Presentation.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Presentation.Pdf TIII / Physics Majoron Dark Matter and Constraints on the Majoron-Neutrino Coupling Tim Brune The quest for new physics December 2018 Tim Brune, December 2018 TIII / Singlet Majoron Model Physics Motivation What it is the origin of (small) neutrino masses? What is dark matter? The Majoron Model Chikashige, Mohapatra, and Peccei D. 1981 Majoron: Goldstone boson from spontaneous breaking of global U(1)B−L Small left-handed neutrino masses via Seesaw mechanism Majoron mass ! dark matter? Constraints for mJ = 0: Kachelriess, Tomas, and Valle. 2000, Tomas, Pas,¨ and Valle. 2001 Constraints on non-standard Majoron models: Cepedello et al. 2018 Constraints on Majoron-Neutrino couplings from SN data and 0νββJ for mJ 6= 0? Brune and Pas.¨ 2018. eprint: 1808.08158 Tim Brune, December 2018 1/10 TIII / Singlet Majoron Model Physics Symmetry Breaking Add three right-handed neutrinos NR and a singlet complex scalar σ ; L(σ) = −2, to SM: 1 L = −LyN¯ H − N¯ c λN σ + h.c. R 2 R R 1 SSB at Seesaw-scale f : σ = p (f + σ0 + iJ) 2 ¯ 1 ¯ c i ¯ c L ⊃ −LyNR H − p N λNR f − p N λNR J +h.c. 2 2 R 2 2 R | {z } | {z } mass term: M = pλf interaction R 2 SSB at electroweak scale v 1 ¯ c i ¯ c L ⊃ − ν¯LyNR v − p NR λNR f − p NR λNR J +h.c. | {z } 2 2 2 2 yv mass term: mD = p | {z } | {z } 2 mass term: M = pλf interaction R 2 Pilaftsis. 1994 Tim Brune, December 2018 2/10 TIII / Singlet Majoron Model Physics Seesaw Mechanism λf yv Majorana mass MR = p , Dirac mass mD = p 2 2 Neutrino masses in the Seesaw limit MR mD T mDmD mheavy ≈ MR mlight ≈ − MR MR Couplings of the Majoron to light neutrinos 3 light X LJ = gii ν¯i γ5νi J i Minkowski. 1977 Tim Brune, December 2018 3/10 TIII / Dark Matter Physics Majoron Dark Matter via Freeze-In 2 2 Explicit U(1)B−L breaking term ! mJ = λhv 2 y 1 2 2 h LH = λhσ H H + h.c. ⊃ − mJ J 1 + |{z} 2 v SSB Majoron relic density 1:09 × 1027 m Γ(h ! JJ) Ω h2 ≈ 2 J : J s p ρ 2 g∗ g∗ mh Majoron DM: mJ ≈ 2:8 MeV 9 For f ≈ 10 GeV: τJ > τuniverse ! stable Hall et al. 2010 Frigerio, Hambye, and Masso. 2011 Tim Brune, December 2018 4/10 TIII / Constraints Physics Supernova Constraints Luminosity Constraints In the SN core: neutrinos acquire effective masses due to interactions with the Model predictions are compatible with background medium ) νν ! J is allowed neutrino signal from SN1987A Neutrinos carry away most of the erg binding energy E ≈ 3 · 1053 Deleptonization Constraints B s Successful SN explosion requires Majoron carries away binding energy via Y = Y + Y ≥ 0:375 L e νe νν ! J ν ν ,α ! J lower Y , α = µ, τ Agreement with signal: Majoron e e L tot luminosity LJ < Lν Bruenn. 1985 Similar aprroach:Heurtier and Zhang. 2017 Constraints on g(mJ ) Data: Kamiokande-II. 1987, IMB. 1987, Baksan. 1987 Tim Brune, December 2018 5/10 TIII / Constraints Physics Supernova Constraints 10-5 DM α = µ, τ © 10-7 gaa Luminosity È -9 ab 10 Èg ÈDeleptonization g ee È 10-11 ÈgaeÈ Luminosity Ègee È Luminosity 10-13 1 10 100 1000 È È mJ MeV Brune and Pas.¨ 2018, see also Heurtier and Zhang. 2017 Data: Kamiokande-II. 1987, IMB. 1987, Baksan. 1987, Bruenn. 1985 Tim Brune, December 2018 6/10 TIII / Constraints Physics a.u. 1.2 0νββJ Constraints 0nbbJ, mJ = 0 1.0 0nbbJ, mJ = me 0.8 J J 2 J 2 0nbbJ, mJ = 2me Γ = G (Q; Z ; mJ )jgee(mJ )j jM j 0.6 0nbbJ, mJ = 3me 0nbbJ, m = 4m dL uL 0.4 J e W 2nbb 0.2 e− T 0.0 0.5 1.0 1.5 2.0 2.5 3.0 MeV ν J G mJ G 0 e− 1.0H L W H L u 48 dL L 0.8 Ca 136Xe 0.6 Georgi, Glashow, and Nussinov. 