Insect Behavior Robert W

Total Page:16

File Type:pdf, Size:1020Kb

Insect Behavior Robert W Insect Behavior Robert W. Matthews · Janice R. Matthews Insect Behavior Second Edition 123 Robert W. Matthews Janice R. Matthews University of Georgia University of Georgia Dept. Entomology Dept. Entomology Athens GA 30602 Athens GA 30602 USA USA [email protected] [email protected] ISBN 978-90-481-2388-9 e-ISBN 978-90-481-2389-6 DOI 10.1007/978-90-481-2389-6 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009926821 © Springer Science+Business Media B.V. 2010 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover design: Boekhorst Design BV Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface to the Second Edition This book is for all who are interested in the biological sciences. Like the course that originally inspired it, the text is designed for use at senior undergraduate level for college and university students, so we trust that it will find readership among those who have had some basic introduction to entomology and animal behavior. However, we also hope it will prove useful to newcomers who may be approaching behavioral study from other perspectives. This is our second edition, born anew after thirty years. Much has changed during that time, especially in the breadth and depth of a field that (like us) was fairly young back in 1978. New technologies are allowing scientists to shape—and answer— questions in ways that once could not even have been envisioned. Insect behavior research now has wings, and is poised to take off. However, at this juncture, we all must also take care not lose an awareness of our roots. Thus, as writers introducing this exciting field of study to the next generation of scientists and insect enthusiasts, we have tried to strike a balance between new ideas and old, and between modern developments and historical insights. Our objectives in writing this edition remain the same as they have always been. The first of these has been to help readers understand how a number of major behavioral systems function. Thus, this is not an encyclopedia, but an introduc- tion to fundamental concepts and processes as seen from a comparative evolutionary viewpoint. We have not documented numerous strings of examples merely for ‘com- pleteness of coverage’ but instead have tried to give a flavor of the diversity of ways in which insects approach similar life tasks. Because the Internet and excellent search engines have made access to information sources easy and nearly instan- taneous, we have not burdened readers with a cumbersome citations in the text; searching on key terms, aided when necessary by references associated with fig- ure credits at the book’s end, will provide entry into additional literature for those interested in further pursuing subjects we can but introduce. Our second objective has been to help readers gain insights into accessible ways in which behavioral research can be conducted. Whenever possible, we have included discussions of important experiments and investigations, rather than pre- senting a rhetoric of conclusions. Selected principles are interwoven with case stud- ies of specific situations, presenting actual examples in a manner compatible with the dynamic, open-ended field and laboratory experiences in which they have arisen. v vi Preface to the Second Edition Like any writers of a general textbook, we recognize a deep obligation to many others—to those of whose work we write, to other authors whose ideas we use, to our own teachers who have shaped our perspectives and interests, and to our stu- dents, friends and colleagues with their many stimulating and invaluable suggestions and criticisms. We also thank the many scientists and journal editors who have freely granted permission for the use of published material. Many colleagues have generously provided us with photographs, which are acknowledged in the credits list; special thanks are due to Douglas W. Whitman for contributing numerous new images and to Robert E. Silberglied and Carl W. Rettenmeyer, both now deceased, whose pho- tographic talent continues to enhance this edition. We also are especially grateful to Joan W. Krispyn and Paul H. Matthews for numerous original drawings. Athens, Georgia Robert W. Matthews Janice R. Matthews Contents 1 The History and Scope of Insect Behavior .............. 1 1.1 Introduction ............................ 1 1.1.1 WhatIsInsectBehavior?................ 1 1.1.2 InsectBehavior’sBiologicalContext.......... 3 1.1.3 Historical Foundations ................. 6 1.1.4 TheWatershedYears.................. 