Longhorn Beetles (Family Cerambycidae) of Queen’S University Biological Station

Total Page:16

File Type:pdf, Size:1020Kb

Longhorn Beetles (Family Cerambycidae) of Queen’S University Biological Station Checklist of the Longhorn Beetles (Family Cerambycidae) of Queen’s University Biological Station Mark Andrew Conboy December 2010 This list of 45 species of longhorn beetles from 5 subfamilies was compiled primarily from specimens in the Queen’s University Biological Station collection. Scientific and common names (when they are available) are given for each species. I suspect that many more longhorns will be added as future collecting occurs and any new records will be added to future editions of this checklist. A good field guide for identifying longhorn beetles at QUBS is Northeastern Longhorned Beetles (Coleoptera: Cerambycidae) (Yanega 1996). Please send comments, corrections, observations and additional information to Mark Andrew Conboy ([email protected]). Scientific Name Common Name Cerambycinae Round-necked Longhorns 1. Callimoxys sanguinicollis 2. Clytus ruricola 3. Cyrtophorus verrucosus 4. Dectes teaxnus 5. Enaphalodes rufulus Red Oak Borer 6. Glycobius speciosus Sugar Maple Borer 7. Purpuricenus humeralis 8. Xylotrechus colonus Rustic Borer Lamiinae Flat-faced Longhorns 9. Acanthocinus pusillatus 10. Hyperplatys maculata 11. Liopinus alpha 12. Microgoes oculatus 13. Monochamus notatus Northeastern Sawyer 14. Monochamus scutellatus White-spotted Sawyer 15. Oberea praelonga 16. Saperda candida Round-headed Apple Borer 17. Saperda imitans 18. Saperda lateralis Red-edged Saperda 19. Saperda obliqua Alder Borer 20. Saperda populnea Eastern Gall Saperda 21. Saperda tridentata Elm Borer 22. Saperda vestita Linden Borer 23. Tetraopes tetrophthalmus Red Milkweed Beetle Lepturinae Flower Longhorns 24. Analeptura lineola 25. Anthophylax attenuatus 26. Anthophylax cyaneus 27. Brachyleptura vegans 28. Centrodera decolorata 29. Desmocerus palliatus Elderberry Borer 30. Gaurotes cyanipennis 31. Idiopidonia pedalis 32. Pidonia ruficollis 33. Pseudogaurotina abdominalis 34. Stenocorus schaumii 35. Stenocorus vittiger 36. Stictoleptura canadensis Red-shouldered Pine Borer 37. Strangalepta abbreviata 38. Strangalepta pubera 39. Strangalia luteicornis 40. Strophiona nitens Chestnut Bark Borer 41. Trachysida mutabilis 42. Trigonarthris proxima 43. Typocerus velutinus Parandrinae Aberrant Longhorns 44. Parandra brunnea Pole Borer Prioninae Tooth-necked Longhorns 45. Orthosoma brunneum Brown Prionid .
Recommended publications
  • As Indicators of Forest Biodiversity and Available Resources in Kitchener, Ontario
    Exploring the Importance of Saproxylic Beetles (Coleoptera) as Indicators of Forest Biodiversity and Available Resources in Kitchener, Ontario by Emily E. Trendos A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master of Environmental Studies in Environment and Resource Studies Waterloo, Ontario, Canada, 2017 © Emily Trendos 2017 Author’s Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Across North America insects have generally taken a backseat to more conspicuous animals (e.g. birds, mammals) and are not regularly monitored by ecosystem managers. They commonly enter the spotlight when an insect is an invasive pest species causing significant damage, whereas less attention is given to studying the population dynamics of native species. This type of monitoring can be difficult for municipalities or conservation authorities due to economical limitations, time needed for sampling, and required taxonomic knowledge. However, this type of research needs to be incorporated into management plans in order to effectively facilitate sustainable ecosystems. Trees and forests provide unique ecosystem services and an important component of their health lies with saproxylic beetles. Relentless urban sprawl and other anthropogenic influences continue to pressure these ecosystems into new stable states, altering their function and composition. Invasive species like the emerald ash borer (Agrilus planipennis Fairmaire) and the resulting management practices put into place by managers may have effects on resident insect species that remain unknown if insect monitoring initiatives are not put into place.
