Angle of Elevation Word Problems (AOEWP) Draw a Diagram, Write an Equation, Solve, and Put Your Answer in a Complete Sentence

Total Page:16

File Type:pdf, Size:1020Kb

Angle of Elevation Word Problems (AOEWP) Draw a Diagram, Write an Equation, Solve, and Put Your Answer in a Complete Sentence Geometry Homework ©d \2g0b1n5a KK`uutxaL _SeoVf`tFwuabrGec eLMLlCH.r z GAYlRlU crfisgIhxtfsR VrNeNsGeKrvvZe`d]. Angle of Elevation Word Problems (AOEWP) Draw a diagram, write an equation, solve, and put your answer in a complete sentence. Round all answers to the nearest tenth or nearest degree. 1) A boat is 600 metres from the base of a cliff. Erika, who is sitting in the boat, notices that the angle of elevation to the top of the cliff is 32°. How high is the cliff? 2) Dash sees a rocket at an angle of elevation of 11 degrees. If Dash is located 5 miles from the rocket's launchpad, how high is the rocket? 3) A ramp is to be placed from a loading platform onto the back of a truck. The truck can get no closer 1 than 3 feet to the platform. The truck bed is 1 feet higher than the loading platform. Find the 2 angle of elevation from the platform to the truck bed. 4) A jet is flying at an altitude of 30,000 feet. An air traffic controller measures the angle of elevation to the plane to be 17°. Find the horizontal distance of the plane from the airport. 5) You are driving along a flat road approaching some mountains. As you pass a sign that informs ou that the mountain is 4 miles away, the angle of elevation to the highest peak you can see is 2°. What is the height of the peak? 6) Ashleigh went to Cape Canaveral to watch the space shuttle take off. The solid rocket boosters are ejected after the shuttle passses through the threshold of space. This is scheduled to accur when the shuttle reaches a height of 354,200 feet. If Ashleigh is 10 miles from the launchpad, at what angle will she have to look up to see the boosters ejected? 7) The height of a building is 250 feet. What is the angle of elevation from a point on the level ground 200 feet away from the building? 8) A 10 metre ladder is leaning against the side of a building. If the bottom of the ladder is 3 metres from the bottom of the building, find the angle of elevation the ladder makes with the building. 9) A kite string is 200 metres long. Find the height of the kite if the string makes an angle of 38° with the ground. 10) Cyndie is in a boat. The angle of elevation to the top of the cliff is 26°. If the cliff is 300 metres high, how far away from the base of the cliff is the boat? 11) A plane is flying at 6,000 metres. Erika sees the plane. If the angle of elevation from Erika's feet to the plane is 16°, how far is Erika from the plane? Worksheet by Kuta Software LLC ©l v2K0f1W5E SKhuptIau MSvoKfwtzwBakrreC SLfLiCa.x T VAJlWll BryiKgbhJtPsl IraexsDeOrUvSead-a1.b -m OMjaTdCek uwJistthf RI`nFfMiynmi]tPeJ NGoeCofmfeJt\rVye. 12) The angle of elevation from the bottom of the lift to the top of Snow Bowl is 33°. If a skier rides 1,000 feet on this lift to the top, what is the vertical distance between the bottom of the lift and the top? 13) How far from the vertical wall of a building is the base of a 30 foot ladder which makes a 75° angle with the ground? 14) The angle of elevation from an aircraft carrier to an approaching plane is 52°. If the plane is 700 feet above the level of the deck of the carrier, how far away is the carrier? 15) Kimi's kite has a string 40 feet long and is flying 27 feet above the ground. Find the angle of elevation of the kite. 16) An airplane passes directly over Crownpoint High School. A student at Crownpoin High School, which is 4.3 miles away, find the angle of elevation to be 19°. Find the altitude of the plane. 