Iop Newsletter 119
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Paleobotanical Proxies for Early Eocene Climates and Ecosystems in Northern North 2 America from Mid to High Latitudes 3 4 Christopher K
https://doi.org/10.5194/cp-2020-32 Preprint. Discussion started: 24 March 2020 c Author(s) 2020. CC BY 4.0 License. 1 Paleobotanical proxies for early Eocene climates and ecosystems in northern North 2 America from mid to high latitudes 3 4 Christopher K. West1, David R. Greenwood2, Tammo Reichgelt3, Alexander J. Lowe4, Janelle M. 5 Vachon2, and James F. Basinger1. 6 1 Dept. of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, 7 Saskatchewan, S7N 5E2, Canada. 8 2 Dept. of Biology, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada. 9 3 Department of Geosciences, University of Connecticut, Beach Hall, 354 Mansfield Rd #207, 10 Storrs, CT 06269, U.S.A. 11 4 Dept. of Biology, University of Washington, Seattle, WA 98195-1800, U.S.A. 12 13 Correspondence to: C.K West ([email protected]) 14 15 Abstract. Early Eocene climates were globally warm, with ice-free conditions at both poles. Early 16 Eocene polar landmasses supported extensive forest ecosystems of a primarily temperate biota, 17 but also with abundant thermophilic elements such as crocodilians, and mesothermic taxodioid 18 conifers and angiosperms. The globally warm early Eocene was punctuated by geologically brief 19 hyperthermals such as the Paleocene-Eocene Thermal Maximum (PETM), culminating in the 20 Early Eocene Climatic Optimum (EECO), during which the range of thermophilic plants such as 21 palms extended into the Arctic. Climate models have struggled to reproduce early Eocene Arctic 22 warm winters and high precipitation, with models invoking a variety of mechanisms, from 23 atmospheric CO2 levels that are unsupported by proxy evidence, to the role of an enhanced 24 hydrological cycle to reproduce winters that experienced no direct solar energy input yet remained 25 wet and above freezing. -
Early Jurassic Microbial Mats—A Potential Response to Reduced Biotic Activity in the Aftermath of the End-Triassic Mass Extinction Event
Palaeogeography, Palaeoclimatology, Palaeoecology 464 (2016) 76–85 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Early Jurassic microbial mats—A potential response to reduced biotic activity in the aftermath of the end-Triassic mass extinction event Olof Peterffy a, Mikael Calner a, Vivi Vajda a,b,⁎ a Department of Geology, Lund University, SE-22362 Lund, Sweden b Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden article info abstract Article history: Wrinkle structures are microbially induced sedimentary structures (MISS) formed by cyanobacteria and are com- Received 6 June 2015 mon in pre-Cambrian and Cambrian siltstones and sandstones but are otherwise rare in the Phanerozoic geolog- Received in revised form 4 December 2015 ical record. This paper reports the first discovery of Mesozoic wrinkle structures from Sweden. These are Accepted 22 December 2015 preserved in fine-grained and organic-rich heterolithic strata of the Lower Jurassic (Hettangian) Höganäs Forma- Available online 30 December 2015 tion in Skåne, southern Sweden. The strata formed in a low-energy, shallow subtidal setting in the marginal parts fi Keywords: of the Danish rift-basin. Palynological analyses of ne-grained sandstones hosting the wrinkle structures show Hettangian that the local terrestrial environment probably consisted of a wetland hosting ferns, cypress and the extinct co- Mass extinction nifer family Cheirolepidaceae. Palynostratigraphy indicates a Hettangian age, still within the floral recovery phase Microbial mat following the end-Triassic mass extinction event. The finding of wrinkle structures is significant as the presence Cyanobacteria of microbial mats in the shallow subtidal zone, (in a deeper setting compared to where modern epibenthic mi- Wrinkle structures crobial mats grow) suggests decreased benthic biodiversity and suppressed grazing in shallow marine environ- Sweden ments in the early aftermath of the end-Triassic mass extinction event. -
A New Understanding of the Lower Cretaceous Jiufotang Formation in Western Liaoning