    [Show full text]
  • Comparison of Coleoptera Emergent from Various Decay Classes of Downed Coarse Woody Debris in Great Smoky Mountains National Park, USA
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 11-30-2012 Comparison of Coleoptera emergent from various decay classes of downed coarse woody debris in Great Smoky Mountains National Park, USA Michael L. Ferro Louisiana State Arthropod Museum, [email protected] Matthew L. Gimmel Louisiana State University AgCenter, [email protected] Kyle E. Harms Louisiana State University, [email protected] Christopher E. Carlton Louisiana State University Agricultural Center, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Ferro, Michael L.; Gimmel, Matthew L.; Harms, Kyle E.; and Carlton, Christopher E., "Comparison of Coleoptera emergent from various decay classes of downed coarse woody debris in Great Smoky Mountains National Park, USA" (2012). Insecta Mundi. 773. https://digitalcommons.unl.edu/insectamundi/773 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA A Journal of World Insect Systematics MUNDI 0260 Comparison of Coleoptera emergent from various decay classes of downed coarse woody debris in Great Smoky Mountains Na- tional Park, USA Michael L. Ferro Louisiana State Arthropod Museum, Department of Entomology Louisiana State University Agricultural Center 402 Life Sciences Building Baton Rouge, LA, 70803, U.S.A. [email protected] Matthew L. Gimmel Division of Entomology Department of Ecology & Evolutionary Biology University of Kansas 1501 Crestline Drive, Suite 140 Lawrence, KS, 66045, U.S.A.
    [Show full text]
  • Field Parasitism and Host Specificity Of
    Biological Control 130 (2019) 44–50 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Field parasitism and host specificity of Oobius primorskyensis (Hymenoptera: T Encyrtidae), an egg parasitoid of the emerald ash borer (Coleoptera: Buprestidae) in the Russian Far East ⁎ Jian J. Duana, , Jonathan M. Schmudea, Kristi M. Larsona, Roger W. Fuestera, Juli R. Gouldb, Michael D. Ulyshenc a USDA ARS, Beneficial Insects Introduction Research Unit, Newark, DE 19713, United States b USDA APHIS PPQ CPHST, Buzzards Bay, MA 02542, United States c USDA Forest Service, Southern Research Station, Athens, GA 30602, United States GRAPHICAL ABSTRACT ARTICLE INFO ABSTRACT Keywords: Oobius primorskyensis Yao and Duan (Hymenoptera: Encyrtidae) is a recently described egg parasitoid of the emerald Biological control ash borer (EAB), Agrilus planipennis Fairmaire, from the Russian Far East. To support the potential introduction of this Host range new parasitoid for biocontrol of EAB in North America, we surveyed EAB eggs on infested green ash (Fraxinus Risk assessment pennsylvanica Marsh) trees in the Russian Far East and documented the rate of EAB egg parasitism by O. pri- Wood borers morskyensis. After establishing quarantine colonies of O. primorskyensis in the United States, we tested the parasitoid Agrilus planipennis against eggs of 30 taxa of insects, mostly native North American wood-boring beetles in the families Buprestidae and Cerambycidae plus one unidentified weevil, one predatory coccinellid, one pentatomid and one moth. Fieldob- servations showed that EAB egg parasitism rate ranged from 23 to 44% in the Russian Far East and O. primorskyensis was the only egg parasitoid recovered from the parasitized eggs collected there.
    [Show full text]
  • Deadwood and Saproxylic Beetle Diversity in Naturally Disturbed and Managed Spruce Forests in Nova Scotia
    A peer-reviewed open-access journal ZooKeysDeadwood 22: 309–340 and (2009) saproxylic beetle diversity in disturbed and managed spruce forests in Nova Scotia 309 doi: 10.3897/zookeys.22.144 RESEARCH ARTICLE www.pensoftonline.net/zookeys Launched to accelerate biodiversity research Deadwood and saproxylic beetle diversity in naturally disturbed and managed spruce forests in Nova Scotia DeLancey J. Bishop1,4, Christopher G. Majka2, Søren Bondrup-Nielsen3, Stewart B. Peck1 1 Department of Biology, Carleton University, Ottawa, Ontario, Canada 2 c/o Nova Scotia Museum, 1747 Summer St., Halifax, Nova Scotia Canada 3 Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada 4 RR 5, Canning, Nova Scotia, Canada Corresponding author: Christopher G. Majka ([email protected]) Academic editor: Jan Klimaszewski | Received 26 March 2009 | Accepted 6 April 2009 | Published 28 September 2009 Citation: Bishop DJ, Majka CG, Bondrup-Nielsen S, Peck SB (2009) Deadwood and saproxylic beetle diversity in naturally disturbed and managed spruce forests in Nova Scotia In: Majka CG, Klimaszewski J (Eds) Biodiversity, Bio- systematics, and Ecology of Canadian Coleoptera II. ZooKeys 22: 309–340. doi: 10.3897/zookeys.22.144 Abstract Even-age industrial forestry practices may alter communities of native species. Th us, identifying coarse patterns of species diversity in industrial forests and understanding how and why these patterns diff er from those in naturally disturbed forests can play an essential role in attempts to modify forestry practices to minimize their impacts on native species. Th is study compares diversity patterns of deadwood habitat structure and saproxylic beetle species in spruce forests with natural disturbance histories (wind and fi re) and human disturbance histories (clearcutting and clearcutting with thinning).
