The PCB Design Magazine • February 2013 Test & Meaasuurer Meent Storage

Total Page:16

File Type:pdf, Size:1020Kb

The PCB Design Magazine • February 2013 Test & Meaasuurer Meent Storage Test & Meaasuurer ment Storage Teelel coom I-Speed MiM lilitataryy Innfrfrasastrruucctuure Baackckplanne Servers The Next Generation High Speed Product from Isola • Global constructions available in all regions • Offer spread and square weave glass styles (1035, 1067, • Optimized constructions to improve lead free 1078, 1086, 3313) for laminates and prepregs – performance Minimizes micro-Dk effects of glass fabrics – Enables the glass to absorb resin better and • I-Speed delivers 15-20% lower insertion loss over enhances CAF capabilities competitive products through reduced copper – Improves yields at laser and mechanical drilling roughness and dielectric loss • A low Df product with a low cost of ownership • Improved Z-axis CTE 2.70% • I-Speed – IPC 4101 Rev. C /21 /24 /121 /124 /129 Effective Loss @ 4 GHz on a 32 inch line Magnitude [S], [db] A: I-Speed B: Mid - Df 1.3 -10 4 4 4 4 -20 -30 Magnitude [S], [db] A: I-Speed B: Mid - Df -2.5 Loss (dB) Length (mm) Length (in) Loss (dB/mm) Loss (dB/inch) -5 I-Speed -11.43 800 31.496 -0.014 -0.363 Mid-Df -13.55 800 31.496 -0.017 -0.430 15.65% -7.5 -10 -11.43 < 4 -12.5 -13.55 < 4 -15 -17.5 I-Speed delivers 15-20% lower insertion loss over competitive low Df products. http://www.isola-group.com/products/i-speed The data, while believed to be accurate and based on analytical methods considered to be reliable, is for information purposes only. Any sales of these materials will be governed by the terms and conditions of the agreement under which they are sold. Isola Group S.a.r.l. 3100 West Ray Rd., Suite 301, Chandler, AZ 85226 1-480-893-6527 The base for innovation http://www.isola-group.com February 2013 THIS ISSUE: SIMULATION & ANALYSIS FEATURED CONTENT Do you run simulation on your PCB designs? Circuit boards have grown increasingly faster and more complex, yet simulation is still not standard procedure, even with high-technology de- signs. This month, our veteran contributors discuss a variety of simulation techniques that can help you save time and avoid costly re-spins. 10 Measuring Correlation 54 High-Speed Boards Need to 50 GHz and Beyond Automated Checking by Yuriy Shlepnev by Mike Steinberger 28 Postmortem Simulation by Barry Olney FEATURE COLUMN 36 Efficient Simulation Using High-Frequency Printed Circuit Materials by John Coonrod 4 The PCB Design Magazine • February 2013 Test & Meaasuurer meent Storage Teelel coom ® I-Tera MTMMililitataryy Innfrfrasastrruucctuturre Baackckplanne Servers The Next Generation Very Low Loss Product from Isola • Tg - 200°C • Superior processing performance over competitive products • Td - 360°C • I-Tera MT processing attributes: • Low CTE in the Z-axis 2.8% (50 to 260°C) – 30% greater press productivity over competitive products • Dk range = 3.00 to 3.45 – Better drilling performance over competitive products, no ceramic filler used • Df range 0.0030 to 0.0036 – No plasma desmear required • Utilizes standard E-glass • Exhibited good filling of vias vs. competitive products • I-Tera MT prepreg standard FR-4 storage conditions apply • Global availability with standard constructions • UL Qualified - 130 MOT • Square-weave styles available: 1035, 1067, 1078, 1086, 3313 I-Tera MT Dk - 3.00 and Dk - 3.45 vs. Comeptitive Product 12” Micrstrip T-Lines - dB/Inch I-Tera MT Dk - 3.00 I-Tera MT Dk 3.45 Comeptitive 30 mil 30 mil Product I-Tera MT shows a 15% improvement in impedance over the competitive product. http://www.isola-group.com/products/i-tera The data, while believed to be accurate and based on analytical methods considered to be reliable, is for information purposes only. Any sales of these materials will be governed by the terms and conditions of the agreement under which they are sold. Isola Group S.a.r.l. 3100 West Ray Rd., Suite 301, Chandler, AZ 85226 1-480-893-6527 The base for innovation http://www.isola-group.com FeBruary 2013 The oPTiMuM voluMe 2 TM Magazine nuMBer 2 DeDiCaTeD To thepcbdesignmagazine.com PCB Design CONTENTS SPECIAL SECTION COLUMNS 40 IPC APEX EXPO 2013 8 To Simulate or Pre-Show Coverage Not to Simulate? by Andy Shaughnessy 22 PCB Design Data: What Do Your Customers Expect? by Jack Olson 64 Do Not Measure PDN Noise Across Capacitors! ARTICLE by Istvan Novak 70 Is the Cloud a New Paradigm for Electronic Design? 