TIII / Physics Majoron Dark Matter and Constraints on the Majoron-Neutrino Coupling Tim Brune The quest for new physics December 2018 Tim Brune, December 2018 TIII / Singlet Majoron Model Physics Motivation What it is the origin of (small) neutrino masses? What is dark matter? The Majoron Model Chikashige, Mohapatra, and Peccei D. 1981 Majoron: Goldstone boson from spontaneous breaking of global U(1)B−L Small left-handed neutrino masses via Seesaw mechanism Majoron mass ! dark matter? Constraints for mJ = 0: Kachelriess, Tomas, and Valle. 2000, Tomas, Pas,¨ and Valle. 2001 Constraints on non-standard Majoron models: Cepedello et al. 2018 Constraints on Majoron-Neutrino couplings from SN data and 0νββJ for mJ 6= 0? Brune and Pas.¨ 2018. eprint: 1808.08158 Tim Brune, December 2018 1/10 TIII / Singlet Majoron Model Physics Symmetry Breaking Add three right-handed neutrinos NR and a singlet complex scalar σ ; L(σ) = −2, to SM: 1 L = −LyN¯ H − N¯ c λN σ + h.c. R 2 R R 1 SSB at Seesaw-scale f : σ = p (f + σ0 + iJ) 2 ¯ 1 ¯ c i ¯ c L ⊃ −LyNR H − p N λNR f − p N λNR J +h.c. 2 2 R 2 2 R | {z } | {z } mass term: M = pλf interaction R 2 SSB at electroweak scale v 1 ¯ c i ¯ c L ⊃ − ν¯LyNR v − p NR λNR f − p NR λNR J +h.c. | {z } 2 2 2 2 yv mass term: mD = p | {z } | {z } 2 mass term: M = pλf interaction R 2 Pilaftsis. 1994 Tim Brune, December 2018 2/10 TIII / Singlet Majoron Model Physics Seesaw Mechanism λf yv Majorana mass MR = p , Dirac mass mD = p 2 2 Neutrino masses in the Seesaw limit MR mD T mDmD mheavy ≈ MR mlight ≈ − MR MR Couplings of the Majoron to light neutrinos 3 light X LJ = gii ν¯i γ5νi J i Minkowski. 1977 Tim Brune, December 2018 3/10 TIII / Dark Matter Physics Majoron Dark Matter via Freeze-In 2 2 Explicit U(1)B−L breaking term ! mJ = λhv 2 y 1 2 2 h LH = λhσ H H + h.c. ⊃ − mJ J 1 + |{z} 2 v SSB Majoron relic density 1:09 × 1027 m Γ(h ! JJ) Ω h2 ≈ 2 J : J s p ρ 2 g∗ g∗ mh Majoron DM: mJ ≈ 2:8 MeV 9 For f ≈ 10 GeV: τJ > τuniverse ! stable Hall et al. 2010 Frigerio, Hambye, and Masso. 2011 Tim Brune, December 2018 4/10 TIII / Constraints Physics Supernova Constraints Luminosity Constraints In the SN core: neutrinos acquire effective masses due to interactions with the Model predictions are compatible with background medium ) νν ! J is allowed neutrino signal from SN1987A Neutrinos carry away most of the erg binding energy E ≈ 3 · 1053 Deleptonization Constraints B s Successful SN explosion requires Majoron carries away binding energy via Y = Y + Y ≥ 0:375 L e νe νν ! J ν ν ,α ! J lower Y , α = µ, τ Agreement with signal: Majoron e e L tot luminosity LJ < Lν Bruenn. 1985 Similar aprroach:Heurtier and Zhang. 2017 Constraints on g(mJ ) Data: Kamiokande-II. 1987, IMB. 1987, Baksan. 1987 Tim Brune, December 2018 5/10 TIII / Constraints Physics Supernova Constraints 10-5 DM α = µ, τ © 10-7 gaa Luminosity È -9 ab 10 Èg ÈDeleptonization g ee È 10-11 ÈgaeÈ Luminosity Ègee È Luminosity 10-13 1 10 100 1000 È È mJ MeV Brune and Pas.¨ 2018, see also Heurtier and Zhang. 2017 Data: Kamiokande-II. 1987, IMB. 1987, Baksan. 1987, Bruenn. 1985 Tim Brune, December 2018 6/10 TIII / Constraints Physics a.u. 1.2 0νββJ Constraints 0nbbJ, mJ = 0 1.0 0nbbJ, mJ = me 0.8 J J 2 J 2 0nbbJ, mJ = 2me Γ = G (Q; Z ; mJ )jgee(mJ )j jM j 0.6 0nbbJ, mJ = 3me 0nbbJ, m = 4m dL uL 0.4 J e W 2nbb 0.2 e− T 0.0 0.5 1.0 1.5 2.0 2.5 3.0 MeV ν J G mJ G 0 e− 1.0H L W H L u 48 dL L 0.8 Ca 136Xe 0.6 Georgi, Glashow, and Nussinov. 1981 100Mo 0.4 150Nd Constraints: 0.2 Reduced signal-to-background ratio mJ Decreasing phase space: 1 2 3 4 MeV GJ (m ) ! 0 as m ! Q J J 48 136 100 NEMO-3. Ca. 2016, EXO-200. Xe. 2014, NEMO-3. Mo. 2014, see also Blum, Nir, and Shavit. 2018 150 NEMO-3. Nd. 2016 Tim Brune, December 2018 7/10 TIII / Constraints Physics 0νββJ Constraints gee DM 0.1 È È 48 0.01 Ca 136Xe 0.001 100Mo 150 10-4 Nd 10-5 DM mJ 10-6 0.2 0.5 1.0 2.0 MeV Brune and Pas.¨ 2018, see also Blum, Nir, and Shavit. 2018 Data: NEMO-3. 48Ca. 2016, EXO-200. 136Xe. 2014, NEMO-3. 100Mo. 2014, NEMO-3. 150Nd. 2016 Tim Brune, December 2018 8/10 TIII / Constraints Physics Combined Constraints gee 0.1 È È 10-4 DM 10-7 10-10 mJ 10-13 0.2 0.5 1.0 2.0 5.0 MeV 48 Ca gee Luminosity Brune and Pas.¨ 2018 È È Tim Brune, December 2018 9/10 TIII / Conclusion Physics Conclusion and Outlook The Majoron can explain the origin of neutrino masses on the basis of spontaneous symmetry breaking of a global U(1)B−L If massive, the Majoron is a dark matter candidate For mJ ≈ 0:1 MeV − 1 GeV, a large range of couplings is excluded from SN data −4 Neutrinoless double beta decay excludes couplings gee ≥ 10 for mJ ≈ 1 MeV Properly include background in 0νββJ limits for mJ > 0 Future 0νββJ experiments and observations of SN can exclude larger regions Tim Brune, December 2018 10/10.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages11 Page
-
File Size-