    [Show full text]
  • (Coleoptera) of the Huron Mountains in Northern Michigan
    The Great Lakes Entomologist Volume 19 Number 3 - Fall 1986 Number 3 - Fall 1986 Article 3 October 1986 Ecology of the Cerambycidae (Coleoptera) of the Huron Mountains in Northern Michigan D. C. L. Gosling Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Gosling, D. C. L. 1986. "Ecology of the Cerambycidae (Coleoptera) of the Huron Mountains in Northern Michigan," The Great Lakes Entomologist, vol 19 (3) Available at: https://scholar.valpo.edu/tgle/vol19/iss3/3 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Gosling: Ecology of the Cerambycidae (Coleoptera) of the Huron Mountains i 1986 THE GREAT LAKES ENTOMOLOGIST 153 ECOLOGY OF THE CERAMBYCIDAE (COLEOPTERA) OF THE HURON MOUNTAINS IN NORTHERN MICHIGAN D. C. L Gosling! ABSTRACT Eighty-nine species of Cerambycidae were collected during a five-year survey of the woodboring beetle fauna of the Huron Mountains in Marquette County, Michigan. Host plants were deteTITIined for 51 species. Observations were made of species abundance and phenology, and the blossoms visited by anthophilous cerambycids. The Huron Mountains area comprises approximately 13,000 ha of forested land in northern Marquette County in the Upper Peninsula of Michigan. More than 7000 ha are privately owned by the Huron Mountain Club, including a designated, 2200 ha, Nature Research Area. The variety of habitats combines with differences in the nature and extent of prior disturbance to produce an exceptional diversity of forest communities, making the area particularly valuable for studies of forest insects.
    [Show full text]
  • Week in the Woods June: Week Two
    This Week in the Woods June: Week Two This Week in the Woods, we visited our favorite pink lady’s slipper patch and discovered a couple of beautiful beetles crawling on the blossoms. Analeptura lineola, sometimes called the flower longhorn beetle, is a common forest beetle that uses beech, hornbeam, and hophornbeam as its larval hosts. In its adult form, it feeds on the pollen and nectar of various flowers. Soon after we took its photo, this beetle made its way into the “lobster trap” of the lady’s slipper bloom. Whether it found or bit its way out again, we don’t know. For more about lady’s slippers’ technique of temporarily trapping pollinators, see this Outside Story essay by Susan Shea. Here are some other nature sights this week (clockwise): Tree swallows are so common in our region that they are often ignored (or grumpily observed, as they occupy intended bluebird houses), but they’re fun to watch, be they skimming water off the surface of a river with their beaks at high speeds, or performing acrobatic dives after flying insects. We’ve often seen a mated pair switching off at the entrance of their next cavity, as in this photo, and after the chicks hatch, the parents will frequently emerge from the cavity with white blobs in their beaks. These are fecal sacs – exactly what they sound like – which they’ll discreetly drop at a distance. You can see a Northern Woodlands blog post about fecal sacs, and video demonstration of a junco feeding its young and removing a fecal sac, at this link.