76 Adhesive Delamination by Dr. Raul Camposano by Paul Reid and Steven McKinney SHORTS 9 IPC: December 2012 Shipments, Bookings Down VIDEO INTERVIEWS 21 Simberian: High-End Simulation 27 2013 Design Vision Award Winners For Designers Recognize Innovation 27 Cadence Integrates 63 Nanowires Could Lead to More Sigrity Capabilities Efficient, Cheaper Solar Cells 68 Modeling High-Speed 80 IPC Sees Bright Future for Structures: The Doctor is In Latin American Industry 74 Twenty-Five Years of Simulation Stimulation TOP TEN MOST-READ NEWS 35 PCB007 EXTRAS 63 Mil/Aero007 84 Events Calendar 82 PCBDesign007 85 Advertiser Index & Masthead 6 The PCB Design Magazine • February 2013 column THE SHAUGHNESSY REPORT To Simulate or Not to Simulate? by Andy Shaughnessy i-ConneCT007 Years ago, very few PCB designs went So Ansoft was acquired by ANSYS, HyperL- through any type of simulation process. And ynx and Zeland are now part of Mentor Graph- that was just fine. Most designs were simple ics, and Sigrity was purchased by Cadence last enough; they didn’t need to be simulated. year. Only Agilent, CST, E-System Design, Sim- But then high-speed design became the rule, berian and SiSoft remain independent. Agilent rather than the may be too big exception. Now to be acquired, designers and but you have to design engineers wonder whether are contending Mentor, Cadence with issues such or Zuken have as ever-increas- their eyes on any ing edge rates, of the other four. transmission They’d all be line reflections, worth acquiring ground bounce, just for the en- and crosstalk, gineering talent not to mention alone. challenges relat- Still, there ed to DDR, PCi seems to be a dis- Express, XAUI, connect; some and SERDES. OEMs just don’t Simulation see any reason to software became run simulation. I a big segment talk with plenty of our industry. of designers who Over the past few don’t simulate decades, we’ve their designs, seen compa- and these guys nies like Ansoft, aren’t designing Agilent, CST, E- yesterday’s tech- System Design, HyperLynx, Sigrity, Simberian, nology. They’re creating some seriously cutting- SiSoft, and Zeland develop PCB simulation and edge, multigig boards. I’ve seen stats showing analysis solutions. that only about half of all PCB designs are simu- These companies used to exhibit at all of lated, and that seems pretty accurate to me. the industry trade shows, from DesignCon to Do you simulate your designs? Send me an MTT/S to PCB West. But over the years, many e-mail and let me know why or why not. This of them have been absorbed by the “big guys.” is definitely a topic worth revisiting. The EDA companies saw plenty of value in the smaller simulation software companies, not Happy Birthday to mention the technical ability behind it. For a Before I sign off, I’d like to offer a few birth- comparatively small amount of money, an EDA day wishes. HyperLynx, Mentor Graphics’ company could dramatically improve its simu- simulation software tool, is celebrating its 25th lation software lineup. birthday this year. The company HyperLynx 8 The PCB Design Magazine • February 2013 the shaughnessy report TO simulate OR NOT TO simulate? continues was founded in 1988, aiming to bring high- and still loved by many users, since its intro- speed design tools to the then-nascent PC duction in 1994. Intercept now offers solutions world. The first HyperLynx tool was LineSim, for RF and hybrid design, as well as schematic followed by BoardSim and the EMC analysis and library management tools. tool SpectralSim. HyperLynx stayed involved We always hear that our industry is static, in the industry, and management co-founded that PCB designers and design engineers are the IBIS