9 1.1.5 TheRiseofEthology.................. 13 1.2 Conceptual Frameworks . .................. 15 1.2.1 EvolutionbyNaturalSelection............. 15 1.2.2 GeneticsandBehavior................. 17 1.2.3 The Comparative Approach . ............. 24 1.2.4 Conceptual Pitfalls . .................. 25 1.3 Phylogeny’s Role . ....................... 28 1.3.1 MicroevolutionandMacroevolution.......... 28 1.3.2 Phylogenetic Systematics and Cladistics ........ 33 1.3.3 Behavior and Speciation . ............. 36 1.4 Questions and Perspectives . .................. 38 1.4.1 Proximate and Ultimate Analyses ............ 40 1.4.2 Types of Approach . .................. 41 2 Programming and Integrating Behavior ............... 45 2.1 Introduction ............................ 45 2.2 Nerve-BasedCoordination.................... 46 2.2.1 TheInsectNervousSystem............... 47 2.2.2 Simple Reflexes and Repeated Motor Patterns . .... 50 2.2.3 EthologicalExplanations................ 56 2.3 LifeinaStimulus-RichWorld.................. 59 2.3.1 Sensory Tuning and Filtering . ............. 60 2.3.2 MemoryandLearning.................. 68 2.3.3 Insect Intelligence . .................. 81 2.4 Hormone-Based Coordination .................. 83 2.4.1 Clocks and Reiterative Rhythms ............ 86 2.4.2 GatedRhythms..................... 88 vii viii Contents 3 Spatial Adjustment ........................... 93 3.1 Introduction ............................ 93 3.2 Locomotion ............................ 94 3.2.1 Terrestrial and Aquatic Locomotion . ........ 96 3.2.2 Aerial Locomotion . .................. 98 3.3 Orientation............................ 100 3.3.1 Locomotory Responses ................. 101 3.3.2 Posture and Position . .................. 103 3.3.3 OrientationtoRadiantEnergy............. 105 3.3.4 Magnetic Field Orientation . ............. 108 3.3.5 Orientation to the Evidence of Others’ Presence .... 109 3.4 Thermoregulation......................... 110 3.4.1 Dormancy and Thermotolerance ............ 110 3.4.2 RegulationofHeatGain................ 113 3.4.3 Heat Production . .................. 114 3.5 Migration............................. 116 3.5.1 Seasonal Migration . .................. 117 3.5.2 Migration Under Ephemeral Conditions ........ 122 3.5.3 DispersalandNavigation................ 124 4 Foraging and Feeding ......................... 131 4.1 Introduction ............................ 131 4.1.1 Food Recognition and Acceptance . ........ 134 4.1.2 Regulation of Feeding .................. 137 4.2 ForagingStrategies........................ 140 4.2.1 Herbivory........................ 141 4.2.2 Active Search ...................... 141 4.2.3 Trapping and Ambush .................. 146 4.2.4 ParasitesandParasitoids................ 148 4.2.5 Theft and Kleptoparasitism . ............. 152 4.2.6 InsectAgriculture.................... 154 4.2.7 Nest Symbionts: Becoming a House Pet ........ 157 4.3 CoevolutionandtheArmsRace................. 164 4.3.1 Attack, Defense, and Counterattack . ........ 165 4.3.2 Employing Mercenaries for Protection . ........ 170 4.3.3 The Tommy Tucker Syndrome: Food in Return forServices....................... 173 4.4 Feeding as a Communal Activity ................. 177 4.4.1 Simple Groups and Feeding Aggregations . .... 177 4.4.2 Social Feeding Behaviors . ............. 181 5 Defense: A Survival Catalogue .................... 185 5.1 Introduction ............................ 185 5.2 Defense Messages . ....................... 186 5.3 Passive Messages . ....................... 187 5.3.1 Crypsis:‘I’mNotHere!’................ 187 Contents ix 5.3.2 SystemicDefenses:‘I’mNoxious!’........... 194 5.3.3 Mimicry: ‘I’m Someone Else!’ ............. 197 5.3.4 Aposematic Defenses: ‘I’m Dangerous!’ ........ 202 5.4 Active Messages . ....................... 204 5.4.1 Attack: ‘I’m Turning the Tables!’ ............ 204 5.4.2 Startle: ‘I’m Not What You Thought!’ . ........ 209 5.4.3 Group Actions: ‘We’re in This Together!’ . .... 213 6 Chemical Communication ....................... 217 6.1 Introduction ............................ 217 6.2 Mechanisms of Chemical Communication ............ 217 6.2.1 Odor Creation and Reception . ............. 218 6.2.2 Communication Through Chemistry . ........ 223 6.3 The Functions of Chemical Communication . ........ 227 6.3.1 Finding and Choosing Mates . ............. 228 6.3.2 Assembly,Aggregation,andRecruitment....... 231 6.3.3 AlarmandAlert..................... 240 6.3.4 Host-Marking...................... 242 6.3.5 Recognition ....................... 246 6.4 The Information Content of Pheromones ............ 249 6.4.1 Physiological Adjustments:
Recommended publications
  • Sharon J. Collman WSU Snohomish County Extension Green Gardening Workshop October 21, 2015 Definition
    Sharon J. Collman WSU Snohomish County Extension Green Gardening Workshop October 21, 2015 Definition AKA exotic, alien, non-native, introduced, non-indigenous, or foreign sp. National Invasive Species Council definition: (1) “a non-native (alien) to the ecosystem” (2) “a species likely to cause economic or harm to human health or environment” Not all invasive species are foreign origin (Spartina, bullfrog) Not all foreign species are invasive (Most US ag species are not native) Definition increasingly includes exotic diseases (West Nile virus, anthrax etc.) Can include genetically modified/ engineered and transgenic organisms Executive Order 13112 (1999) Directed Federal agencies to make IS a priority, and: “Identify any actions which could affect the status of invasive species; use their respective programs & authorities to prevent introductions; detect & respond rapidly to invasions; monitor populations restore native species & habitats in invaded ecosystems conduct research; and promote public education.” Not authorize, fund, or carry out actions that cause/promote IS intro/spread Political, Social, Habitat, Ecological, Environmental, Economic, Health, Trade & Commerce, & Climate Change Considerations Historical Perspective Native Americans – Early explorers – Plant explorers in Europe Pioneers moving across the US Food - Plants – Stored products – Crops – renegade seed Animals – Insects – ants, slugs Travelers – gardeners exchanging plants with friends Invasive Species… …can also be moved by • Household goods • Vehicles
    [Show full text]
  • Evolution of Insect Color Vision: from Spectral Sensitivity to Visual Ecology
    EN66CH23_vanderKooi ARjats.cls September 16, 2020 15:11 Annual Review of Entomology Evolution of Insect Color Vision: From Spectral Sensitivity to Visual Ecology Casper J. van der Kooi,1 Doekele G. Stavenga,1 Kentaro Arikawa,2 Gregor Belušic,ˇ 3 and Almut Kelber4 1Faculty of Science and Engineering, University of Groningen, 9700 Groningen, The Netherlands; email: [email protected] 2Department of Evolutionary Studies of Biosystems, SOKENDAI Graduate University for Advanced Studies, Kanagawa 240-0193, Japan 3Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; email: [email protected] 4Lund Vision Group, Department of Biology, University of Lund, 22362 Lund, Sweden; email: [email protected] Annu. Rev. Entomol. 2021. 66:23.1–23.28 Keywords The Annual Review of Entomology is online at photoreceptor, compound eye, pigment, visual pigment, behavior, opsin, ento.annualreviews.org anatomy https://doi.org/10.1146/annurev-ento-061720- 071644 Abstract Annu. Rev. Entomol. 2021.66. Downloaded from www.annualreviews.org Copyright © 2021 by Annual Reviews. Color vision is widespread among insects but varies among species, depend- All rights reserved ing on the spectral sensitivities and interplay of the participating photore- Access provided by University of New South Wales on 09/26/20. For personal use only. ceptors. The spectral sensitivity of a photoreceptor is principally determined by the absorption spectrum of the expressed visual pigment, but it can be modified by various optical and electrophysiological factors. For example, screening and filtering pigments, rhabdom waveguide properties, retinal structure, and neural processing all influence the perceived color signal.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses The feeding ecology of certain larvae in the genus tipula (Tipulidae, Diptera), with special reference to their utilisation of Bryophytes Todd, Catherine Mary How to cite: Todd, Catherine Mary (1993) The feeding ecology of certain larvae in the genus tipula (Tipulidae, Diptera), with special reference to their utilisation of Bryophytes, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5699/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 THE FEEDING ECOLOGY OF CERTAIN LARVAE IN THE GENUS TIPULA (TIPULIDAE, DIPTERA), WITH SPECIAL REFERENCE TO THEIR UTILISATION OF BRYOPHYTES Catherine Mary Todd B.Sc. (London), M.Sc. (Durham) The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. A thesis presented in candidature for the degree of Doctor of Philosophy in the University of Durham, 1993 FEB t99^ Abstract Bryophytes are rarely used as a food source by any animal species, but the genus Tipula (Diptera, Tipulidae) contains some of the few insect species able to feed, and complete their life-cycle, on bryophytes.
