Molecular Coupling of Tsix Regulation and Pluripotency

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Coupling of Tsix Regulation and Pluripotency LETTER doi:10.1038/nature09496 Molecular coupling of Tsix regulation and pluripotency Pablo Navarro1,2, Andrew Oldfield1,3, Julie Legoupi1, Nicola Festuccia2, Agne`s Dubois1, Mikael Attia1, Jon Schoorlemmer4, Claire Rougeulle1,3, Ian Chambers2 & Philip Avner1 The reprogramming of X-chromosome inactivation during the Nanog, at DXPas34 (ref. 17) and at Xite18 two enhancers of Tsix19.Oct4 acquisition of pluripotency in vivo and in vitro1 is accompanied by and Sox2, by simultaneously controlling Xist and Tsix, could be acting at the repression of Xist2, the trigger of X-inactivation3, and the upre- the top of the X-inactivation regulatory hierarchy in pluripotent cells. gulation of its antisense counterpart Tsix4. We have shown that key Uncertainties, however, surround this hypothesis because (1) the factors supporting pluripotency—Nanog, Oct4 and Sox2—bind reported binding of Oct4 and Sox2 to DXPas34,thestrongembry- within Xist intron 1 in undifferentiated embryonic stem cells (ESC) onic-stem-specific enhancer of Tsix, is not reproducible (Supplemen- to repress Xist transcription5. However, the relationship between tary Fig. 1), (2) binding levels at Xite are very low (Supplementary Fig. 1) transcription factors of the pluripotency network and Tsix regulation and (3) Xite is a weak enhancer of Tsix18. It appears likely that Oct4 and has remained unclear5,6. Here we show that Tsix upregulation in Sox2 play a minor role, if any, in the establishment of Tsix transcription embryonic stem cells depends on the recruitment of the pluripotent in undifferentiated ESC. In agreement, Tsix remains unaffected after marker Rex1, and of the reprogramming-associated factors Klf4 and 24 h of Oct4 knockdown, whereas Xist upregulation is already estab- c-Myc, by the DXPas34 minisatellite associated with the Tsix pro- lished (Supplementary Fig. 1). Thus additional factors are implicated in moter. Upon deletion of DXPas34, binding of the three factors is controlling Tsix transcription in undifferentiated ESC. Three pluripo- abrogated and the transcriptional machinery is no longer efficiently tency factors, Klf4, c-Myc and Rex1, attracted our attention. recruited to the Tsix promoter. Additional analyses including knock- Because Oct4 and Sox2 directly mediate repression of Xist in ESC, down experiments further demonstrate that Rex1 is critically import- we were interested to extend our analysis to Klf4 and c-Myc, the two ant for efficient transcription elongation of Tsix. Hence, distinct other factors that are commonly used to generate iPS cells13. Rex1 is a embryonic-stem-cell-specific complexes couple X-inactivation repro- marker of pluripotency whose deletion is associated with decreased gramming and pluripotency, with Nanog, Oct4 and Sox2 repressing Tsix expression, as revealed by microarray analysis20. During iPS cell Xist to facilitate the reactivation of the inactive X, and Klf4, c-Myc generation, Tsix re-expression temporally correlates with the induc- and Rex1 activating Tsix to remodel Xist chromatin7–10 and ensure tion of Rex1 (ref. 21). random X-inactivation upon differentiation1. The holistic pattern of We initially determined whether binding activity of Rex1, Klf4 and Xist/Tsix regulation by pluripotent factors that we have identified c-Myc could be detected at the Xist/Tsix region (Fig. 1a). We found suggests a general direct governance of complex epigenetic processes binding to the Tsix 59 region for all three factors, in both female (Fig. 1 by the machinery dedicated to pluripotency. d, g, j) and male (Fig. 1 e, h, k) embryonic stem cells. Only Rex1 displays X-inactivation reprogramming