1981 100Mo 0.4 150Nd Constraints: 0.2 Reduced signal-to-background ratio mJ Decreasing phase space: 1 2 3 4 MeV GJ (m ) ! 0 as m ! Q J J 48 136 100 NEMO-3. Ca. 2016, EXO-200. Xe. 2014, NEMO-3. Mo. 2014, see also Blum, Nir, and Shavit. 2018 150 NEMO-3. Nd. 2016 Tim Brune, December 2018 7/10 TIII / Constraints Physics 0νββJ Constraints gee DM 0.1 È È 48 0.01 Ca 136Xe 0.001 100Mo 150 10-4 Nd 10-5 DM mJ 10-6 0.2 0.5 1.0 2.0 MeV Brune and Pas.¨ 2018, see also Blum, Nir, and Shavit. 2018 Data: NEMO-3. 48Ca. 2016, EXO-200. 136Xe. 2014, NEMO-3. 100Mo. 2014, NEMO-3. 150Nd. 2016 Tim Brune, December 2018 8/10 TIII / Constraints Physics Combined Constraints gee 0.1 È È 10-4 DM 10-7 10-10 mJ 10-13 0.2 0.5 1.0 2.0 5.0 MeV 48 Ca gee Luminosity Brune and Pas.¨ 2018 È È Tim Brune, December 2018 9/10 TIII / Conclusion Physics Conclusion and Outlook The Majoron can explain the origin of neutrino masses on the basis of spontaneous symmetry breaking of a global U(1)B−L If massive, the Majoron is a dark matter candidate For mJ ≈ 0:1 MeV − 1 GeV, a large range of couplings is excluded from SN data −4 Neutrinoless double beta decay excludes couplings gee ≥ 10 for mJ ≈ 1 MeV Properly include background in 0νββJ limits for mJ > 0 Future 0νββJ experiments and observations of SN can exclude larger regions Tim Brune, December 2018 10/10.
Recommended publications
  • LIMITS on DIFFERENT MAJORON DECAY MODES of 100Mo, 116Cd, 82Se, and 96Zr for NEUTRINOLESS DOUBLE BETA DECAYS in the NEMO-2 EXPERIMENT V
    XJ0200048 B 3HAJL 2001. N»5[108] Particles and Nuclei, Letters. 2001. No.5[108] 539.165 LIMITS ON DIFFERENT MAJORON DECAY MODES OF 100Mo, 116Cd, 82Se, AND 96Zr FOR NEUTRINOLESS DOUBLE BETA DECAYS IN THE NEMO-2 EXPERIMENT V. Vasilyev et al. (NEMO collaboration1) The NEMO-2 tracking detector located in the Frejus underground laboratory was designed as a prototype for the NEMO-3 detector and to study different modes of double beta decay. Measurements with 100Mo, n6Cd, 82Se, and 96Zr were carried out. Presented here are the experimental half-life limits on double beta decays for new Majoron emission modes and limits on effective neutrino-Majoron coupling constants. NEMO-2, pacnario>KeHHbiH B nofl3eMHOH jiaSopaTopHH ©peaxyc H CKOHcrpynpoBaH- HHH KaK npoTOTHn aeTeKTopa NEMO-3, npeflHa3HaieH ana H3vqeHHa pa3HHHHbix MOB flBoflHoro 6era- pacnaaa. EbuiH npoBeaeHbi H3MepeHHs H3oronoB 100Mo, U6Cd, 82Se H 96Zr. B pa6oTe npeflcraBJieHbi HOBbie 3KcnepHMenTanbHbie npeaenu Ha pa3nnHHbie MOflbi flBOHHoro 6eTa-pacnana c HcnycKaHweM Mafl- OpOHa H 3CpcbeKTHBHb]X K0HCT8HT CBH3H HeHTpHHO-MaHOpOH. INTRODUCTION Spontaneous violation of global (B—L) symmetry in gauge theories leads to the existence of a massless Goldstone boson, the Majoron. At the beginning of the 1980's there were considered to be singlet [1], doublet [2] and triplet [3] Majoron models. All these models resulted in the neutrinoless double beta (2/3) decay with the emission of a Majoron (x°): (A,Z)-+(A,Z + 2) + 2e-+x°- (D However, the interaction of the triplet (or doublet) Majorons with the Z° boson would give a contribution to the width of the Z° decay, which corresponds to two (or 1/2) additional massless neutrino types (see, for example, [4-6]).