Open Journal of Geology, 2019, 9, 658-660 https://www.scirp.org/journal/ojg ISSN Online: 2161-7589 ISSN Print: 2161-7570 A New Understanding of the Lower Cretaceous Jiufotang Formation in Western Liaoning Zijie Wu1,2, Longwei Qiu1, Haipeng Wang2 1School of Geosciences, China University of Petroleum, Qingdao, China 2Liaoning Provincial Institute of Geological Exploration Co., Ltd., Dalian, China How to cite this paper: Wu, Z.J., Qiu, Abstract L.W. and Wang, H.P. (2019) A New Un- derstanding of the Lower Cretaceous Jiufo- The Lower Cretaceous Jiufotang Formation in western Liaoning is the most tang Formation in Western Liaoning. Open important fossil production horizon of the Jehol Biota, which is widely dis- Journal of Geology, 9, 658-660. tributed in the Mesozoic basins of western Liaoning. Due to the influence of https://doi.org/10.4236/ojg.2019.910067 historical data, previous scholars believed that there was no volcanic activity Received: August 16, 2019 in the Jiufotang Formation in western Liaoning. In a field investigation in Accepted: September 21, 2019 western Liaoning, the authors discovered basalt and andesite in the Hu- Published: September 24, 2019 jiayingzi bed. In addition, a conformable boundary was found between the Copyright © 2019 by author(s) and Yixian and the Jiufotang formations. It indicates that both the Jiufotang For- Scientific Research Publishing Inc. mation and the Yixian Formation are strata containing volcanic-sedimentary This work is licensed under the Creative rocks, only differing in strength of volcanic activity. Commons Attribution International License (CC BY 4.0). Keywords http://creativecommons.org/licenses/by/4.0/ Open Access Western Liaoning, Lower Cretaceous, Jiufotang Formation, Volcanic Rocks, New Discoveries 1. -
Getting to the Roots: a Developmental Genetic View of Root Anatomy and Function from Arabidopsis to Lycophytes
fpls-09-01410 September 21, 2018 Time: 17:3 # 1 REVIEW published: 25 September 2018 doi: 10.3389/fpls.2018.01410 Getting to the Roots: A Developmental Genetic View of Root Anatomy and Function From Arabidopsis to Lycophytes Frauke Augstein and Annelie Carlsbecker* Department of Organismal Biology, Physiological Botany and Linnean Centre for Plant Biology in Uppsala, Uppsala University, Uppsala, Sweden Roots attach plants to the ground and ensure efficient and selective uptake of water and nutrients. These functions are facilitated by the morphological and anatomical structures of the root, formed by the activity of the root apical meristem (RAM) and consecutive patterning and differentiation of specific tissues with distinct functions. Despite the importance of this plant organ, its evolutionary history is not clear, but fossils suggest that roots evolved at least twice, in the lycophyte (clubmosses and their allies) and in the euphyllophyte (ferns and seed plants) lineages. Both lycophyte and euphyllophyte roots grow indeterminately by the action of an apical meristem, which is protected by a root cap. They produce root hairs, and in most species the vascular stele is Edited by: guarded by a specialized endodermal cell layer. Hence, most of these traits must have Annette Becker, evolved independently in these lineages. This raises the question if the development Justus Liebig Universität Gießen, Germany of these apparently analogous tissues is regulated by distinct or homologous genes, Reviewed by: independently recruited from a common ancestor of lycophytes and euphyllophytes. Hongchang Cui, Currently, there are few studies of the genetic and molecular regulation of lycophyte Florida State University, United States and fern roots. -
Zircon U-Pb SHRIMP Dating of the Yixian Formation in Sihetun, Northeast China
Cretaceous Research 28 (2007) 177e182 www.elsevier.com/locate/CretRes New evidence for Cretaceous age of the feathered dinosaurs of Liaoning: zircon U-Pb SHRIMP dating of the Yixian Formation in Sihetun, northeast China Wei Yang a, Shuguang Li a,*, Baoyu Jiang b a Department of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China b Department of Earth Sciences, Nanjing University, Nanjing 210093, China Accepted 30 May 2006 Available online 25 January 2007 Abstract We present the first report of U-Pb SHRIMP dating of zircons from three tuffs interbedded within the ‘‘feathered dinosaur’’-bearing deposits in western Liaoning, China. One is a sample from the Bed 6 tuff (LX-SHT-12) of the Yixian Formation in Sihetun, for which our