    [Show full text]
  • Diptera, Diopsidae) in Sri Lanka with Descriptions of Two New Species and a Review of the Other Stalk-Eyed Flies from the Island
    ZooKeys 946: 113–151 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.946.53108 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research A revision of the genus Teleopsis Rondani (Diptera, Diopsidae) in Sri Lanka with descriptions of two new species and a review of the other stalk-eyed flies from the island Hans R. Feijen1, Cobi Feijen1 1 Naturalis Biodiversity Center, P. O. Box 9517, 2300 RA Leiden, The Netherlands Corresponding author: Hans R. Feijen ([email protected]) Academic editor: R. Meier | Received 10 April 2020 | Accepted 27 May 2020 | Published 6 July 2020 http://zoobank.org/CFC2300D-4E2C-44BF-B2A4-E11E406B5A0F Citation: Feijen HR, Feijen C (2020) A revision of the genus Teleopsis Rondani (Diptera, Diopsidae) in Sri Lanka with descriptions of two new species and a review of the other stalk-eyed flies from the island. ZooKeys 946: 113–151. https://doi.org/10.3897/zookeys.946.53108 Abstract The literature on Sri Lankan Diopsidae is reviewed. Eight Diopsidae are now known to occur in Sri Lanka, five species in the genusTeleopsis and one species each in the genera Sphyracephala, Diopsis, and Cyrtodiopsis. The presence of Cyrtodiopsis requires confirmation to exclude the possibility of mislabelling. All five Teleopsis species are endemic, as are the Diopsis species and probably the Cyrtodiopsis species. Only Sphyracephala bipunctipennis Senior-White has a larger distribution as it also occurs in India. A key is pre- sented for the Diopsidae of Sri Lanka. Three Teleopsis species were already known to occur in Sri Lanka: T. ferruginea Röder, T.
    [Show full text]
  • Minnesota's Top 124 Terrestrial Invasive Plants and Pests
    Photo by RichardhdWebbWebb 0LQQHVRWD V7RS 7HUUHVWULDO,QYDVLYH 3ODQWVDQG3HVWV 3ULRULWLHVIRU5HVHDUFK Sciencebased solutions to protect Minnesota’s prairies, forests, wetlands, and agricultural resources Contents I. Introduction .................................................................................................................................. 1 II. Prioritization Panel members ....................................................................................................... 4 III. Seventeen criteria, and their relative importance, to assess the threat a terrestrial invasive species poses to Minnesota ...................................................................................................................... 5 IV. Prioritized list of terrestrial invasive insects ................................................................................. 6 V. Prioritized list of terrestrial invasive plant pathogens .................................................................. 7 VI. Prioritized list of plants (weeds) ................................................................................................... 8 VII. Terrestrial invasive insects (alphabetically by common name): criteria ratings to determine threat to Minnesota. .................................................................................................................................... 9 VIII. Terrestrial invasive pathogens (alphabetically by disease among bacteria, fungi, nematodes, oomycetes, parasitic plants, and viruses): criteria ratings
    [Show full text]
  • The Craneflies of Sardinia ( Diptera: Tipulidae)*
    ConserVaZione habitat inVertebrati 5: 641–658 (2011) CnbfVr The Cranefl ies of Sardinia ( Diptera: Tipulidae)* Pjotr OOSTER BROEK Sixhavenweg 25, 1021 HG Amsterdam, The Netherlands. E-mail: [email protected] *In: Nardi G., Whitmore D., Bardiani M., Birtele D., Mason F., Spada L. & Cerretti P. (eds), Biodiversity of Marganai and Montimannu (Sardinia). Research in the framework of the ICP Forests network. Conservazione Habitat Invertebrati, 5: 641–658. ABSTRACT A review is presented of the 31 Tipulidae species known from Sardinia. The paper includes records from the literature, collections and recent collect- ing. The Tipulidae of Sardinia can be divided into two groups of about equal size: one group of species endemic or subendemic to geographic Italy, and another group with species that are more widespread. About 10% of the species are strictly endemic of the island, while 23% are endemic to Sardinia and Corsica. Key words: Tipulidae, cranefl ies, Sardinia, Italy, endemism. RIASSUNTO I Tipulidi della Sardegna (Diptera: Tipulidae) È fornita una rassegna delle 31 specie di Tipulidae note della Sardegna. Il lavoro include dati di letteratura, museali e di recenti raccolte. I Tipulidae della Sardegna possono essere divisi in due gruppi, circa della stessa dimensione: uno comprende specie endemiche o subendemiche dell'Italia geografi ca, l'altro comprende specie che sono più ampiamente diffuse. Circa il 10% delle specie è strettamente endemico dell'isola e il 23% è endemico di Sardegna e Corsica. INTRODUCTION The larvae feed on a variety of material such as de- caying plant and animal matter, mosses and algae. Tipulidae are medium- to large-sized, slender-bodied A few species, especially in Tipula (Tipula Linnaeus, nematocerous Diptera, and include some of the larg- 1758) and Nephrotoma Meigen, 1803, are destructive est forms among the Nematocera (body length up to feeders on pasture grasses, seedlings and crops and 60 mm, wing length up to 40 mm).