Open Forum in 1993. In 1997, HyperL- afraid of change. Well, there might be some ynx was acquired by PADS, which in 2000 was truth to that. After all, most of us are in our 40s purchased by Innoveda. Mentor then acquired and 50s, and it’s only natural that we become Innoveda in 2002. Mentor demonstrated the set in our ways. newest HyperLynx release at DesignCon in But the industry is constantly changing. January. And isn’t that why we enjoy our jobs in the first And Intercept Technology is turning 30 place? PCBDESIGN this year. When Intercept started out as an engineering consulting firm in 1983, founder Steve Klare had no intention of running an andy shaughnessy is manag- EDA software company. But after a decade of ing editor of The PCB Design dealing with the challenges related to the CAE Magazine. he has been cover- and CAD software of the time, Intercept began ing PCB design for 13 years. developing its own EDA tools. The company he can be reached by clicking recently redesigned the GUI of its Pantheon here. design suite, which had remained unchanged, For rigid PCBs and flexible circuits combined, IPC: December 2012 Shipments, industry shipments in December 2012 were down Bookings Down 14.5% and bookings decreased 7.5%, compared to December 2011. year to date, combined indus- iPC has announced the December findings from try shipments were down 5.2% and bookings were its monthly north american Printed Circuit Board down 2.4%.
Recommended publications
  • Simulation Modeling with SIMUL8 / Kieran Concannon
    Simulation Modeling with Kieran Concannon Mark Elder Kim Hindle Jillian Tremble Stanley Tse Produced by: Simulation Solutions Copyright Visual Thinking International, 2007 Cover Design Jo-Dee Burbach Tuling This book was produced by Visual8 Corporation and printed and bound by e- impressions Inc. First published 2004 Copyright © Visual Thinking International. All rights reserved. This edition published 2007 Copyright © Visual Thinking International No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, without the prior written permission of Visual Thinking International, telephone 1-800-878-3373, email [email protected]. All trademarks are the property of their respective companies. Document Edition 4.1 Date September 2007 SIMUL8 Software Version 14.0 ISBN 0-9734285-0-3 Printed in Canada. National Library of Canada Cataloguing in Publication Simulation modeling with SIMUL8 / Kieran Concannon ... [et al.]. Includes index. ISBN 0-9734285-0-3 1. SIMUL8. 2. Computer simulation--Computer programs. I. Concannon, Kieran, 1951- QA76.9.C65S45 2003 003'.353 C2003-907459-5 About the Authors and Contributors Simulation Modeling with SIMUL8 • 1 About the Authors and Contributors Authors Kieran Concannon With a Masters in Operations Research from Birmingham University, Kieran has been developing computer simulations for over 25 years. He has played a vital role in establishing the use of simulation in production planning and execution and has been influential in the development of SIMUL8. Kieran founded and is currently the President of Visual8 Corporation, the preeminent consulting, training, and support group for SIMUL8 in North America.
    [Show full text]
  • Modern Advances in Software and Solution Algorithms for Reservoir Simulation
    MODERN ADVANCES IN SOFTWARE AND SOLUTION ALGORITHMS FOR RESERVOIR SIMULATION A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ENERGY RESOURCES ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Rami M. Younis August 2011 © 2011 by Rami Mustafa Younis. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/fb287kz3299 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Hamdi Tchelepi, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Khalid Aziz, Co-Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Juan Alonso Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract As conventional hydrocarbon resources dwindle, and environmentally-driven markets start to form and mature, investments are expected to shift into the development of novel emerging subsurface process technologies.