in female mice is a model for the binding at both ends of DXPas34, which suggests that Rex1 is recruited epigenetic processes underlying the acquisition of pluripotency1.The within DXPas34 itself whereas Klf4 and c-Myc are bound between inactivation of the paternal X chromosome that characterizes the earliest DXPas34 and the Tsix promoter. As expected given its chromatin immu- cleavage-stages of development is followed by X-chromosome reactiva- noprecipitation (ChIP) profile, Rex1 binding is lost upon the targeted tion in the pluripotent inner cell mass of the blastocyst11,12. During deletion of DXPas34 in male embryonic stem cells (DPas34 cell line17; differentiation, X-inactivation is established randomly on either the Fig. 1c, f). Strikingly, Klf4 and c-Myc binding is similarly affected in paternal or the maternal X chromosome1. The developmental plasticity DPas34 (Fig. 1i, l), which suggests that DXPas34 influences Klf4 and of X-inactivation during early embryogenesis is paralleled by female c-Myc recruitment. This drastic perturbation in transcription factor induced pluripotent stem (iPS) cells13: the inactive X is reactivated in binding correlates with a 90% reduction in Tsix RNA levels17, mediated iPS cells and random X-inactivation de novo established upon loss of by a strong reduction of RNAPII recruitment at the Tsix promoter pluripotency14. Hence, two distinct processes affect X-inactivation (Supplementary Fig. 2). Thus DXPas34 orchestrates the recruitment of during the generation of pluripotency: the reactivation of the inactive Rex1, Klf4 and c-Myc to activate Tsix transcription in ESC. X per se, probably initiated by the repression of Xist by Nanog, Oct4, and We next silenced Oct4 in ZhbTc4.1 ESC to induce the loss of plur- Sox2 (refs 5,15), and the acquisition by both X chromosomes of an equal ipotency22 and the consequent downregulation of Rex1 and Klf4 competence for future random X-inactivation, a process directly con- (Fig. 2a). Tsix was downregulated (Fig. 2a) by transcriptional mechan- trolled by Tsix. Indeed, invalidation of Tsix in ESC8 and embryos10 leads isms (Fig. 2b, c), and binding of Rex1, Klf4 and c-Myc was reduced to drastic, stable remodelling of Xist chromatin in cis7–10, associated with (Fig. 2d–f). Similar observations were made in terminally differen- the systematic upregulation of Xist from the Tsix-null allele upon dif- tiated, Tsix-silenced9, mouse embryonic fibroblasts (Fig. 2g–i). Rex1, ferentiation. Thus maximal Tsix activity is required in pluripotent cells Klf4 and c-Myc are therefore critically important to couple Tsix regu- to erase inherited Xist chromatin modifications and provide each X lation to pluripotency. We also analysed trophectoderm stem cells, chromosome with equal probabilities of Xist upregulation during which display reduced Tsix transcription9, and found that only Rex1 differentiation16. is absent from the Tsix 59 region (Fig. 2g–i). Although the existence of It has been proposed that the high levels of Tsix transcription char- differentiation-dependent repressors or additional embryonic-stem- acterizing ESC depend on binding of Oct4 and Sox2 (ref. 6), but not specific activators cannot be excluded, this suggests that Rex1 plays 1Unite´ de Ge´ne´tique Mole´culaire Murine, URA 2578, Institut Pasteur, 75724 Paris Cedex 15, France. 2Medical Research Council (MRC) Centre Development in Stem Cell Biology, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JQ, UK. 3UMR 7216 Epige´ne´tique et Destin Cellulaire, CNRS/Universite´ Paris Diderot, Case 7042, 75205 Paris Cedex 13, France. 4ARAID Foundation and Instituto Aragone´s de Ciencias de la Salud, Departamento de Anatomı´a y Embriologı´a, Facultad de Veterinaria, 50013 Zaragoza, Spain. 