    [Show full text]
  • Sequential Analysis of Aggressive Interactions in the Stalk-Eyed Fly Teleopsis Dalmanni
    Behav Ecol Sociobiol (2011) 65:369–379 DOI 10.1007/s00265-010-1054-5 ORIGINAL PAPER Sequential analysis of aggressive interactions in the stalk-eyed fly Teleopsis dalmanni Alison R. Egge & Yoni Brandt & John G. Swallow Received: 13 May 2010 /Revised: 23 August 2010 /Accepted: 24 August 2010 /Published online: 5 September 2010 # Springer-Verlag 2010 Abstract Understanding the mechanisms and determinants with no de-escalation, behavioral mismatching, and behav- of conflict resolution is of great theoretical and practical iors which include physical contact but no injuries. importance because the outcome of contests between males over limited resources such as mates, territories, and food Keywords Conflict resolution . Assessment . Aggression . has profound fitness consequences. Despite the large Stalk-eyed fly. Sequential analysis literature on the theory of conflict resolution, relatively few empirical studies explicitly test predictions related to contest structure for these models. In sexually dimorphic Introduction species of stalk-eyed flies (Diopsidae), males engage in characteristic aggressive interactions over both females and In many animal species, individuals fight over access to food resources. We used sequential analysis of aggressive resources, such as mates and food (Huntingford and Turner interactions between dyads of male stalk-eyed flies to 1987). Ritualized activities and specialized structures are investigate patterns of escalation, behavioral matching, and often used during these aggressive encounters (Emlen physical contact in order to distinguish between three 2008; Geist 1966), but there is still a great deal of debate common models of conflict resolution: the sequential about the precise role these activities play in determining assessment model, the cumulative assessment model, and the course and outcome of animal contests (Briffa and the energetic war of attrition.
    [Show full text]
  • F. Christian Thompson Neal L. Evenhuis and Curtis W. Sabrosky Bibliography of the Family-Group Names of Diptera
    F. Christian Thompson Neal L. Evenhuis and Curtis W. Sabrosky Bibliography of the Family-Group Names of Diptera Bibliography Thompson, F. C, Evenhuis, N. L. & Sabrosky, C. W. The following bibliography gives full references to 2,982 works cited in the catalog as well as additional ones cited within the bibliography. A concerted effort was made to examine as many of the cited references as possible in order to ensure accurate citation of authorship, date, title, and pagination. References are listed alphabetically by author and chronologically for multiple articles with the same authorship. In cases where more than one article was published by an author(s) in a particular year, a suffix letter follows the year (letters are listed alphabetically according to publication chronology). Authors' names: Names of authors are cited in the bibliography the same as they are in the text for proper association of literature citations with entries in the catalog. Because of the differing treatments of names, especially those containing articles such as "de," "del," "van," "Le," etc., these names are cross-indexed in the bibliography under the various ways in which they may be treated elsewhere. For Russian and other names in Cyrillic and other non-Latin character sets, we follow the spelling used by the authors themselves. Dates of publication: Dating of these works was obtained through various methods in order to obtain as accurate a date of publication as possible for purposes of priority in nomenclature. Dates found in the original works or by outside evidence are placed in brackets after the literature citation.
