6: Landscape and Visual Impact December 2020 Energiekontor UK Ltd Craiginmoddie Wind Farm EIAR Volume 1 Chapter 6: Landscape and Visual Impact CONTENTS 6 LANDSCAPE AND VISUAL IMPACT Introduction ..................................................................................................................................... 1 Legislation and Policy Context ...................................................................................................... 2 Stakeholder Consultation ............................................................................................................... 3 Assessment Methodology and Significance Criteria ................................................................. 7 Baseline Conditions ....................................................................................................................... 11 The Proposed Development ........................................................................................................ 21 Identification and Evaluation of Effects ..................................................................................... 25 Designated Areas ......................................................................................................................... 41 Cumulative Effects ........................................................................................................................ 45 Night-time Effects ......................................................................................................................... -
Onshore Wind Direct & Wider Economic Impacts
Onshore Wind Direct & Wider Economic Impacts May 2012 RenewableUK is the trade and professional body for the UK wind and marine renewables industries. Formed in 1978, and with 595 corporate members, RenewableUK is the leading renewable energy trade association in the UK. Wind has been the world’s fastest growing renewable energy source for the last seven years, and this trend is expected to continue with falling costs of wind energy and the urgent international need to tackle CO2 emissions to prevent climate change. In 2004, RenewableUK expanded its mission to champion wave and tidal energy and use the Association’s experience to guide these technologies along the same path to commercialisation. Our primary purpose is to promote the use of wind, wave and tidal power in and around the UK. We act as a central point for information for our membership and as a lobbying group to promote wind energy and marine renewables to government, industry, the media and the public. We research and find solutions to current issues and generally act as the forum for the UK wind, wave and tidal industry, and have an annual turnover in excess of four million pounds. This report has been produced by BiGGAR Economics for DECC and RenewableUK. Contents 1. Introduction 1 2. Summary of Report 3 3. Economic Linkages 10 4. Direct and Supply Chain Economic Impact of UK Onshore Wind in 2011 23 5. Potential Direct and Supply Chain Impacts to 2020 30 6. Wider Impacts 40 7. Exchequer Impacts 46 8. Summary of Employment Impacts 49 9. Appendix A – Methodology 51 10. -
GB Wholesale Market Summary May 2021
GB Wholesale Market Summary May 2021 Published June 2021 Aurora offers power market forecasts and market intelligence spanning Europe’s key markets, Australia and the US Comprehensive Power Power Market Bespoke Market Services Forecast Reports forecasts Market forecast Power market Aurora can provide ✓ reports ✓ forecast reports ✓ power market forecasts upon Forecast data in Forecast data in request ✓ Excel ✓ Excel Global energy ✓ Analyst support ✓ market forecast reports Strategic insight ✓ reports Regular subscriber ✓ group meetings ✓ Policy updates ✓ Bilateral workshops ✓ Analyst support Source: Aurora Energy Research 2 Month-on-month Year-on-year Monthly value1 Slide reference(s) E x e c u t i v e change change Power prices +5.7 +50.3 72.3 5, 6 £/MWh (8.5%) (229.6%) S u m m a r y Gas prices +3.6 +18.3 22.2 7 £/MWh (19.2%) (460.0%) Carbon2 prices +8.1 +29.1 64.8 7 ▪ May saw power prices rise to £72/MWh £/tCO2 (14.2%) (81.1%) driven by the continued increase in gas Transmission demand -0.2 +3.7 and carbon prices 20.6 10 TWh (0.9%) (22.2%) ▪ The UK-ETS debuted on 19th May with Low carbon3 generation +0.5 -1.2 allowances trading between £45– 11.2 11, 12 TWh (4.9%) (9.4%) 50/tCO2, ~8% higher than EU-ETS Thermal4 generation -1.5 +4.5 ▪ Driven by higher gas and carbon prices, 8.9 11, 12 thermal generation in May decreased to TWh (14.6%) (103.2%) 9 TWh as renewables output increased Carbon emissions -0.6 +1.9 3.9 14 ▪ Wind assets saw increased profitability MtCO2e (13.4%) (90.5%) in May as both load factors and capture Grid carbon intensity -23.4 +84.0 prices increased by 11% and 12% 216.5 14 gCO2e/kWh (9.8%) (63.4%) respectively, relative to April Wind load factors5 +2.5 -0.4 26.7 20 ▪ Year-on-year, system demand has % (10.8%) (1.3%) recovered from the economic slowdown Wind capture prices5 +7.3 +50.9 caused by COVID-19, driving up carbon 67.1 22 emissions to 91% above 2020 levels £/MWh (12.1%) (314.9%) *all data presented in this report is as collated on 7th of June 2021 1) Values averaged over the calendar month.