18 NOVEMBER 2010 | VOL 468 | NATURE | 457 ©2010 Macmillan Publishers Limited. All rights reserved RESEARCH LETTER abcab13 6 c1.0 Relative mRNA levels 10 RNAPII TFIIB 7 –Tc –Tc 0.2 0.2 0.2 –Tc +Tc +Tc deRex1 Rex1 fRex1 Female Male DPas34 +Tc ES cells ES cells ES cells 1 3 0.5 0.1 0.1 0.1 0.5 0 ′ ′ Klf4 Rex1 0 0 c–Myc Tsix5 Tsix3 0 0 0 31303233 34 35 36 37 31303233 34 35 36 37 –3 –2 –1 0 1 2 11 12 31 32 33 34 35 36 37 313032 33 34 35 36 37 313032 33 34 35 36 de f gh0.4 0.2 i0.2 0.2 0.6 0.2 Klf4 Klf4 Klf4 Rex1 Klf4 c-Myc Female Male DPas34 –Tc –Tc –Tc ES cells ES cells ES cells +Tc +Tc +Tc 0.2 0.1 0.1 0.1 0.3 0.1 0 0 0 –3–2–1 0 1 2 11 12 31 32 33 34 35 36 37 313032 33 34 35 36 37 313032 33 34 35 36 jk0.4 0.4 l0.4 0 0 0 c-Myc c-Myc c-Myc 31303233 34 35 36 37 31303233 34 35 36 37 31303233 34 35 36 37 Female Male DPas34 ES cells ES cells ES cells gh0.2 0.6 i0.4 Rex1 Klf4 c-Myc ES ES ES TS TS TS 0.2 0.2 0.2 MEFs MEFs MEFs 0.1 0.3 0.2 0 0 0 –3 –2 –1 0 1 2 11 12 31 32 33 34 35 36 37 313032 33 34 35 36 37 313032 33 34 35 36 Figure 1 | DXPas34 orchestrates Rex1, Klf4 and c-Myc recruitment to the Tsix 59 region in pluripotent ESC. a–c, Schematic representation of the sub- 0 0 0 regions of the Xist/Tsix locus analysed by ChIP in female ESC (a), male ESC 31303233 34 35 36 37 31303233 34 35 36 37 313032 33 34 35 36 37 (b) and male DPas34 ESC (c). Xist exons are in green, the arrows indicate the Figure 2 | Developmentally induced loss of Rex1, Klf4 and c-Myc binding direction of transcription of Xist (top) and Tsix (bottom). DXPas34 is shown in correlates with Tsix repression. a, Relative RNA levels of the indicated genes blue. The location of each primer pair is indicated by a black circle. In b, the blue in undifferentiated (2Tc, black, set to one) and differentiating (96 h Tc circles show the primer pairs flanking DXPas34 that are absent in DPas34 ESC, treatment, 1Tc, red) ZhbTc4.1 cells (n 5 4). b–f, ChIP analysis of RNAPII whereas in c the red triangle shows the location of the loxP site remaining after (b), TFIIB (c), Rex1 (d), Klf4 (e) and c-Myc (f) across the Tsix 59 region in the DXPas34 deletion, and the new primer pair designed at the position shown in same cellular conditions (n 5 2).
Recommended publications
  • Revealing the Mechanism of Xist-Mediated Silencing
    Revealing the Mechanism of Xist-mediated Silencing Thesis by Chun-Kan Chen In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended November 1, 2017 ii 2017 Chun-Kan Chen ORCID: 0000-0002-1194-9137 iii ACKNOWLEDGEMENTS First of all, I’d like to thank my great mentor, Dr. Mitch Guttman (California Institute of Technology, Pasadena, CA), who led me to become an independent researcher and gave me valuable advice that guided me to accomplish this thesis. He has always been supportive of my future plans and career goals. I really enjoyed every discussion we have had. We often generated some interesting ideas for projects during our discussions. I would also like to send my thanks to my lab mates, Amy Chow, Mario Blanco, and Erik Aznauryan, who helped me with many experiments to move the project forward. I’d like to acknowledge Dr. Kathrin Plath (University of California, Los Angeles, Los Angeles, CA) for the collaboration and his critical comments on this project. Also, I want to thank Jesse Engreitz and Patrick McDonel, who provided helpful comments and suggestions to the project. I want to thank my parents, brother, and parents-in-law who provided both instrumental and emotional support to assist me in completing my Ph.D. degree. I also want to thank my friends, Lily Chen, Pei-Ying Lin, Tzu-Yao Wang, and Wei Li, for giving me valuable social support during my years in graduate school. Last but not least, I would like to send my special thanks to my wife, Christine Juang, who has always been supportive.