    [Show full text]
  • Neutrinoless Double-Β Decay with Nonstandard Majoron Emission
    PHYSICAL REVIEW LETTERS 122, 181801 (2019) Neutrinoless Double-β Decay with Nonstandard Majoron Emission † ‡ ∥ Ricardo Cepedello,1,2,* Frank F. Deppisch,2,3, Lorena González,4,2, Chandan Hati,5,§ and Martin Hirsch1, 1AHEP Group, Instituto de Física Corpuscular—CSIC/Universitat de Val`encia Edificio de Institutos de Paterna, Apartado 22085, E–46071 Val`encia, Spain 2Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom 3Institut für Hochenergiephysik, Österreichische Akademie der Wissenschaften, Nikolsdorfer Gasse 18, 1050 Wien, Austria 4Department of Physics, Universidad T´ecnica Federico Santa María, Avenida España 1680, Valparaíso, Chile 5Laboratoire de Physique de Clermont, CNRS/IN2P3 UMR 6533, Campus des C´ezeaux, 4 Avenue Blaise Pascal, F-63178 Aubi`ere Cedex, France (Received 13 November 2018; revised manuscript received 1 February 2019; published 7 May 2019) We present a novel mode of neutrinoless double-β decay with emission of a light Majoron-like scalar particle ϕ. We assume it couples via an effective seven-dimensional operator with a (V þ A) lepton current and (V Æ A) quark currents leading to a long-range contribution that is unsuppressed by the light neutrino mass. We calculate the total double-β decay rate and determine the fully differential shape for this mode. β Λ ≈ 1 We find that future double- decay searches are sensitive to scales of the order NP TeV for the effective operator and a light scalar mϕ < 0.2 MeV, based on ordinary double-β decay Majoron searches. The angular and energy distributions can deviate considerably from that of two-neutrino double-β decay, which is the main background.
    [Show full text]
  • Some Consequences of the Majoron Being the Dark Radiation ∗ We-Fu Chang A,B,Johnn.Ngc, Jackson M.S
    Physics Letters B 730 (2014) 347–352 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Some consequences of the Majoron being the dark radiation ∗ We-Fu Chang a,b,JohnN.Ngc, Jackson M.S. Wu a,b, a Department of Physics, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC b Physics Division, National Center for Theoretical Sciences, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC c TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada article info abstract Article history: We discuss some phenomenological consequences in a scenario where a singlet Majoron plays the role Received 1 November 2013 of dark radiation. We study the interrelations between neutrino mass generation and the scalar potential Received in revised form 12 December 2013 arising from this identification. We find the extra scalar has to be light with a mass at or below the Accepted 29 January 2014 GeV level. The mixing of this scalar with the Standard Model Higgs impacts low energy phenomena such Available online 11 February 2014 as the muonic hydrogen Lamb shift and muon anomalous magnetic moment. Demanding that the light Editor: S. Dodelson scalar solves the puzzle in the muon magnetic moment requires the scalar to be lighter still with mass at or below the 10 MeV level. The cross-sections for the production of heavy neutrinos at LHC14 are also given. © 2014 Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
    [Show full text]
  • Majorons and Supernova Cooling
    Novell).ber 29, 1989 CMU-HEP89-23 MPI-PAE/PTh 75/89 ' Majorons and Supernova Cooling 1 2 Kiwoon Choi ) and A. Santan1aria* ) 1 ) Department of Physics, Carnegie Mellon University Pittsburgh, PA 15213, USA 2 ) Max-Planck-Institut fiir Physik und Astrophysik Fahringer Ring 6, D-8000 Miinchen 40, Germany Abstract We consider the role of majoron emission in supernova cooling and its implications for the neutrino mass and lifetime in generic singlet majoron models. It is found that for v, with mass m, if the lifetime for the decay v, ...... majoron + v .... is shorter than 10-7(m/MeV) sec, then majorons are so strongly trapped by the inverse process that the resulting majoron luminosity is small enough to not destabilize the observed v.