    [Show full text]
  • Methods of Simulation-Assisted Automation Testing
    ESPOO 2005 VTT RESEARCH NOTES 2289 VTT TIEDOTTEITA – RESEARCH NOTES VTT TUOTTEET JA TUOTANTO – VTT INDUSTRIELLA SYSTEM – VTT INDUSTRIAL SYSTEMS NOTES 2289 VTT RESEARCH 2235 Lehto, Taru & Murtonen, Mervi. Toiminnan kehittämisen vaikutukset ja päätöksen- teko. PRIMA-työkalupakki kehittämistoimenpiteiden valintaan ja suunnitteluun. 2004. Requirements Testing Analyzing 52 s. + liitt. 35 s. management results 2240 Jarimo, Toni. Innovation Incentives in Enterprise Networks. A Game Theoretic Manager Approach. 2004. 63 p. + app. 3 p. 2243 Ventä, Olli. Älykkäät palvelut -teknologiatiekartta. 2004. 71 s. + liitt. 11 s. Database: Definition of Execution of 2250 Sippola, Merja, Brander, Timo, Calonius, Kim, Kantola, Lauri, Karjalainen, Jukka- * Test cases Test cases Test cases Pekka, Kortelainen, Juha, Lehtonen, Mikko, Söderström, Patrik, Timperi, Antti & * Test results Vessonen, Ismo. Funktionaalisten materiaalien mahdollisuudet lujitemuovisessa toimirakenteessa. 2004. 216 s. Methods of simulation-assisted automation testing 2251 Riikonen, Heli, Valkokari, Katri & Kulmala, Harri I. Palkitseminen kilpailukyvyn parantajana. Tuotantopalkkauksen kehittämismenetelmät vaatetusalalla. 2004. 67 s. 2254 Nuutinen, Maaria. Etäasiantuntijapalvelun haasteet. Työn toiminta- ja osaamis- vaatimusten mallintaminen. 2004. 31 s. 2257 Koivisto, Tapio, Lehto, Taru, Poikkimäki, Jyrki, Valkokari, Katri & Hyötyläinen, Raimo. Metallin ja koneenrakennuksen liiketoimintayhteisöt Pirkanmaalla. 2004. 33 s. 2263 Pöyhönen, Ilkka & Hukki, Kristiina. Riskitietoisen ohjelmiston
    [Show full text]
  • SPICE2 – a Spatial Parallel Architecture for Accelerating the SPICE Circuit Simulator
    SPICE2 { A Spatial Parallel Architecture for Accelerating the SPICE Circuit Simulator Thesis by Nachiket Kapre In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2010 (Submitted October 26, 2010) c 2010 Nachiket Kapre All Rights Reserved ii Abstract Spatial processing of sparse, irregular floating-point computation using a single FPGA enables up to an order of magnitude speedup (mean 2.8× speedup) over a conven- tional microprocessor for the SPICE circuit simulator. We deliver this speedup us- ing a hybrid parallel architecture that spatially implements the heterogeneous forms of parallelism available in SPICE. We decompose SPICE into its three constituent phases: Model-Evaluation, Sparse Matrix-Solve, and Iteration Control and parallelize each phase independently. We exploit data-parallel device evaluations in the Model- Evaluation phase, sparse dataflow parallelism in the Sparse Matrix-Solve phase and compose the complete design in streaming fashion. We name our parallel architec- ture SPICE2: Spatial Processors Interconnected for Concurrent Execution for ac- celerating the SPICE circuit simulator. We program the parallel architecture with a high-level, domain-specific framework that identifies, exposes and exploits parallelism available in the SPICE circuit simulator. Our design is optimized with an auto-tuner that can scale the design to use larger FPGA capacities without expert intervention and can even target other parallel architectures with the assistance of automated code-generation. This FPGA architecture is able to outperform conventional proces- sors due to a combination of factors including high utilization of statically-scheduled resources, low-overhead dataflow scheduling of fine-grained tasks, and overlapped processing of the control algorithms.