    [Show full text]
  • Association of BRCA1 with the Inactive X Chromosome and XIST RNA
    FirstCite Published online e-publishing Association of BRCA1 with the inactive X chromosome and XIST RNA Shridar Ganesan1, Daniel P. Silver1, Ronny Drapkin1, Roger Greenberg1, Jean Feunteun2 and David M. Livingston1* 1The Dana-Farber Cancer Institute and Harvard Medical School, 1 Jimmy Fund Way, Boston, MA 02115, USA 2Laboratoire de Genetique et Transfert de Gene, Institut Gustav-Roussy, Villejuif 94805, France Breast cancer, early onset 1 (BRCA1) encodes a nuclear protein that participates in breast and ovarian cancer suppression. The molecular basis for the gender and tissue specificity of the BRCA1 cancer syn- drome is unknown. Recently, we observed that a fraction of BRCA1 in female cells is localized on the inactive X chromosome (Xi). Chromatin immunoprecipitation (ChIP) experiments have demonstrated that BRCA1 physically associates with Xi-specific transcript (XIST) RNA, a non-coding RNA known to coat Xi and to participate in the initiation of its inactivation during early embryogenesis. Cells lacking wild- type BRCA1 show abnormalities in Xi, including lack of proper XIST RNA localization. Reintroduction of wild-type, but not mutant, BRCA1 can correct this defect in XIST localization in these cells. Depletion of BRCA1 in female diploid cells led to a defect in proper XIST localization on Xi and in the development of normal Xi heterchromatic superstructure. Moreover, depletion of BRCA1 led to an increased likelihood of re-expression of a green fluorescent protein (GFP) reporter gene embedded on Xi. Taken together, these findings are consistent with a model in which BRCA1 function contributes to the maintenance of proper Xi heterochromatin superstructure. Although the data imply a novel gender-specific consequence of BRCA1 loss, the relevance of the BRCA1/Xi function to the tumour suppressor activity of BRCA1 remains unclear and needs to be tested.
    [Show full text]
  • Long Non‑Coding Rnas XIST and MALAT1 Hijack the PD‑L1 Regulatory Signaling Pathway in Breast Cancer Subtypes
    ONCOLOGY LETTERS 22: 593, 2021 Long non‑coding RNAs XIST and MALAT1 hijack the PD‑L1 regulatory signaling pathway in breast cancer subtypes AMANY SAMIR1, REDA ABDEL TAWAB2 and HEND M. EL TAYEBI1 1Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, German University in Cairo, Cairo 11835; 2Department of General Surgery, Ain Shams University, Cairo 11772, Egypt Received July 18, 2020; Accepted January 14, 2021 DOI: 10.3892/ol.2021.12854 Abstract. Long non‑coding RNAs (lncRNAs) have attracted presence of lncRNAs. Therefore, the results of the present widespread attention as potential biological and patho‑ study indicated that although miR‑182‑5p exhibited an onco‑ logical regulators. lncRNAs are involved in several biological genic effect, XIST exerted a dominant effect on the regulation processes in cancer. Triple negative breast cancer (TNBC) is of the PD‑L1 signaling pathway via the inhibition of the onco‑ characterized by strong heterogeneity and aggressiveness. At genic function of MALAT1. present, the implication of microRNAs (miRs) and lncRNAs in immunotherapy has been poorly studied. Nevertheless, Introduction the blockade of immune checkpoints, particularly that of the programmed cell‑death protein‑1/programmed cell‑death In the context of tumor biology, the six hallmarks of cancer ligand‑1 (PD‑L1) axis, is considered as a principle approach in have been proposed to be associated with progressively breast cancer (BC) therapy. The present study aimed to inves‑ growing tumors and to be responsible for the complexity of tigate the interaction between immune‑modulatory upstream neoplastic diseases, and these are limitless replicative poten‑ signaling pathways of the PD‑L1 transcript that could enhance tial, evading apoptosis, self‑sufficiency in growth signals, personalized targeted therapy.
    [Show full text]
  • Non-Coding RNA: X-Chromosome Inactivation Unravelled
    RESEARCH HIGHLIGHTS Nature Reviews Molecular Cell Biology | AOP, published online 8 May 2015; doi:10.1038/nrm3998 NON-CODING RNA X-chromosome inactivation unravelled The long non-coding RNA (lncRNA) specific and reproducible set of ten suggesting that SAFA acts to localize Xist (X inactive-specific transcript) is proteins that directly interact with Xist to genomic DNA. Depleting required for the transcriptional silenc- Xist. Of these proteins, knocking Xist binds to SHARP led to the retention of Pol II ing of one X chromosome in each cell, down the genes encoding scaffold SHARP to at Xist-coated X chromosomes, in a process known as X-chromosome attachment factor A (SAFA; also recruit SMRT indicating that SHARP might be inactivation (XCI) that occurs during known as HNRNPU), SMRT- and required for initiating transcriptional mammalian female development. HDAC1-associated repressor protein and activate silencing following Xist localization, Owing to technical limitations, little (SHARP; also known as SPEN or HDAC3 … possibly by recruiting the transcrip- is known about the mechanism of MSX2-interacting protein) and resulting in tional co-repressors SMRT and transcriptional silencing during XCI. lamin-B receptor (LBR) largely abol- HDAC3. Indeed, depleting SMRT McHugh et al. now describe using ished the silencing of XCI‑affected gene silencing or HDAC3 (but not other HDACs) RNA antisense purification followed genes in the male ES cells as well as in abrogated Xist-dependent gene by quantitative mass spectrometry differentiating female ES cells. These silencing. Another feature of XCI (RAP–MS) — a novel approach for three proteins are therefore required is the recruitment of the Polycomb identifying proteins that directly for Xist-mediated gene silencing.