17) Jenn wants to measure the height of a tree. She walks exactly 125 feet from the base of the tree and looks up. The angle from the ground to the top of the tree is 33°. How tall is the tree? 18) A building is 50 feet high. At a distance away from the building, Erika notices that the angle of elevation to the top of the building is 41°. How far is Erika from the base of the building? 19) An airplane is flying at a height of 2 miles above the ground. The distance along the ground from the airplane to the airport is 5 miles. What is the angle of elevation from the airport to the airplane? 20) A bird sites on top of a telephone pole. Kimi is 40 feet from the base of the pole. If the angle of elevation from Kimi's feet to the top of the telephone pole is 28°, what is the height of the telephone pole? 21) A tree casts a shadow 21 metres long. The angle of elevation of the sun is 51°. What is the height of the tree? 22) You are flying a kite and have let out 80 m of string. The kite’s angle of elevation with the ground is 40°. If the string is stretched straight, how high is the kite above the ground? 23) A helicopter is hovering over a landing pad 100 metres from where you are standing. The helicopter’s angle of elevation with the ground is 12°. What is the altitude of the helicopter? 24) A 15 metre pole is leaning against a wall. The foot of the pole is 10 metres from the wall. Find the angle the pole makes with the ground. Worksheet by Kuta Software LLC ©\ t2t0e1M5\ CK^uFtjaK bSco^fKtTwNavrqeA RLcLyCB.z o aAMldlF arkiMgyhJtZsM qr^eusAeervvaeAd-f.2p -Z JMBaDdreg nwQiMthhx QIEngf[isndiYt[ee ]GJehoSmxeEtfrGyz. 25) A wire reaches from the top of a 120 metre television transmitter tower to the ground. The wire makes a 63° angle with the ground. Find the length of the wire. 26) An airplane climbs at an angle of 18° with the ground. Find the ground distance the plane travels as it moves 2500 metres through the air. 27) A wooden beam 24 feet long leans against a wall and makes an angle of 71° with the ground. How high up the wall does the beam reach? 28) A wire attached to the top of a pole reaches a stake in the ground 20 feet from the foot of the pole and makes an angle of 58° with the ground. Find the length of the wire. 29) A surveyor is 100 metres from a bridge. The angle of elevation to the top of the bridge is 35°. Find the height of the bridge. 30) A ladder with its foot on a horizontal flat surface rests against a wall. It makes an angle of 30° with the horizontal. The foot of the ladder is 41 feet from the base of the wall. Find the height of the point where the ladder touches the wall. Worksheet by Kuta Software LLC ©R E2e0b1v5c wKfuMttaJ [SFoZfWtvwgaErHeX ]L[LLCU.T ` BAFlZl] lrSifgch_t[sk ProeosPeOrvvyemdB-.3i Q- TMAaVdJe\ HwbiEtFh` kIYnqfxihnHiRt`ek aG\eiopmoeStjrSyn. Answers to Angle of Elevation Word Problems (AOEWP) 1) The cliff is approximately 374.9 metres high. 3) The angle of elevation is approximately 27 degrees. 5) The peak is approximately .1 miles high. 7) The angle of elevation is approximately 20 degrees. 9) The kite is flying at an approximate height of 123.1 metres. 11) Erika is approximately 21,770.7 metres from the plane. 13) The base of the ladder is approximately 7.8 feet from the base of the building. 15) The angle of elevation of Kimi's kite is approximately 42 egrees. 17) The height of the tree is approximately 68.1 feet. 19) The angle of elevation from the airport to the plane is approximately 22 degrees. 21) The height of the tree is approximately 59.6 metres. 23) The altitude of the helicopter is approximately 470.4 metres. 25) The length of the wire is approximately 134.7 metres. 27) The beam reaches approximately 22.7 feet up the wall. 29) The height of the bridge is approximately 70.0 metres. Worksheet by Kuta Software LLC ©m `2H0y1b5t IKouztja[ oSAoPfptswsaurgeW nLnLvCE.e f JAblxlf _rkiygqhRtCsW nrOeus]eVr[vGeldq.K -I4 bM- KaXdOej kwKiEtUhn qIRnyfwiDnWiqtjev pGBeXoAmxestYrAyl..