    [Show full text]
  • The Longhorned Beetles (Insecta: Coleoptera: Cerambycidae) of the George Washington Memorial Parkway
    Banisteria, Number 44, pages 7-12 © 2014 Virginia Natural History Society The Longhorned Beetles (Insecta: Coleoptera: Cerambycidae) of the George Washington Memorial Parkway Brent W. Steury U.S. National Park Service 700 George Washington Memorial Parkway Turkey Run Park Headquarters McLean, Virginia 22101 Ted C. MacRae Monsanto Company 700 Chesterfield Parkway West Chesterfield, Missouri 63017 ABSTRACT Eighty species in 60 genera of cerambycid beetles were documented during a 17-year field survey of a national park (George Washington Memorial Parkway) that spans parts of Fairfax County, Virginia and Montgomery County, Maryland. Twelve species are documented for the first time from Virginia. The study increases the number of longhorned beetles known from the Potomac River Gorge to 101 species. Malaise traps and hand picking (from vegetation or at building lights) were the most successful capture methods employed during the survey. Periods of adult activity, based on dates of capture, are given for each species. Relative abundance is noted for each species based on the number of captures. Notes on plant foraging associations are noted for some species. Two species are considered adventive to North America. Key words: Cerambycidae, Coleoptera, longhorned beetles, Maryland, national park, new state records, Potomac River Gorge, Virginia. INTRODUCTION that feed on flower pollen are usually boldly colored and patterned, often with a bee-like golden-yellow The Cerambycidae, commonly known as pubescence. Nocturnal species are more likely glabrous longhorned beetles because of the length of their and uniformly dark, while bicolored species (often antennae, represent a large insect family of more than black and red) are thought to mimic other beetles which 20,000 described species, including 1,100 in North are distasteful.
    [Show full text]
  • Biodiversity and Coarse Woody Debris in Southern Forests Proceedings of the Workshop on Coarse Woody Debris in Southern Forests: Effects on Biodiversity
    Biodiversity and Coarse woody Debris in Southern Forests Proceedings of the Workshop on Coarse Woody Debris in Southern Forests: Effects on Biodiversity Athens, GA - October 18-20,1993 Biodiversity and Coarse Woody Debris in Southern Forests Proceedings of the Workhop on Coarse Woody Debris in Southern Forests: Effects on Biodiversity Athens, GA October 18-20,1993 Editors: James W. McMinn, USDA Forest Service, Southern Research Station, Forestry Sciences Laboratory, Athens, GA, and D.A. Crossley, Jr., University of Georgia, Athens, GA Sponsored by: U.S. Department of Energy, Savannah River Site, and the USDA Forest Service, Savannah River Forest Station, Biodiversity Program, Aiken, SC Conducted by: USDA Forest Service, Southem Research Station, Asheville, NC, and University of Georgia, Institute of Ecology, Athens, GA Preface James W. McMinn and D. A. Crossley, Jr. Conservation of biodiversity is emerging as a major goal in The effects of CWD on biodiversity depend upon the management of forest ecosystems. The implied harvesting variables, distribution, and dynamics. This objective is the conservation of a full complement of native proceedings addresses the current state of knowledge about species and communities within the forest ecosystem. the influences of CWD on the biodiversity of various Effective implementation of conservation measures will groups of biota. Research priorities are identified for future require a broader knowledge of the dimensions of studies that should provide a basis for the conservation of biodiversity, the contributions of various ecosystem biodiversity when interacting with appropriate management components to those dimensions, and the impact of techniques. management practices. We thank John Blake, USDA Forest Service, Savannah In a workshop held in Athens, GA, October 18-20, 1993, River Forest Station, for encouragement and support we focused on an ecosystem component, coarse woody throughout the workshop process.