-pulse from SN1987 A. For v, with a longer lifetime, the majoron luminosity can be large enough to destroy or significantly shorten the duration of the neutrino pulse. We then find the range of paran1eters, e.g. the v,-mass m and the B- L breaking scale v, that is excluded by giving such a large majoron luminosity. Our results imply that, for v between 1 GeV and 1 TeV, a wide range of m allowed by terrestrial experiments can be excluded in view of the observed v.-pulse from SN1987 A. *Permanent address: Departament de Fisica TeOrica, Universitat de Valencia and IFIC, Universitat de Valencia-CSIC, Spain. 1. Introduction The supernova SN1987 All] in the Large Magelanic Cloud has provided a lot of information on the properties of neutrinos, e.g. masses, number of generationsl2l, mag­ 3 4 8 netic momentsl l, and exotic interactionsl - l.
    [Show full text]
  • Arxiv:Hep-Ph/9309214V1 2 Sep 1993 Etitosfo H Oeeprmn.I Rvdsa Poss at a Line As X-Ray Provides an It of Experiment
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositori d'Objectes Digitals per a l'Ensenyament la Recerca i la Cultura FTUV/93-35 December 21, 2013 Submitted to Phys. Lett. B The KeV Majoron as a Dark Matter Particle V. Berezinsky 1 INFN, Laboratori Nazionali del Gran Sasso I-67010, Assergi (AQ), Italy and Institute for Nuclear Research, Moscow, Russia and J. W. F. Valle 2 Instituto de Fisica Corpuscular - IFIC/CSIC Dept. de F´isica Te`orica, Universitat de Val`encia 46100 Burjassot, Val`encia, SPAIN ABSTRACT We consider a very weakly interacting KeV majoron as a dark matter particle (DMP), which provides both the critical density ρ = 1.88 10 29h2 g/cm3 and the galactic scale cr × − 3 2 12 2 Mgal mP l/mJ 10 M (mJ /1KeV )− for galaxy formation. The majoron couples ∼ ∼ ⊙ to the leptons only through some new ”directly interacting particles”, called DIPS, and this provides the required smallness of the coupling constants. If the masses of these DIPS are greater than the scale Vs characterizing the spontaneous violation of the global lepton symmetry they are absent at the corresponding phase transition (T V ) and the ∼ s arXiv:hep-ph/9309214v1 2 Sep 1993 majorons are produced during the phase transition, never being in thermal equilibrium during the history of the universe. In the alternative case mDIP < Vs the majorons can be for a short period in thermal equilibrium. This scenario is not forbidden by nucleosynthesis and gives a reasonable growth factor for the density fluctuations compatible with the recent restrictions from the COBE experiment.
    [Show full text]
  • Neutrino Lines from Majoron Dark Matter
    Neutrino Lines from Majoron Dark Matter PoS(NuFact2017)138 Julian Heeck∗ Service de Physique Théorique, Université Libre de Bruxelles, CP225, 1050 Brussels, Belgium E-mail: [email protected] Majorons are the Goldstone bosons associated to lepton number and thus closely connected to Majorana neutrino masses. At tree level, its only fermion couplings are to neutrinos. Couplings to charged fermions arise at one-loop level, including lepton-flavor-violating ones that lead to decays ` ! `0J, whereas a coupling to photons is generated at two loops. The typically small couplings make massive majorons a prime candidate for long-lived dark matter. Its signature decay into two mono-energetic neutrinos is potentially detectable for majoron masses above MeV and most importantly depends on different parameters than the visible decay channels. The 19th International Workshop on Neutrinos from Accelerators-NUFACT2017 25-30 September, 2017 Uppsala University, Uppsala, Sweden ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/ Neutrino Lines from Majoron Dark Matter Julian Heeck 1. Majoron couplings We start our discussion with a basic introduction to the majoron model, based on Refs. [1, 2], before delving into the phenomenology of majorons as dark matter (Sec. 2) and the connection to lepton flavor violation (Sec. 3) The difference between baryon number B and lepton number L is an anomaly-free global symmetry of the Standard Model (SM); spontaneously breaking this U(1)B−L symmetry results in a Goldstone boson called majoron [3, 4].