Recommended publications
  • Calculating Growing Degree Days by Jim Nugent District Horticulturist Michigan State University
    Calculating Growing Degree Days By Jim Nugent District Horticulturist Michigan State University Are you calculating degree day accumulations and finding your values don't match the values being reported by MSU or your neighbor's electronic data collection unit? There is a logical reason! Three different methods are used to calculate degree days; i.e., 1) Averaging Method; 2) Baskerville-Emin (BE) Method; and 3) Electronic Real-time Data Collection. All methods attempt to calculate the heat accumulation above a minimum threshold temperature, often referred to the base temperature. Once both the daily maximum and minimum temperatures get above the minimum threshold temperature, (i.e., base temperature of 42degrees, 50degrees or whatever other base temperature of interest) then all methods are fairly comparable. However, differences do occur and these are accentuated in an exceptionally long period of cool spring temperatures, such as we experienced this year. Let me briefly explain: 1. Averaging Method: Easy to calculate Degree Days(DD) = Average daily temp. - Base Temp. = (max. + min.) / 2 - Base temp. If answer is negative, assume 0. Example: Calculate DD Base 50 given 65 degrees max. and 40 degrees min. Avg. = (65 + 40) / 2 = 52.5 degrees DD base 50 = 52.5 - 50 = 2.5 degrees. But look what happens given a maximum of 60 degrees and a minimum of 35 degrees: Avg. = (60 + 35) / 2 = 47.5 DD base 50 = 47.5 - 50 = -2.5 = 0 degrees. The maximum temperature was higher than the base of 50° , but no degree days were accumulated. A grower called about the first of June reporting only about 40% of the DD50 that we have recorded.
    [Show full text]
  • Angles ANGLE Topics • Coterminal Angles • Defintion of an Angle
    Angles ANGLE Topics • Coterminal Angles • Defintion of an angle • Decimal degrees to degrees, minutes, seconds by hand using the TI-82 or TI-83 Plus • Degrees, seconds, minutes changed to decimal degree by hand using the TI-82 or TI-83 Plus • Standard position of an angle • Positive and Negative angles ___________________________________________________________________________ Definition: Angle An angle is created when a half-ray (the initial side of the angle) is drawn out of a single point (the vertex of the angle) and the ray is rotated around the point to another location (becoming the terminal side of the angle). An angle is created when a half-ray (initial side of angle) A: vertex point of angle is drawn out of a single point (vertex) AB: Initial side of angle. and the ray is rotated around the point to AC: Terminal side of angle another location (becoming the terminal side of the angle). Hence angle A is created (also called angle BAC) STANDARD POSITION An angle is in "standard position" when the vertex is at the origin and the initial side of the angle is along the positive x-axis. Recall: polynomials in algebra have a standard form (all the terms have to be listed with the term having the highest exponent first). In trigonometry, there is a standard position for angles. In this way, we are all talking about the same thing and are not trying to guess if your math solution and my math solution are the same. Not standard position. Not standard position. This IS standard position. Initial side not along Initial side along negative Initial side IS along the positive x-axis.
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • Applications of Geometry and Trigonometry
    P1: FXS/ABE P2: FXS 9780521740517c14.xml CUAU031-EVANS September 6, 2008 13:36 CHAPTER 14 MODULE 2 Applications of geometry and trigonometry How do we apply trigonometric techniques to problems involving angles of depression and elevation? How do we apply trigonometric techniques to problems involving bearings? How do we apply trigonometric techniques to three-dimensional problems? How do we draw and interpret contour maps? How do we draw and interpret scale drawings? 14.1 Angles of elevation and depression, bearings, and triangulation Angles of elevation and depression The angle of elevation is the angle The angle of depression is the angle between the horizontal and a between the horizontal and a direction below direction above the horizontal. the horizontal. eye level line of sight angle of depression line of sight eye level cliff angle of elevation SAMPLEboat Cambridge University Press • Uncorrected Sample pages • 978-0-521-61328-6 • 2008 © Jones, Evans, Lipson TI-Nspire & Casio ClassPad material in collaboration with Brown410 and McMenamin P1: FXS/ABE P2: FXS 9780521740517c14.xml CUAU031-EVANS September 6, 2008 13:36 Chapter 14 — Applications of geometry and trigonometry 411 Bearings The three-figure bearing (or compass bearing) is the direction measured clockwise from north. The bearing of A from O is 030◦. The bearing of C from O is 210◦. The bearing of B from O is 120◦. The bearing of D from O is 330◦. N D N A 30° 330° E 120° E W O 210° W O B C S S Example 1 Angle of depression The pilot of a helicopter flying at 400 m observes a small boat at an angle of depression of 1.2◦.