    [Show full text]
  • Simulation Software: Not the Same Yesterday, Today Or Forever M Pidd* and a Carvalho Lancaster University, Lancester, UK
    Journal of Simulation (2006),1–14 r 2006 Operational Research Society Ltd. All rights reserved. 1747-7778/06 $30.00 www.palgrave-journals.com/jos Simulation software: not the same yesterday, today or forever M Pidd* and A Carvalho Lancaster University, Lancester, UK It is probably true, at least in part, that each generation assumes that the way it operates is the only way to go about things. It is easy to forget that different approaches were used in the past and hard to imagine what other approaches might be used in the future. We consider the symbiotic relationship between general developments in computing, especially in software and parallel developments in discrete event simulation. This shows that approaches other than today’s excellent simulation packages were used in the past, albeit with difficulty, to conduct useful simulations. Given that few current simulation packages make much use of recent developments in computer software, particularly in component-based developments, we consider how simulation software might develop if it utilized these developments. We present a brief description of DotNetSim, a prototype component-based discrete event simulation package to illustrate our argument. Journal of Simulation (2006) 0, 000–000. doi:10.1057/palgrave.jos.4250004 Keywords: simulation software; Microsoft.NET; composability; the future Introduction methods are also common in the various sub-disciplines of the social sciences and management sciences. Since this new It will be very obvious to readers of this new journal that a journal is published on behalf of the Operational Research computer can be used to simulate the operation of a system Society, we focus on simulation as used in OR/MS such as a factory or call centre, but whether it was so (operational research/management science)—but there is obvious to the pioneers is not so clear.
    [Show full text]
  • Free Circuit Simulator-Circuit Design and Simulation Software List Top Ten:Circuit Simulators Top Ten:Circuit Simulators | Mixed-Signal Electronics Circuit [...]
    Home Forums Datasheets Lab Manual Testing Components Buy Project Kits Custom Search jojo November - 6 - 2011 31 Comments Hello friends, I hope you all got benefited with our previous article on Electronic circuit drawing softwares . Today we are bringing you a great collection of circuit simulators – which are at the same time can be used for circuit drawing, circuit design and analysis as well. The list is well structured as free circuit simulation softwares, open source circuit analysis and simulation software, simple and easy to use simulators, linux based simulator, windows based simulator etc. Finally after researching through all the list we have compiled a collection best circuit simulation softwares as well. So lets start our journey right below. Free and Open source circuit simulator software list:- 1 of 13 NgSpice – one of the popular and widely used free, open source circuit simulator from Sourceforge. NgSpice is developed by a collective effort from its users and its code is based on 3 open source software packages:- known as:- Spice3f5 , Cider and Xspice. Ngspice is a part of gEDA project which is growing every day with suggestions from its users, development from its contributors, fixing bugs and approaching perfection. As its a collaborative project you can suggest improvement of the circuit simulator and be a part of the development team. GnuCap - is another open source project, developed as a general purpose circuit simulator. Known widely as GNU Circuit analysis package, this linux based circuit simulator performs various circuit analysis functions as dc and transient analysis, ac analysis etc. Developers have incorporated spice compatible model for MOSFET, BJT and Diode.
    [Show full text]
  • Design and Implementation of a PLC Trainer Workstation
    Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 755-761 (2020) ASTESJ www.astesj.com ISSN: 2415-6698 Design and Implementation of a PLC Trainer Workstation Matthew Oluwole Arowolo*, Adefemi Adeyemi Adekunle, Martins Oluwaseun Opeyemi Department of Mechatronics Engineering, Federal University Oye – Ekiti, 371104, Nigeria A R T I C L E I N F O A B S T R A C T Article history: The Programmable Logic Controller (PLC) is an important component for industrial Received:28 May, 2020 automatic engineering operation. Hence, the need to comprehend its basis of operation Accepted:05 August, 2020 becomes an inevitable task. Some of the problems is industrial PLC is an expensive, pre- Online: 28 August, 2020 built hardware kit, acquisition of programming software and its requisite programming competence is a challenge. Thus, this paper present’s the design steps for a desktop PLC Keywords: trainer workstation for industrial automatic engineering operation. Although researchers PLC have proposed and reported several PLC trainers but they fail to discuss the hardware Ladder logic connection of the input/output components neither is the basic PLC automatic - operation PLC Workstation nor PLC component symbols with description discussed. These are the areas discussed in Programming this paper to train participant on PLC programming knowledge. The develop PLC Software workstation consist of push buttons and switches for input signals and for output signal buzzer, indicator lights and blower. The control aspect comprises the PLC, timer and relay. The PLC module is the MITSUBISHI FX 1S-30MR-001, the simulation software is the MITSUBISHI FXTRN-BEG-EL and the programming software is the MITSUBISHI GX Developer version 8.