    [Show full text]
  • Agonists Regulate the Expression of Stemness and Differentiation Genes in Brain Tumour Stem Cells
    British Journal of Cancer (2012) 106, 1702–1712 & 2012 Cancer Research UK All rights reserved 0007 – 0920/12 www.bjcancer.com PPARg agonists regulate the expression of stemness and differentiation genes in brain tumour stem cells E Pestereva1, S Kanakasabai1 and JJ Bright*,1,2 1 Neuroscience Research Laboratory, Methodist Research Institute, Indiana University Health, 1800 North Capitol Avenue, Noyes Building E504C, 2 Indianapolis, IN 46202, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA BACKGROUND: Brain tumour stem cells (BTSCs) are a small population of cancer cells that exhibit self-renewal, multi-drug resistance, and recurrence properties. We have shown earlier that peroxisome proliferator-activated receptor gamma (PPARg) agonists inhibit the expansion of BTSCs in T98G and U87MG glioma. In this study, we analysed the influence of PPARg agonists on the expression of stemness and differentiation genes in BTSCs. METHODS: The BTSCs were isolated from T98G and DB29 glioma cells, and cultured in neurobasal medium with epidermal growth factor þ basic fibroblast growth factor. Proliferation was measured by WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2 H-5- tetrazolio]-1,3-benzene disulphonate) and 3H thymidine uptake assays, and gene expression was analysed by quantitative reverse– transcription PCR and Taqman array. The expression of CD133, SRY box 2, and nanog homeobox (Nanog) was also evaluated by western blotting, immunostaining, and flow cytometry. 12,14 RESULTS: We found that PPARg agonists, ciglitazone and 15-deoxy-D -ProstaglandinJ2, inhibited cell viability and proliferation of þ T98G- and DB29-BTSCs. The PPARg agonists reduced the expansion of CD133 BTSCs and altered the expression of stemness and differentiation genes.
    [Show full text]
  • Reprogramming Capacity of Nanog Is Functionally Conserved in Vertebrates and Resides in a Unique Homeodomain Thorold W
    Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain Thorold W. Theunissen, Yael Costa, Aliaksandra Radzisheuskaya, A., Anouk L. van Oosten, Fabrice Lavial, Bertrand Pain, L. Filipe C. Castro Castro, José C. R. Silva, J. C. R. To cite this version: Thorold W. Theunissen, Yael Costa, Aliaksandra Radzisheuskaya, A., Anouk L. van Oosten, Fabrice Lavial, et al.. Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain. Development (Cambridge, England), Company of Biologists, 2011, 138 (22), pp.4853-4865. 10.1242/dev.068775. hal-02644461 HAL Id: hal-02644461 https://hal.inrae.fr/hal-02644461 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License DEVELOPMENT AND STEM CELLS RESEARCH ARTICLE 4853 Development 138, 4853-4865 (2011) doi:10.1242/dev.068775 © 2011. Published by The Company of Biologists Ltd Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain Thorold W. Theunissen1, Yael Costa1, Aliaksandra Radzisheuskaya1, Anouk L. van Oosten1, Fabrice Lavial2, Bertrand Pain3, L.
    [Show full text]
  • Biological Functions of Natural Antisense Transcripts Andreas Werner
    Werner BMC Biology 2013, 11:31 http://www.biomedcentral.com/1741-7007/11/31 COMMENTARY Open Access Biological functions of natural antisense transcripts Andreas Werner Abstract The most common meaning of the term 'antisense tran- script' refers to a protein coding sense transcript and a In theory, the human genome is large enough to fully processed (capped, polyadenylated) antisense RNA keep its roughly 20,000 genes well separated. In with complementarity in exonic regions (Figure 1). The practice, genes are clustered; even more puzzling, in key issue of whether the antisense transcripts act as ex- many cases both DNA strands of a protein coding quisitely specific gene regulators or are simply transcrip- gene are transcribed. The resulting natural antisense tional waste that a cell has learned to live with is still a transcripts can be a blessing and curse, as many matter of controversy [2]. However, a study published in appreciate, or simply transcriptional trash, as others BMC Genomics reports conservation of natural antisense believe. Widespread evolutionary conservation, as transcripts at a large scale between human, rat and mouse, recently demonstrated, is a good indicator for which strongly suggests that there is biological sense to potential biological functions of natural antisense having antisense transcripts [3]. transcripts. See research article: http://www.biomedcentral.com/ Regulatory antisense transcripts 1471-2164/14/243 The most convincing way to demonstrate the biologi- cal significance of an antisense transcript is to interfere with its expression and demonstrate phenotypic conse- By the mid-1980s antisense transcription in mammalian quences or altered expression levels of the sense tran- genomes had already been described by a few isolated script.