    [Show full text]
  • Download (8MB)
    https://theses.gla.ac.uk/ Theses Digitisation: https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ This is a digitised version of the original print thesis. Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] Studies on the Biology of Tipula paludosa Meigen (Diptera: Tipulidae) with special reference to Mortality Factors NURI MILAD BARBASH, M.A. (W. Michigan) A thesis submitted for the degree of Doctor of Philosophy in the Faculty of Science at the University of Glasgow Department of Zoology University of Glasgow January 1988 ProQuest Number: 10997921 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10997921 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.
    [Show full text]
  • Aquatic Insects: Holometabola – Diptera, Suborder Nematocera
    Glime, J. M. 2017. Aquatic Insects: Holometabola – Diptera, Suborder Nematocera. Chapt. 11-13a. In: Glime, J. M. 11-13a-1 Bryophyte Ecology. Volume 2. Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 11-13a AQUATIC INSECTS: HOLOMETABOLA – DIPTERA, SUBORDER NEMATOCERA TABLE OF CONTENTS DIPTERA – Flies .......................................................................................................................................... 11-13a-2 Suborder Nematocera ............................................................................................................................. 11-13a-5 Nymphomyiidae .............................................................................................................................. 11-13a-6 Cylindrotomidae – Long-bodied Craneflies .................................................................................... 11-13a-6 Limoniidae – Limoniid Craneflies .................................................................................................. 11-13a-8 Pediciidae – Hairy-eyed Craneflies ............................................................................................... 11-13a-11 Tipulidae – Craneflies ................................................................................................................... 11-13a-11 Anisopodidae – Wood Gnats, Window Gnats .............................................................................
    [Show full text]
  • Stable Structural Color Patterns Displayed on Transparent Insect Wings
    Stable structural color patterns displayed on transparent insect wings Ekaterina Shevtsovaa,1, Christer Hanssona,b,1, Daniel H. Janzenc,1, and Jostein Kjærandsend,1 aDepartment of Biology, Lund University, Sölvegatan 35, SE-22362 Lund, Sweden; bScientific Associate of the Entomology Department, Natural History Museum, London SW7 5BD, United Kingdom; cDepartment of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018; and dDepartment of Biology, Museum of Zoology, Lund University, Helgonavägen 3, SE-22362 Lund, Sweden Contributed by Daniel H. Janzen, November 24, 2010 (sent for review October 5, 2010) Color patterns play central roles in the behavior of insects, and are and F). In laboratory conditions most wings are studied against a important traits for taxonomic studies. Here we report striking and white background (Fig. 1 G, H, and J), or the wings are embedded stable structural color patterns—wing interference patterns (WIPs) in a medium with a refractive index close to that of chitin (e.g., —in the transparent wings of small Hymenoptera and Diptera, ref. 19). In both cases the color reflections will be faint or in- patterns that have been largely overlooked by biologists. These ex- visible. tremely thin wings reflect vivid color patterns caused by thin film Insects are an exceedingly diverse and ancient group and interference. The visibility of these patterns is affected by the way their signal-receiver architecture of thin membranous wings the insects display their wings against various backgrounds with and color vision was apparently in place before their huge radia- different light properties. The specific color sequence displayed tion (20–22). The evolution of functional wings (Pterygota) that lacks pure red and matches the color vision of most insects, strongly can be freely operated in multidirections (Neoptera), coupled suggesting that the biological significance of WIPs lies in visual with small body size, has long been viewed as associated with their signaling.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses Biological studies on molophilus ater meigen: ( diptera : tipulidae ) Malcolm J. Hadley, How to cite: Malcolm J. Hadley, (1966) Biological studies on molophilus ater meigen: ( diptera : tipulidae ), Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8570/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 BIOLOGICAL STUDIES ON MOLOPHILUS ATER MEIGEN ( DIPTERA : TIPULIDAE ) by Malcolm J. Hadley, B.Sc, ( Hatfield College ) being a thesis presented in candidature for the degree of Doctor of Philosophy in the University of Durham, 1966, ACKNOWLEDGMENTS I would like to express my sincere gratitude to Dr, J,C, Coulson for his direction and criticism throughout the study, and to Professor D, Barker for providing facilities in the Department of Zoology, Durham, I would also like to thank : Colleagues and friends of the Department of Zoology for much helpful discussion and advice» The Staff of Moor House Research Station for their unfailing assistance and hospitality, and particularly Mr, D.
    [Show full text]