    [Show full text]
  • The Majoron PALS 27-09-19 3 the Hubble Tension
    Could the H0 Tension be Pointing Toward the Neutrino Mass Mechanism? Miguel Escudero Abenza [email protected] based on ArXiv:1909.04044 with Sam Witte PALS Paris 27/09/19 H0 H0 ⌫ ⌫ e ! µ m =0 ⌫ 6 H0 ⌫ ⌫e ⌫µ ⌫¯ ! m =0 φ ⌫ 6 Outline 1) The Hubble Tension 2) The Scenario 3) Cosmology with a light Majoron 4) Conclusions Miguel Escudero (KCL) H0 and the Majoron PALS 27-09-19 3 The Hubble Tension Taken from Wendy Freedman, see 1706.02739 Miguel Escudero (KCL) H0 and the Majoron PALS 27-09-19 4 The Hubble Tension Taken from Wendy Freedman, see 1706.02739 Riess et al 1903.07603 1 1 H = 74.03 1.42 km s− Mpc− 0 ± 4.4 σ tension within ΛCDM! 1 1 H = 67.36 0.54 km s− Mpc− 0 ± Planck 2018 1807.06209 Miguel Escudero (KCL) H0 and the Majoron PALS 27-09-19 4 The Hubble Tension Taken from Wendy Freedman, see 1706.02739 Riess et al 1903.07603 1 1 H = 74.03 1.42 km s− Mpc− 0 ± 4.4 σ tension within ΛCDM! 1 1 H = 67.36 0.54 km s− Mpc− 0 ± Planck 2018 1807.06209 Tension very unlikely generated by CMB systematics see e.g. Spergel et al 1312.3313, Addison et al 1511.00055, Verde et al 1601.01701, Planck 1608.02487 Miguel Escudero (KCL) H0 and the Majoron PALS 27-09-19 4 The Hubble Tension Taken from Wendy Freedman, see 1706.02739 Riess et al 1903.07603 1 1 H = 74.03 1.42 km s− Mpc− 0 ± 4.4 σ tension within ΛCDM! 1 1 H = 67.36 0.54 km s− Mpc− 0 ± Planck 2018 1807.06209 Tension very unlikely generated by CMB systematics see e.g.
    [Show full text]
  • How Gravity Shapes the Low-Energy Frontier of Particle Physics: Neutrino Masses and the Domestic Axion
    HOW GRAVITY SHAPES THE LOW-ENERGY FRONTIER OF PARTICLE PHYSICS Neutrino Masses and the Domestic Axion Lena Funcke M ¨unchen2018 HOW GRAVITY SHAPES THE LOW-ENERGY FRONTIER OF PARTICLE PHYSICS Neutrino Masses and the Domestic Axion Dissertation an der Fakultät für Physik der Ludwig–Maximilians–Universität München vorgelegt von Lena Funcke aus Münster München, den 30. Mai 2018 Dissertation an der Fakultät für Physik der Ludwig-Maximilians-Universität München vorgelegt von Lena Funcke am 30. Mai 2018. Erstgutachter: Prof. Dr. Georgi Dvali Zweitgutachter: PD Dr. Georg Raffelt Tag der mündlichen Prüfung: 9. Juli 2018 Max-Planck-Institut für Physik, München, den 30. Mai 2018. Zusammenfassung Das Standardmodell der Teilchenphysik und seine kosmologischen Impli- kationen lassen einige fundamentale Fragen unbeantwortet, insbesondere die Abwesenheit von CP -Verletzung in der starken Wechselwirkung sowie die Ursprünge von Neutrinomassen, Dunkler Materie und Dunkler Energie. Inner- halb der Modellentwicklung jenseits des Standardmodells konzentrieren sich die populärsten Forschungsrichtungen üblicherweise auf neue Strukturen bei hohen Energien bzw. kleinen Abständen. Als eine alternative Richtung präsen- tieren wir in dieser Dissertation eine neue Klasse von niederenergetischen Lösungen der Neutrinomassen- und starken CP -Probleme. Diese Klasse mani- festiert sich auf einer neuen infraroten Gravitationsskala, welche numerisch übereinstimmt mit der Skala der Dunklen Energie. Wir zeigen, wie sich ein Neutrinokondensat, kleine Neutrinomassen und ein Axion aus einer topolo- gischen Formulierung der chiralen Gravitationsanomalie ergeben können. Zuerst rekapitulieren wir, wie ein gravitativer θ-Term zur Entstehung eines 0 neuen gebundenen Neutrinozustands ην führt, analog zum η -Meson in der QCD. Auf dieser Basis leiten wir her, dass sich ein niederenergetisches Neutrino- Vakuumskondensat bildet, welches kleine Neutrinomassen generiert.