    [Show full text]
  • Cerambycidae of Tennessee
    Cerambycidae of Tennessee! Disteniinae: Disteniini! Parandrinae: Parandriini! Closed circles represent previously published county records, museum specimen records, and specimens examined. Open circles are county records reported in Jamerson (1973) for which a specimen could not be located. Future collections are needed to substantiate these accounts. Fig. 2. Elytrimitatrix (Elytrimitatrix) undata (F.)! Fig. 3. Neandra brunnea (F.)! Prioninae: Macrotomini! Prioninae: Meroscheliscini! Fig. 4. Archodontes melanoplus melanoplus (L.)! Fig. 5. Mallodon dasystomus dasystomus Say! Fig. 6. Tragosoma harrisii (LeConte)! Prioninae: Prionini! Fig. 7. Derobrachus brevicollis Audinet-Serville! Fig. 8. Orthosoma brunneum (Forster)! Fig. 9. Prionus (Neopolyarthron) imbricornis (L.)! Prioninae! : Solenopterini! Fig. 10. Prionus (Prionus) laticollis (Drury) ! Fig. 11. Prionus (Prionus) pocularis Dalman ! Fig. 12. Sphenosethus taslei (Buquet) ! Necydalinae: Necydalini! Spondylidinae: Asemini! Fig. 13. Necydalis melitta (Say)! Fig. 14. Arhopalus foveicollis (Haldeman)! Fig. 15. Arhopalus rusticus obsoletus (Randall)! ! ! Suppl. Figs. 2-15. Tennessee county collection localities for longhorned beetle (Cerambycidae) species: Disteniinae, Parandrinae, Prioninae, Necydalinae, Spondylinae: Asemini (in part). ! Spondylidinae: Asemini (ctd.)! Fig. 16. Asemum striatum (L.)! Fig. 17. Tetropium schwarzianum Casey! Fig. 18. Atimia confusa confusa (Say)! ! Spondylidinae: Saphanini! Lepturinae: Desmocerini! Lepturinae: Encyclopini! Fig. 19. Michthisoma heterodoxum LeConte
    [Show full text]
  • 5 Chemical Ecology of Cerambycids
    5 Chemical Ecology of Cerambycids Jocelyn G. Millar University of California Riverside, California Lawrence M. Hanks University of Illinois at Urbana-Champaign Urbana, Illinois CONTENTS 5.1 Introduction .................................................................................................................................. 161 5.2 Use of Pheromones in Cerambycid Reproduction ....................................................................... 162 5.3 Volatile Pheromones from the Various Subfamilies .................................................................... 173 5.3.1 Subfamily Cerambycinae ................................................................................................ 173 5.3.2 Subfamily Lamiinae ........................................................................................................ 176 5.3.3 Subfamily Spondylidinae ................................................................................................ 178 5.3.4 Subfamily Prioninae ........................................................................................................ 178 5.3.5 Subfamily Lepturinae ...................................................................................................... 179 5.4 Contact Pheromones ..................................................................................................................... 179 5.5 Trail Pheromones ......................................................................................................................... 182 5.6 Mechanisms for
    [Show full text]
  • Bulletin Number / Numéro 3 Entomological Society of Canada September / Septembre 2011 Société D’Entomologie Du Canada
    ............................................................ ............................................................ Volume 43 Bulletin Number / numéro 3 Entomological Society of Canada September / septembre 2011 Société d’entomologie du Canada Published quarterly by the Entomological Society of Canada Publication trimestrielle par la Société d’entomologie du Canada ........................................................ .......................................................................................................................................................... ............................................................................................................................................................ ......................................................................................................................................................................................................................... ........................................................................................... ............................................................... .......................................................................................................................................................................................... List of contents / Table des matières Volume 43(3), September / septembre 2011 Up front / Avant-propos ..............................................................................................................101 Important information / Information importante
    [Show full text]
  • The Lepturine
    The Lepturine Longhorn Beetles (Cerambycidae: Lepturinae) (The large beetle on the bottom right does not occur in the Pacific Northwest.) of the Pacific Northwest and Other Stories Phil Schapker, M.S. Web version 1.1 April, 2017 Forward to Web Version 1.1 - May, 2017: The current work is a continuation of a chapter from my MS thesis at Oregon State University, completed in Sept. of 2014. Much of this version is copied directly from that document with several additions and corrections to the text, and a number of new photographs. The intitial goal of my thesis was to create a field guide to the PNW lepturines that was useful both to amateur enthusiasts and to scientists in need of a more detailed technical resource. Unfortunately, the work was forshortened due to time constraints for finishing at OSU, and my ultimate pursuit remains a work in progress. After a brief hiatus from active research, I’ve taken back up the effort. The key to genera is largely based on Linsley & Chemsak’s two-part monograph published in 1972 and 1976. It is currently undergoing testing with the intention to incorporate simpler language, a glossary, and photographic aids. I would greatly appreciate any comments, ideas, corrections, or additions. Feel free to email [email protected]. Acknowledgements: Special thanks to Brady Richards for his meticulous help in proofreading the present draft and getting it up on BugGuide. Also to my former adviser, Chris Marshall, for his continued advice and mentorship, and for allowing me to use the resources of the Oregon State Arthropod collection to conduct my research and photograph specimens.
    [Show full text]