    [Show full text]
  • Pulsed Power Engineering Circuit Simulation
    Pulsed Power Engineering Circuit Simulation January 12-16, 2009 Craig Burkhart, PhD Power Conversion Department SLAC National Accelerator Laboratory Circuit Simulation for Pulsed Power Applications • Uses of circuit simulation • Tools • Limitations • Typical methodology January 12-16, 2009 USPAS Pulsed Power Engineering C Burkhart 2 January 12-16, 2009 USPAS Pulsed Power Engineering C Burkhart 3 January 12-16, 2009 USPAS Pulsed Power Engineering C Burkhart 4 January 12-16, 2009 USPAS Pulsed Power Engineering C Burkhart 5 January 12-16, 2009 USPAS Pulsed Power Engineering C Burkhart 6 Circuit Simulation Tools • Reduces circuit to N algebraic equations with N unknowns and solve – Implicit integration Methods – Newton’s method –Etc. • Spice/PSpice (Simulation Program with Integrated Circuit Emphasis) – Ubiquitous circuit solver – Developed at UC Berkeley, first presented in 1973 – P in PSpice stands for personal computer – Large parts library – Analog and digital circuits • Matlab/Simulink/SimPowerSystems/PLECS – Matlab mathematical tool teamed with specialized toolboxes – Simulink/SimPowerSystems – PLECS – Developed primarily for power electronics January 12-16, 2009 USPAS Pulsed Power Engineering C Burkhart 7 Circuit Simulation Tools • PSIM – Developed for power electronics – Fast convergence – Matlab interface • Simplorer – Developed for power electronics – Four modeling languages • VHDL-AMS for analog-mixed-signal-design • Circuit Simulator for the simulation of power electronic circuits • Block diagram simulator for the simulation of
    [Show full text]
  • The Role of Simulation in Innovative Electronic Design
    White Paper The Role of Simulation in Innovative Electronic Design We’re in the midst of an electronics-centered innovation boom that has transformed the way we communicate, work, learn and entertain. Virtually no product is exempt from these im- provements. Around the globe, in obvious and not-so-obvious applications, there are ultra- smart phones, fi ber-optic and wireless networks, computers that fi t into a pocket, LED screen displays that mimic paper and even tracking chips in pets. Second-millennium automobiles are fi lled with electronic devices that control engine functions, keep wheels from skidding, help avoid accidents and direct our route of travel. Aviation electronics include radar, fl y-by-wire systems and airborne communications. Electronics innovations have been adopted in indus- trial and military applications: Smart electronics are redefi ning everything from just-in-time manufacturing to homeland security. It’s obvious that these devices are aff ecting the quality of our lives. What’s not so apparent is how interconnected products have become and how they impact our safety. Never before has the opportunity to diff erentiate in the electronics product marketplace been so pronounced. At the same time, the downside risk of product failure and its consequences can be catastrophic: One estimate for a single product recall is $8 million-plus — in direct costs only. More signifi - cantly, a brand that took decades to build can be destroyed in seconds. The behaviors of today’s products are complex and diffi cult to physically test. For instance, electronics create a large amount of stray emissions.