zircon U-Pb SHRIMP analyses gave a Cretaceous age (124.7 Æ 2.7 Ma), in agreement with a previously published sanidine 40Ar/39Ar age (124.60 Æ 0.25 Ma). The other two are from the Bed 1 tuff (LX-HBJ-1) and Bed 8 tuff (LX-HBJ-6) of the Yixian Formation in Huangbanjigou; the former gave an age of 124.9 Æ 1.7 Ma, the latter an age of 122.8 Æ 1.6 Ma. The three consistent ages indicate that the Yixian Formation was deposited in the Early Cretaceous within a very short time period (ca. 2 Ma). Ó 2006 Published by Elsevier Ltd. Keywords: Zircon U-Pb SHRIMP dating; Yixian Formation; Feathered dinosaurs; Liaoning; Jehol Biota 1. Introduction still the subject of disagreement. Previously K-Ar and Rb-Sr dat- ing results for the volcanic rocks of the formation have yielded Recently, a wide variety of spectacular fossils, including the Jurassic ages of 137 Æ 7 Ma and 142.5 Æ 4Ma(Wang and Diao, ‘‘feathered dinosaurs’’ Sinosauropteryx (Chen et al., 1998), Pro- 1984). -
COMMONWEALTH of VIRGINIA DEPARTMENT of CONSERVATION and ECONOMIC DEVELOPMENT DIVISION of MINERAL RESOURCES Robert C
VIRGINIA DIVISION OF MINERAL RESOURCES PUBLICATION 20 GEOLOGY OF THE OAK GROVE CORE . e- 1lg**** - rlrl""*"-*-lq j4;i; s" r "e .-e l;"* l* - :-* l,i.l-1" -*"4{ ' *-q-S''q-"_ l -a,T-,! - !:: ts"--l ::9: : ::5 :e 'l I ." t::::,:1,a::-:d:; r--" 4 f-d;:s ,:,S r,! ,:a:16:":, 9:-4:-:r:: -':"-lii;3? -F - d,* COMMONWEALTH OF VIRGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES Robert C. Milici, Commissioner of Mineral Resources and State Geologist CHARLOTTESVILLE, VIRGINIA 1980 VIRGINIA DIVISION OF MINERAL RESOURCES PUBLICATION 20 GEOLOGY OF THE OAK GROVE CORE COMMONWEALTH OF VI RGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES Robert C. Milici, Commissioner of Mineral Resources and State Geologist CHAR LOTTESVI LLE, VI RGI N IA 1980 VIRGINIA DIVISION OF MINERAL RESOURCES PUBLICATION 20 GEOLOGY OF THE OAK GROVE CORE COMMONWEALTH OF VI RGIN IA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES Robert C. Milici, Commissioner of Mineral Resources and State Geologist CHARLOTTESVILLE, VIRGINIA 1980 COMMONWEALTH OT VIRGINIA DEPARTMENT OF PURCHASES AND SUPPLY . RICHMOND 1980 DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT Richmond, Virginia FRED W. WALKER, Director JERALDF. MOORE, Deputy Director BOARD J. H. JOHNSON, West Point, Chairman A. R. DUNNING, Millwood, Vice Chairman MYRON P. ERKILETIAN, Alexandria ARTHUR P. FLIPPO. Doswell HENRY T. N. GRAVES, Luray MILDRED LAYNE, Williamsburg FREDERIC S. REED, Manakin-Sabot GEORGE P. SHAFRAN, Arlington SHELDON H. SHORT,III, Chase City NICHOLAS D. STREET, Grundy SHERMAN WALLACE, Cleveland E. FLOYD YATES, Powhatan CONTENTS' Page Part 1. -
9/3/2019 1 Bonnie Fine Jacobs Curriculum Vitae Address
9/3/2019 BONNIE FINE JACOBS CURRICULUM VITAE ADDRESS: Roy M. Huffington Department of Earth Sciences P.O. Box 750395 Southern Methodist University Dallas, Texas 75275-0395 EDUCATION: Ph.D. 1983, Geosciences, University of Arizona. Past Vegetation and Climate of the Mogollon Rim Area, Arizona. M.S. 1978, Geosciences, University of Arizona. Vegetation and Modern Pollen Spectra in Sinaloa and Nayarit, Mexico. B.A. 1974, Geology/Anthropology, State University of New York at Buffalo. EMPLOYMENT: 2013 – Present. Professor, Roy M. Huffington Department of Earth Sciences, Southern Methodist University. 2006 – 2013. Associate Professor, Roy M. Huffington Department of Earth Sciences, Southern Methodist University. 2009 – 2010. Founding Director, SMU Center for the Environment, Southern Methodist University. 2000 – 2010. Director, Environmental Science Program; 2008 – 2010 founding Director Environmental Studies Program, Southern Methodist University. 2000 – 2006. Assistant Professor Southern Methodist University. 2001- Present. Research Associate Professor II of Biological Sciences, Southern Methodist University. 1995 - 2000. Adjunct Associate Professor, Departments of Anthropology and Geological Sciences, Southern Methodist University. 1986 - 1995. Adjunct Assistant Professor, Southern Methodist University, Department of Geological Sciences, Southern Methodist University. 1 9/3/2019 1985 – Present. Scientist, and Director of Palynology Laboratory, Southern Methodist University. 1984 - 2000. Adjunct Assistant Professor, Department of Biological -