    [Show full text]
  • 1. What Is the Radian Measure of an Angle Whose Degree Measure Is 72◦ 180◦ 72◦ = Πradians Xradians Solving for X 72Π X = Radians 180 2Π X = Radians 5 Answer: B
    1. What is the radian measure of an angle whose degree measure is 72◦ 180◦ 72◦ = πradians xradians Solving for x 72π x = radians 180 2π x = radians 5 Answer: B 2. What is the length of AC? Using Pythagorean Theorem: 162 + b2 = 202 256 + b2 = 400 b2 = 144 b = 12 Answer: E 3. one solution to z2 + 64 = 0 is z2 + 64 = 0 z2 = −64 p p z2 = −64 Since there is a negative under the radical, we get imaginary roots. Thus z = −8i or z = +8i Answer: A 4. Simplifying: p 36x10y12 − 36y12 = p36y12 (x10 − 1) p = 36y12p(x10 − 1) p = 6y6 x10 − 1 Answer: C 1 5. Simplifying: 1 1 1 1 1 −3 9 6 3 −3 9 6 27a b c = 27 3 a 3 b 3 c 3 = 3a−1b3c2 3b3c2 = a Answer: C 6. Solving for x: p 8 + x + 14 = 12 p x + 14 = 12 − 8 p x + 14 = 4 p 2 x + 14 = 42 x + 14 = 16 x = 16 − 14 x = 2 Answer: C 7. Simplify x2 − 9 (x + 1)2 2x − 6 × ÷ x2 − 1 (2x + 3)(x + 3) 1 − x Rewrite as a multiplication. x2 − 9 (x + 1)2 1 − x × x2 − 1 (2x + 3)(x + 3) 2x − 6 Simplify each polynomial (x − 3)(x + 3) (x + 1)(x + 1) 1 − x × (x − 1)(x + 1) (2x + 3)(x + 3) 2(x − 3) Canceling like terms (x + 1) − 2(2x + 3) Answer: C 2 8. Simplifying: 1 11 x−5 11 + 2 2 + 2 x−5 (x−5) = (x−5) (x−5) x + 1 x + 1 x−5+11 2 = (x−5) x + 1 x+6 2 = (x−5) x + 1 x + 6 = (x − 5)2(x + 1) Answer: B 9.
    [Show full text]
  • 4.1 – Radian and Degree Measure
    4.1 { Radian and Degree Measure Accelerated Pre-Calculus Mr. Niedert Accelerated Pre-Calculus 4.1 { Radian and Degree Measure Mr. Niedert 1 / 27 2 Radian Measure 3 Degree Measure 4 Applications 4.1 { Radian and Degree Measure 1 Angles Accelerated Pre-Calculus 4.1 { Radian and Degree Measure Mr. Niedert 2 / 27 3 Degree Measure 4 Applications 4.1 { Radian and Degree Measure 1 Angles 2 Radian Measure Accelerated Pre-Calculus 4.1 { Radian and Degree Measure Mr. Niedert 2 / 27 4 Applications 4.1 { Radian and Degree Measure 1 Angles 2 Radian Measure 3 Degree Measure Accelerated Pre-Calculus 4.1 { Radian and Degree Measure Mr. Niedert 2 / 27 4.1 { Radian and Degree Measure 1 Angles 2 Radian Measure 3 Degree Measure 4 Applications Accelerated Pre-Calculus 4.1 { Radian and Degree Measure Mr. Niedert 2 / 27 The starting position of the ray is the initial side of the angle. The position after the rotation is the terminal side of the angle. The vertex of the angle is the endpoint of the ray. Angles An angle is determine by rotating a ray about it endpoint. Accelerated Pre-Calculus 4.1 { Radian and Degree Measure Mr. Niedert 3 / 27 The position after the rotation is the terminal side of the angle. The vertex of the angle is the endpoint of the ray. Angles An angle is determine by rotating a ray about it endpoint. The starting position of the ray is the initial side of the angle. Accelerated Pre-Calculus 4.1 { Radian and Degree Measure Mr. Niedert 3 / 27 The vertex of the angle is the endpoint of the ray.