    [Show full text]
  • Generation Mixing and CP-Violation - Standard and Beyond*
    SLAC-PUB-4327 May 1987 T/E Generation Mixing and CP-Violation - Standard and Beyond* HAIM HARARI* Stanford Linear Accelerator Center Stanford University, Stanford, California, 94,905 ABSTRACT We discuss several issues related to the observed generation pattern of quarks and leptons. Among the main topics: Masses, angles and phases and possible relations among them, a possible fourth generation of quarks and leptons, new bounds on neutrino masses, comments on the recently observed mixing in the B - B system, CP- violation, and recent proposals for a b-quark “factory”. Invited talk presented at Les. Rencontres de Physique de la Vallee d’Aosta, La Thuile, Aosta Valley, Italy, March l-7, 1987 * Work supported by the Department of Energy, contract DE-AC03-76SF00515. -M On leave from the Weizmann Institute of Science, Rehovot, Israel Table of Contents 1. Introduction. _ 2. Counting the Parameters of the Standard Model. 3. Masses and Angles: Experimental Values and Numerology. 4. A Recommended Choice of Mixing Angles and Phases. - 5. Why Do We Expect Relations Between Masses and Angles. 6. Trying to Derive Relations Between Masses and Angles. 7. A Fourth Generation of Quarks and Leptons? Y 8. New Bounds on Neutrino Masses. 9. B - I? Mixing and CP Vidlation in the B system. 10. A b-quark “factory” - Why, How and When? 11. Concluding Remarks. 1. Introduction Among all the open problems of the standard model, none is more intriguing and frustrating than the generation puzzle. The puzzle itself has been with us, in one form or another, for the last forty years or so, since it was realized that the “p-meson” is actually a lepton.
    [Show full text]
  • Neutrino Properties
    Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) Neutrino Properties NEUTRINO PROPERTIES Revised August 2019 by P. Vogel (Caltech) and A. Piepke (University of Alabama). The Neutrino Properties Listings concern measurements of various properties of neutrinos. Nearly all of the measurements, so far only limits, actually concern superpositions of the mass eigenstates νi, which are in turn related to the weak eigenstates νℓ, via the neutrino mixing matrix |ν i = U |ν i . ℓ X ℓi i i In the analogous case of quark mixing via the CKM matrix, the smallness of the off-diagonal terms (small mixing angles) permits a “dominant eigenstate” approximation. However, the results of neutrino oscillation searches show that the mixing matrix contains two large mixing angles and a third angle that is not exceedingly small. We cannot therefore associate any particular state |νii with any particular lepton label e,µ or τ. Nevertheless, note that in the standard labeling the |ν1i has the largest |νei component (∼ 2/3), |ν2i contains ∼ 1/3 of the |νei component and |ν3i contains only a small ∼ 2.5% |νei component. Neutrinos are produced in weak decays with a definite lep- ton flavor, and are typically detected by the charged current weak interaction again associated with a specific lepton fla- vor. Hence, the listings for the neutrino mass that follow are separated into the three associated charged lepton categories. Other properties (mean lifetime, magnetic moment, charge and HTTP://PDG.LBL.GOV Page1 Created: 6/1/2020 08:33 Citation: P.A. Zyla et al.