Scouring-Rush Horsetail Scientific Name: Equisetum Hyemale Order
Common Name: Scouring-rush Horsetail Scientific Name: Equisetum hyemale Order: Equisetales Family: Equisetaceae Wetland Plant Status: Facultative Ecology & Description Scouring-rush horsetail is an evergreen, perennial plant that completes a growing season in two years. At maturity, scouring-rush horsetail usually averages 3 feet in height but can be range anywhere from 2 to 5 feet. It can survive in a variety of environments. One single plant can spread 6 feet in diameter. It has cylindrical stems that averages a third of an inch in diameter. Noticeably spotted are the jointed unions that are located down the plant. The stems are hollow and don’t branch off into additional stems. Also, scouring- rush horsetail has rough ridges that run longitudinal along the stem. Although not covered in leaves, tiny leaves are joined together around the stem which then forms a black or green band, or sheath at each individual joint on the stem. This plant has an enormous root system that can reach 6 feet deep and propagates in two ways: rhizomes and spores. Incredibly, due to the fact that this plant is not full of leaves, it is forced to photosynthesize through the stem rather than leaves. Habitat Scouring-rush horsetail is highly tolerant of tough conditions. It can survive and thrive in full sun or part shade and can successfully grow in a variety of soil types. It can also grow in moderate to wet soils, and can survive in up to 4 inches of water. Distribution Scouring-rush horsetail can be found throughout the United States, Eurasia, and Canada. -
Molecular Identification of Azolla Invasions in Africa: the Azolla Specialist, Stenopelmus Rufinasus Proves to Be an Excellent Taxonomist
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/303097315 Molecular identification of Azolla invasions in Africa: The Azolla specialist, Stenopelmus rufinasus proves to be an excellent taxonomist Article in South African Journal of Botany · July 2016 DOI: 10.1016/j.sajb.2016.03.007 READS 51 6 authors, including: Paul T. Madeira Martin P. Hill United States Department of Agriculture Rhodes University 24 PUBLICATIONS 270 CITATIONS 142 PUBLICATIONS 1,445 CITATIONS SEE PROFILE SEE PROFILE Julie Angela Coetzee I.D. Paterson Rhodes University Rhodes University 54 PUBLICATIONS 423 CITATIONS 15 PUBLICATIONS 141 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: I.D. Paterson letting you access and read them immediately. Retrieved on: 16 August 2016 South African Journal of Botany 105 (2016) 299–305 Contents lists available at ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb Molecular identification of Azolla invasions in Africa: The Azolla specialist, Stenopelmus rufinasus proves to be an excellent taxonomist P.T. Madeira a,M.P.Hillb,⁎,F.A.DrayJr. a,J.A.Coetzeeb,I.D.Patersonb,P.W.Tippinga a United States Department of Agriculture, Agriculture Research Service, Invasive Plant Research Laboratory, 3225 College Avenue, Ft. Lauderdale, FL 33314, United States b Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa article info abstract Article history: Biological control of Azolla filiculoides in South Africa with the Azolla specialist Stenopelmus rufinasus has been Received 18 September 2015 highly successful. However, field surveys showed that the agent utilized another Azolla species, thought to be Received in revised form 18 February 2016 the native Azolla pinnata subsp. -
Seed Plant Phylogeny: Demise of the Anthophyte Hypothesis? Michael J
bb10c06.qxd 02/29/2000 04:18 Page R106 R106 Dispatch Seed plant phylogeny: Demise of the anthophyte hypothesis? Michael J. Donoghue* and James A. Doyle† Recent molecular phylogenetic studies indicate, The first suggestions that Gnetales are related to surprisingly, that Gnetales are related to conifers, or angiosperms were based on several obvious morphological even derived from them, and that no other extant seed similarities — vessels in the wood, net-veined leaves in plants are closely related to angiosperms. Are these Gnetum, and reproductive organs made up of simple, results believable? Is this a clash between molecules unisexual, flower-like structures, which some considered and morphology? evolutionary precursors of the flowers of wind-pollinated Amentiferae, but others viewed as being reduced from Addresses: *Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts 02138, USA. †Section of Evolution and more complex flowers in the common ancestor of Ecology, University of California, Davis, California 95616, USA. angiosperms, Gnetales and Mesozoic Bennettitales [1]. E-mail: [email protected] These ideas went into eclipse with evidence that simple [email protected] flowers really are a derived, rather than primitive, feature Current Biology 2000, 10:R106–R109 of the Amentiferae, and that vessels arose independently in angiosperms and Gnetales. Vessels in angiosperms 0960-9822/00/$ – see front matter seem derived from tracheids with scalariform pits, whereas © 2000 Elsevier Science Ltd. All rights reserved. in Gnetales they resemble tracheids with circular bor- dered pits, as in conifers. Gnetales are also like conifers in These are exciting times for those interested in plant lacking scalariform pitting in the primary xylem, and in evolution. -
Palynology of the Upper Chinle Formation in Northern New Mexico, U.S.A
Lindström et al. 1 1 Palynology of the upper Chinle Formation in northern New Mexico, U.S.A.: 2 implications for biostratigraphy and terrestrial ecosystem change during the Late 3 Triassic (Norian–Rhaetian) 4 a* b c d 5 Sofie Lindström , Randall B. Irmis , Jessica H. Whiteside , Nathan D. Smith , Sterling J. e f 6 Nesbitt , and Alan H. Turner 7 a 8 Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen 9 K, DENMARK, [email protected] b 10 Natural History Museum of Utah and Department of Geology & Geophysics, University of 11 Utah, Salt Lake City, UT 84108-1214, USA c 12 Ocean and Earth Science, National Oceanography Centre Southampton, University of 13 Southampton, European Way, Southampton SO14 3ZH, UNITED KINGDOM d 14 Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA 15 90007, USA e 16 Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, 17 Virginia 24601 USA f 18 Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York 19 11794-8081, USA 20 21 Abstract 22 A new densely sampled palynological record from the vertebrate-bearing upper Chinle 23 Formation at Ghost Ranch in the Chama Basin of northwestern New Mexico provides insights 24 into the biostratigraphy and terrestrial ecosystem changes during the Late Triassic of 25 northwestern Pangaea. Spore-pollen assemblages from the Poleo Sandstone, Petrified Forest, Lindström et al. 2 26 and 'siltstone' members are dominated by pollen of corystospermous seed ferns (Alisporites) 27 and voltziacean conifers (Enzonalasporites, Patinasporites). Other abundant taxa include 28 Klausipollenites gouldii and the enigmatic fused tetrad Froelichsporites traversei, whereas 29 spores of ferns and fern allies are generally rare. -
Squires Catalogue
Type and Figured Palaeontological Specimens in the Tasmanian Museum and Art Gallery A CATALOGUE Compiled by Tasmanian Museum and Art Gallery Don Squires Hobart, Tasmania Honorary Curator of Palaeontology May, 2012 Type and Figured Palaeontological Specimens in the Tasmanian Museum and Art Gallery A CATALOGUE Compiled by Don Squires Honorary Curator of Palaeontology cover image: Trigonotreta stokesi Koenig 1825, the !rst described Australian fossil taxon occurs abundantly in its type locality in the Tamar Valley, Tasmania as external and internal moulds. The holotype, a wax cast, is housed at the British Museum (Natural History). (Clarke, 1979) Hobart, Tasmania May, 2012 Contents INTRODUCTION ..........................................1 VERTEBRATE PALAEONTOLOGY ...........122 PISCES .................................................. 122 INVERTEBRATE PALAEONTOLOGY ............9 AMPHIBIA .............................................. 123 NEOGENE ....................................................... 9 REPTILIA [SP?] ....................................... 126 MONOTREMATA .................................... 127 PLEISTOCENE ........................................... 9 MARSUPIALIA ........................................ 127 Gastropoda .......................................... 9 INCERTAE SEDIS ................................... 128 Ostracoda ........................................... 10 DESCRIBED AS A VERTEBRATE, MIOCENE ................................................. 14 PROBABLY A PLANT ............................. 129 bivalvia ...............................................