    [Show full text]
  • SPICE Engine Analysis and Circuit Simulation Application Development
    TELKOMNIKA, Vol.14, No.1, March 2016, pp. 64~71 ISSN: 1693-6930, accredited A by DIKTI, Decree No: 58/DIKTI/Kep/2013 DOI: 10.12928/TELKOMNIKA.v14i1.2832 64 SPICE Engine Analysis and Circuit Simulation Application Development Bing Chen*1, Gang Lu2, Yuehai Wang3 1College of Electronic Engineering, Naval University of Engineering,WuHan,430033, China 2Equipment Department of the Navy, Beijing,100055, China 3School of electrical information engineering, North China University of Technology, Beijing, 100144, China *Corresponding author, e-mail: [email protected] Abstract Electrical design automation plays an important role in nowadays electronic industry. Various commercial Simulation Program with Integrated Circuit Emphasis (SPICE) packages, such as pSpice Or CAD, have become the standard computer program for electrical simulation, with numerous copies in use worldwide. The customized simulation software with copyright need the understanding and using of SPICE engine which was open-source shortly after its birth. The inner workings of SPICE, including algorithms, data structure and code structure of SPICE were analyzed, and a engine package and application development approach were proposed. The experiments verified its feasibility and accuracy. Keywords: SPICE engine analysis, Circuit Simulation Application, Simulation analysis Copyright © 2016 Universitas Ahmad Dahlan. All rights reserved. 1. Introduction Knowledge of the behavior of electrical circuits requires the simultaneous solution of a number of equations.The model creation [1],
    [Show full text]
  • 2 Simulation Languages
    Understanding Computer Simulation Simulation Languages 2 Simulation Languages Simulation languages are versatile, general purpose classes of simulation software that can be used to create a multitude of modeling applications. In a sense, these languages are comparable to FORTRAN, C#, Visual Basic.net or Java but also include specific features to facilitate the modeling process. Some examples of modern simulation languages are GPSS/H, GPSS/PC, SLX, and SIMSCRIPT III. Other simulation languages such as SIMAN have been integrated into broader development frameworks. In the case of SIMAN, this framework is ARENA. Simulation languages exist for discrete, continuous and agent-based modeling paradigms. The remainder of this book will focus on the discrete event family of languages. 2.1 Simulation Language Features Specialized features usually differentiate simulation languages from general programming languages. These features are intended to free the analyst from recreating software tools and procedures used by virtually all modeling applications. Not only would the development of these features be time consuming and difficult, but without them, the consistency of a model could vary and additional debugging, validation and verification would be required. Most simulation languages provide the features shown in Table 2.1. 1) Simulation clock or a mechanism for advancing simulated time. 2) Methods to schedule the occurrence of events. 3) Tools to collect and analyze statistics concerning the usage of various resources and entities. 4) Methods for representing constrained resources and the entities using these resources. 5) Tools for reporting results. 6) Debugging and error detection facilities. 7) Random number generators and related sets of tools. 8) General frameworks for model creation.
    [Show full text]
  • Simulation-Based Verification of PLC Programs
    Simulation-based verification of PLC programs Master of Science Thesis in Production Engineering JASMIN DZINIC CHARLIE YAO Department of Signals and Systems Division of Automatic Control, Automation and Mechatronics Research Group Automation CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2013 Report No: EX058 REPORT NO. EX058/2013 Simulation-based verification of PLC programs JASMIN DZINIC CHARLIE YAO Department of Signals and Systems CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2013 Simulation-based verification of PLC programs JASMIN DZINIC CHARLIE YAO © JASMIN DZINIC, CHARLIE YAO, 2013 Technical report no EX058/2013 Department of Signals and Systems Chalmers University of Technology SE-412 96 Gothenburg Sweden Telephone: + 46 (0)31-772 1000 Cover: The cover picture shows the Automatic zone in the Production System Laboratory at Chalmers. The view is a screen shot from Xcelgo Experior environment. Gothenburg, Sweden 2013. Abstract Automation systems have in recent decades increased in complexity and variety in which the demand for safer and faster commissioning has been vital for the industry. The current approach for commissioning is based on a traditional level in which control systems are verified using a trial-and-error based method in a workshop and/or directly in the production facility. The traditional level of commissioning is a time consuming and costly approach and a search for another method has been a must in order to meet the current demand. Researchers have suggested virtual commissioning which is a way to verify control systems in a virtual environment prior to physical commissioning. Industrial projects based on virtual commissioning have two main approaches for commissioning; Software-in-the-Loop (SIL), where commissioning of control system and the plant is performed in a virtual reality, and Hardware-in-the-Loop (HIL), where commissioning is instead performed on a real control system and a virtual reality.
    [Show full text]