    [Show full text]
  • Majoron Emitting Neutrinoless Double Beta Decay in the Electroweak Chiral Gauge Extensions
    \ BR9838529 Instituto de Fisica Teorica IFT Universidade Estadual Paulista January/97 IFT-P.007/97 Majoron emitting neutrinoless double beta decay in the electroweak chiral gauge extensions F. Pisano1 and S. Shelly Sharma2 1 Instituto de Fisica Teorica Universidade Estadual Paulista Rua Pamplona 145 01405-900 - Sao Paulo, S.P. Brazil 2 Departamento de Fisica Universidade Estadual de Londrina 86051-970 - Londrina, P.R. Brazil 29-04 Majoron emitting neutrinoless double beta decay in the electroweak chiral gauge extensions F. Pisauo Instituto dr. Fisica Tco'rica, Universidade Estadual Paulista Run Pamplona 11,5, 01J05-000. Sno Paulo, SP, Brazil * S. Shelly Sharma Dr.paHavie.nto dr. Fisica, Vnivrrsidadr. Estadual de. Londrina, 86051-970, Londrina, PR, Brazil (January 14, 1997) Abstract Fundamental mechanisms for Majoroii emitting neutrinoless double beta de- ray in SU(3)c <5?> GV® U(l) models, for electroweak flavor chiral extensions, Gw = SU(3)L and SU(4)/, are pointed out. Both kinds of known Majoron emitting processes, charged Majoron emitting where the massless Nainbu- Goldstone boson itself carries lepton charge, L = —2, and the ordinary Ma- joron emitting coming from a direct electron-Majoron Yukawa like coupling, are found possible. PACS numbers: ll.15.Ex, 12.60.Fr, 14.80.Cp Typeset using REVTfeX 'Address after March 1997: Instituto dr. Fisica, Unive.rsidade. Federal do Parana, 81531-990, Curitiba. PR. Brazil 1 Although two neutrino double beta decay [1], which can occur as a second order weak interaction process within the minimal electroweak standard model [2j, has been observed experimentally [3], there is no conclusive evidence for the neutrinoless modes [4].
    [Show full text]
  • Majorons in the Sky and in the Lab
    Majorons in the Sky and in the Lab Julian Heeck Oklahoma State University 9/17/2020 Neutrinos have masses and mix ● Mass splittings ✔ ● Angles ✔ ● Phase(s) ✘ ● Ordering ✘ ● Mass scale ✘ ● Dirac vs. Majorana ✘ ● Mass origin ✘ OSU 2020 Julian Heeck - Majorons 2 Majoronic seesaw ● SM + 3 singlets NR + new scalar Lepton number breaking scale Heavy scalar Majoron [Chikashige, Mohapatra, Peccei, ‘81; Schechter, Valle, ‘82] ● Break U(1)L spontaneously: ● For OSU 2020 Julian Heeck - Majorons 3 Majoron couplings ● Tree-level coupling only to neutrinos: OSU 2020 Julian Heeck - Majorons 4 Majoron couplings ● Tree-level coupling only to neutrinos: ● Assume Pseudo-Goldstone Majoron: mJ ≠ 0. [Rothstein, Babu, Seckel, ‘93] ● Long lifetime → Dark matter! [Berezinsky, Valle ‘93; Lattanzi, Valle ‘07; Bazzocchi et al, ‘08; Queiroz, Sinha, ‘14] OSU 2020 Julian Heeck - Majorons 5 Dark matter abundance ● Freeze out via λ JJHH: – mJ ~ mh/2, – mJ > 400 GeV. OSU 2020 Julian Heeck - Majorons 6 Dark matter abundance ● Freeze out via λ JJHH: – mJ ~ mh/2, – mJ > 400 GeV. ● Freeze in: Stephen West Lyman-α excludes mJ< 12 keV! [McDonald, ‘02; Hall, Jedamzik, March-Russell, Use different mechanism: West ‘10; Frigerio, Hambye, Masso, ‘11] JH, Teresi, 1706.09909, 1709.07283. OSU 2020 Julian Heeck - Majorons 7 Indirect detection ● General limit from DM → invisible: [Audren, Lesgourgues, Mangano, Serpico, Tram, ‘14] ● Can we observe the neutrino lines? – mJ > 10 TeV: No. Dominant decay is J →ννh(h). ► no line! [Dudas, Mambrini, Olive, ‘15] – Also want to avoid electroweak
    [Show full text]