    [Show full text]
  • Relationships of the SI Derived Units with Special Names and Symbols and the SI Base Units
    Relationships of the SI derived units with special names and symbols and the SI base units Derived units SI BASE UNITS without special SI DERIVED UNITS WITH SPECIAL NAMES AND SYMBOLS names Solid lines indicate multiplication, broken lines indicate division kilogram kg newton (kg·m/s2) pascal (N/m2) gray (J/kg) sievert (J/kg) 3 N Pa Gy Sv MASS m FORCE PRESSURE, ABSORBED DOSE VOLUME STRESS DOSE EQUIVALENT meter m 2 m joule (N·m) watt (J/s) becquerel (1/s) hertz (1/s) LENGTH J W Bq Hz AREA ENERGY, WORK, POWER, ACTIVITY FREQUENCY second QUANTITY OF HEAT HEAT FLOW RATE (OF A RADIONUCLIDE) s m/s TIME VELOCITY katal (mol/s) weber (V·s) henry (Wb/A) tesla (Wb/m2) kat Wb H T 2 mole m/s CATALYTIC MAGNETIC INDUCTANCE MAGNETIC mol ACTIVITY FLUX FLUX DENSITY ACCELERATION AMOUNT OF SUBSTANCE coulomb (A·s) volt (W/A) C V ampere A ELECTRIC POTENTIAL, CHARGE ELECTROMOTIVE ELECTRIC CURRENT FORCE degree (K) farad (C/V) ohm (V/A) siemens (1/W) kelvin Celsius °C F W S K CELSIUS CAPACITANCE RESISTANCE CONDUCTANCE THERMODYNAMIC TEMPERATURE TEMPERATURE t/°C = T /K – 273.15 candela 2 steradian radian cd lux (lm/m ) lumen (cd·sr) 2 2 (m/m = 1) lx lm sr (m /m = 1) rad LUMINOUS INTENSITY ILLUMINANCE LUMINOUS SOLID ANGLE PLANE ANGLE FLUX The diagram above shows graphically how the 22 SI derived units with special names and symbols are related to the seven SI base units. In the first column, the symbols of the SI base units are shown in rectangles, with the name of the unit shown toward the upper left of the rectangle and the name of the associated base quantity shown in italic type below the rectangle.
    [Show full text]
  • The International System of Units (SI)
    NAT'L INST. OF STAND & TECH NIST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce NIST Special Publication 330 2001 Edition The International System of Units (SI) 4. Barry N. Taylor, Editor r A o o L57 330 2oOI rhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303.
    [Show full text]
  • 1.4.3 SI Derived Units with Special Names and Symbols
    1.4.3 SI derived units with special names and symbols Physical quantity Name of Symbol for Expression in terms SI unit SI unit of SI base units frequency1 hertz Hz s-1 force newton N m kg s-2 pressure, stress pascal Pa N m-2 = m-1 kg s-2 energy, work, heat joule J N m = m2 kg s-2 power, radiant flux watt W J s-1 = m2 kg s-3 electric charge coulomb C A s electric potential, volt V J C-1 = m2 kg s-3 A-1 electromotive force electric resistance ohm Ω V A-1 = m2 kg s-3 A-2 electric conductance siemens S Ω-1 = m-2 kg-1 s3 A2 electric capacitance farad F C V-1 = m-2 kg-1 s4 A2 magnetic flux density tesla T V s m-2 = kg s-2 A-1 magnetic flux weber Wb V s = m2 kg s-2 A-1 inductance henry H V A-1 s = m2 kg s-2 A-2 Celsius temperature2 degree Celsius °C K luminous flux lumen lm cd sr illuminance lux lx cd sr m-2 (1) For radial (angular) frequency and for angular velocity the unit rad s-1, or simply s-1, should be used, and this may not be simplified to Hz. The unit Hz should be used only for frequency in the sense of cycles per second. (2) The Celsius temperature θ is defined by the equation θ/°C = T/K - 273.15 The SI unit of Celsius temperature is the degree Celsius, °C, which is equal to the Kelvin, K.
