Presentation.Pdf

Presentation.Pdf

TIII / Physics Majoron Dark Matter and Constraints on the Majoron-Neutrino Coupling Tim Brune The quest for new physics December 2018 Tim Brune, December 2018 TIII / Singlet Majoron Model Physics Motivation What it is the origin of (small) neutrino masses? What is dark matter? The Majoron Model Chikashige, Mohapatra, and Peccei D. 1981 Majoron: Goldstone boson from spontaneous breaking of global U(1)B−L Small left-handed neutrino masses via Seesaw mechanism Majoron mass ! dark matter? Constraints for mJ = 0: Kachelriess, Tomas, and Valle. 2000, Tomas, Pas,¨ and Valle. 2001 Constraints on non-standard Majoron models: Cepedello et al. 2018 Constraints on Majoron-Neutrino couplings from SN data and 0νββJ for mJ 6= 0? Brune and Pas.¨ 2018. eprint: 1808.08158 Tim Brune, December 2018 1/10 TIII / Singlet Majoron Model Physics Symmetry Breaking Add three right-handed neutrinos NR and a singlet complex scalar σ ; L(σ) = −2, to SM: 1 L = −LyN¯ H − N¯ c λN σ + h.c. R 2 R R 1 SSB at Seesaw-scale f : σ = p (f + σ0 + iJ) 2 ¯ 1 ¯ c i ¯ c L ⊃ −LyNR H − p N λNR f − p N λNR J +h.c. 2 2 R 2 2 R | {z } | {z } mass term: M = pλf interaction R 2 SSB at electroweak scale v 1 ¯ c i ¯ c L ⊃ − ν¯LyNR v − p NR λNR f − p NR λNR J +h.c. | {z } 2 2 2 2 yv mass term: mD = p | {z } | {z } 2 mass term: M = pλf interaction R 2 Pilaftsis. 1994 Tim Brune, December 2018 2/10 TIII / Singlet Majoron Model Physics Seesaw Mechanism λf yv Majorana mass MR = p , Dirac mass mD = p 2 2 Neutrino masses in the Seesaw limit MR mD T mDmD mheavy ≈ MR mlight ≈ − MR MR Couplings of the Majoron to light neutrinos 3 light X LJ = gii ν¯i γ5νi J i Minkowski. 1977 Tim Brune, December 2018 3/10 TIII / Dark Matter Physics Majoron Dark Matter via Freeze-In 2 2 Explicit U(1)B−L breaking term ! mJ = λhv 2 y 1 2 2 h LH = λhσ H H + h.c. ⊃ − mJ J 1 + |{z} 2 v SSB Majoron relic density 1:09 × 1027 m Γ(h ! JJ) Ω h2 ≈ 2 J : J s p ρ 2 g∗ g∗ mh Majoron DM: mJ ≈ 2:8 MeV 9 For f ≈ 10 GeV: τJ > τuniverse ! stable Hall et al. 2010 Frigerio, Hambye, and Masso. 2011 Tim Brune, December 2018 4/10 TIII / Constraints Physics Supernova Constraints Luminosity Constraints In the SN core: neutrinos acquire effective masses due to interactions with the Model predictions are compatible with background medium ) νν ! J is allowed neutrino signal from SN1987A Neutrinos carry away most of the erg binding energy E ≈ 3 · 1053 Deleptonization Constraints B s Successful SN explosion requires Majoron carries away binding energy via Y = Y + Y ≥ 0:375 L e νe νν ! J ν ν ,α ! J lower Y , α = µ, τ Agreement with signal: Majoron e e L tot luminosity LJ < Lν Bruenn. 1985 Similar aprroach:Heurtier and Zhang. 2017 Constraints on g(mJ ) Data: Kamiokande-II. 1987, IMB. 1987, Baksan. 1987 Tim Brune, December 2018 5/10 TIII / Constraints Physics Supernova Constraints 10-5 DM α = µ, τ © 10-7 gaa Luminosity È -9 ab 10 Èg ÈDeleptonization g ee È 10-11 ÈgaeÈ Luminosity Ègee È Luminosity 10-13 1 10 100 1000 È È mJ MeV Brune and Pas.¨ 2018, see also Heurtier and Zhang. 2017 Data: Kamiokande-II. 1987, IMB. 1987, Baksan. 1987, Bruenn. 1985 Tim Brune, December 2018 6/10 TIII / Constraints Physics a.u. 1.2 0νββJ Constraints 0nbbJ, mJ = 0 1.0 0nbbJ, mJ = me 0.8 J J 2 J 2 0nbbJ, mJ = 2me Γ = G (Q; Z ; mJ )jgee(mJ )j jM j 0.6 0nbbJ, mJ = 3me 0nbbJ, m = 4m dL uL 0.4 J e W 2nbb 0.2 e− T 0.0 0.5 1.0 1.5 2.0 2.5 3.0 MeV ν J G mJ G 0 e− 1.0H L W H L u 48 dL L 0.8 Ca 136Xe 0.6 Georgi, Glashow, and Nussinov. 1981 100Mo 0.4 150Nd Constraints: 0.2 Reduced signal-to-background ratio mJ Decreasing phase space: 1 2 3 4 MeV GJ (m ) ! 0 as m ! Q J J 48 136 100 NEMO-3. Ca. 2016, EXO-200. Xe. 2014, NEMO-3. Mo. 2014, see also Blum, Nir, and Shavit. 2018 150 NEMO-3. Nd. 2016 Tim Brune, December 2018 7/10 TIII / Constraints Physics 0νββJ Constraints gee DM 0.1 È È 48 0.01 Ca 136Xe 0.001 100Mo 150 10-4 Nd 10-5 DM mJ 10-6 0.2 0.5 1.0 2.0 MeV Brune and Pas.¨ 2018, see also Blum, Nir, and Shavit. 2018 Data: NEMO-3. 48Ca. 2016, EXO-200. 136Xe. 2014, NEMO-3. 100Mo. 2014, NEMO-3. 150Nd. 2016 Tim Brune, December 2018 8/10 TIII / Constraints Physics Combined Constraints gee 0.1 È È 10-4 DM 10-7 10-10 mJ 10-13 0.2 0.5 1.0 2.0 5.0 MeV 48 Ca gee Luminosity Brune and Pas.¨ 2018 È È Tim Brune, December 2018 9/10 TIII / Conclusion Physics Conclusion and Outlook The Majoron can explain the origin of neutrino masses on the basis of spontaneous symmetry breaking of a global U(1)B−L If massive, the Majoron is a dark matter candidate For mJ ≈ 0:1 MeV − 1 GeV, a large range of couplings is excluded from SN data −4 Neutrinoless double beta decay excludes couplings gee ≥ 10 for mJ ≈ 1 MeV Properly include background in 0νββJ limits for mJ > 0 Future 0νββJ experiments and observations of SN can exclude larger regions Tim Brune, December 2018 10/10.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us