    [Show full text]
  • Angles and Degree Measures an Angle May Be Generated by Rotating One of Two Rays That Share a Fixed Endpoint, a Vertex
    Angles and Degree Measures An angle may be generated by rotating one of two rays that share a fixed endpoint, a vertex. Terminal Side Vertex Initial Side The measure of an angle provides us with information concerning the direction of the rotation and the amount of the rotation necessary to move from the initial side of the angle to the terminal side. Positive Angle Negative angle if the rotation is in a counterclockwise direction if the rotation is in a clockwise direction Standard Position Terminal Side 45 Vertex Initial Side 45 Quadrantal Angle is an angle with a terminal side coincided with one of the axis. 0 or -360 Quadrantal Angle is an angle with a terminal side coincided with one of the axis. 90 or -270 Quadrant I Quadrantal Angle is an angle with a terminal side coincided with one of the axis. Quadrant II 0 180 or -180 Quadrantal Angle is an angle with a terminal side coincided with one of the axis. Quadrant III 270 or -90 Quadrantal Angle is an angle with a terminal side coincided with one of the axis. 360 or 0 Quadrant VI Degree measurement came from the Babylonian culture. They used a numerical system based on 60 rather than 10. They assumed that the measure of each angle of an equilateral triangle is 60 The 1/60 of the measure of each angle of an equilateral triangle is 1degree The 1/60 of 1degree is 1’( minute). The 1/60 of 1’ is 1”(second) Example 1 GEOGRAPHY Geographic locations are typically expressed in terms of latitude and longitude.
    [Show full text]
  • The International System of Units (SI) - Conversion Factors For
    NIST Special Publication 1038 The International System of Units (SI) – Conversion Factors for General Use Kenneth Butcher Linda Crown Elizabeth J. Gentry Weights and Measures Division Technology Services NIST Special Publication 1038 The International System of Units (SI) - Conversion Factors for General Use Editors: Kenneth S. Butcher Linda D. Crown Elizabeth J. Gentry Weights and Measures Division Carol Hockert, Chief Weights and Measures Division Technology Services National Institute of Standards and Technology May 2006 U.S. Department of Commerce Carlo M. Gutierrez, Secretary Technology Administration Robert Cresanti, Under Secretary of Commerce for Technology National Institute of Standards and Technology William Jeffrey, Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. National Institute of Standards and Technology Special Publications 1038 Natl. Inst. Stand. Technol. Spec. Pub. 1038, 24 pages (May 2006) Available through NIST Weights and Measures Division STOP 2600 Gaithersburg, MD 20899-2600 Phone: (301) 975-4004 — Fax: (301) 926-0647 Internet: www.nist.gov/owm or www.nist.gov/metric TABLE OF CONTENTS FOREWORD.................................................................................................................................................................v
    [Show full text]
  • The Case of the International Bureau of Weights and Measures (BIPM) the Case of The
    International Regulatory Co-operation and International Regulatory Co-operation International Organisations and International Organisations The Case of the International Bureau of Weights and Measures (BIPM) The Case of the The International Bureau of Weights and Measures (BIPM) is the intergovernmental organisation through which Member States act together on matters related to measurement International Bureau of science and measurement standards. Together with the wider metrology community, as well as other strategic partners, the BIPM ensures that the measurement results from Weights and Measures different states are comparable, mutually trusted and accepted. The BIPM provides a forum for the creation and worldwide adoption of common rules of measurement. The international system of measurement that the BIPM co-ordinates worldwide underpins the (BIPM) benefits of international regulatory co-operation (IRC): increased trade and investment flows and additional GDP points; gains in administrative efficiency and cost savings for governments, businesses and citizens; and societal benefits such as improved safety and strengthened environmental sustainability. Accurate measurements are specifically necessary to regulators and legislators for establishing and enforcing regulatory limits. This case study describes how the BIPM supports international regulatory co-operation (IRC) – its institutional context, its main characteristics, its impacts, successes and challenges. Contents The context of the regulatory co-operation Main characteristics of regulatory co-operation in the context of the BIPM Quality assurance, monitoring and evaluation mechanisms Assessment of the impact and successes of regulatory co-operation through the BIPM www.oecd.org/gov/regulatory-policy/irc.htm International Regulatory Co-operation and International Organisations The Case of the International Bureau of Weights and Measures (BIPM) By Juan (Ada) Cai PUBE 2 This work is published under the responsibility of the OECD Secretariat and the BIPM.
    [Show full text]