    [Show full text]
  • Thoughts About SLC16A2, TSIX and XIST Gene Like Sites in the Human Genome and a Potential Role in Cellular Chromosome Counting Martina Rinčić1, Ivan Y
    Rinčić et al. Molecular Cytogenetics (2016) 9:56 DOI 10.1186/s13039-016-0271-7 HYPOTHESIS Open Access Thoughts about SLC16A2, TSIX and XIST gene like sites in the human genome and a potential role in cellular chromosome counting Martina Rinčić1, Ivan Y. Iourov2,3,4 and Thomas Liehr5* Abstract Background: Chromosome counting is a process in which cells determine somehow their intrinsic chromosome number(s). The best-studied cellular mechanism that involves chromosome counting is ‘chromosome-kissing’ and X-chromosome inactivation (XCI) mechanism. It is necessary for the well-known dosage compensation between the genders in mammals to balance the number of active X-chromosomes (Xa) with regard to diploid set of autosomes. At the onset of XCI, two X-chromosomes are coming in close proximity and pair physically by a specific segment denominated X-pairing region (Xpr) that involves the SLC16A2 gene. Results: An Ensembl BLAST search for human and mouse SLC16A2/Slc16a2 homologues revealed, that highly similar sequences can be found at almost each chromosome in the corresponding genomes. Additionally, a BLAST search for SLC16A2/TSIX/XIST (genes responsible for XCI) reveled that “SLC16A2/TSIX/XIST like sequences” cover equally all chromosomes, too. With respect to this we provide following hypotheses. Hypotheses: If a single genomic region containing the SLC16A2 gene on X-chromosome is responsible for maintaining “balanced” active copy numbers, it is possible that similar sequences or gene/s have the same function on other chromosomes (autosomes). SLC16A2 like sequences on autosomes could encompass evolutionary older, but functionally active key regions for chromosome counting in early embryogenesis.
    [Show full text]
  • Small Rnas and the Regulation of Cis-Natural Antisense Transcripts in Arabidopsis
    UC Riverside UC Riverside Previously Published Works Title Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis Permalink https://escholarship.org/uc/item/66p3c9bz Journal BMC Molecular Biology, 9 ISSN 1471-2199 Authors Jin, Hailing Vacic, Vladimir Girke, Thomas et al. Publication Date 2008 Peer reviewed eScholarship.org Powered by the California Digital Library University of California BMC Molecular Biology BioMed Central Research article Open Access Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis Hailing Jin*1, Vladimir Vacic2, Thomas Girke3, Stefano Lonardi4 and Jian- Kang Zhu*3 Address: 1Departments of Plant Pathology & Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA, 2Computer Science and Engineering, University of California, Riverside, CA 92521, USA, 3Botany and Plant Sciences, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA and 4Computer Science and Engineering, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA Email: Hailing Jin* - [email protected]; Vladimir Vacic - [email protected]; Thomas Girke - [email protected]; Stefano Lonardi - [email protected]; Jian-Kang Zhu* - [email protected] * Corresponding authors Published: 14 January 2008 Received: 30 May 2007 Accepted: 14 January 2008 BMC Molecular Biology 2008, 9:6 doi:10.1186/1471-2199-9-6 This article is available from: http://www.biomedcentral.com/1471-2199/9/6 © 2008 Jin et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Antisense Transcription Licenses Nascent Transcripts to Mediate Transcriptional Gene Silencing
    Downloaded from genesdev.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Antisense transcription licenses nascent transcripts to mediate transcriptional gene silencing Yunkun Dang,1,4 Jiasen Cheng,2,4 Xianyun Sun,3 Zhipeng Zhou,1 and Yi Liu1 1Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; 2State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; 3State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, ZhongGuanCun, Beijing 100080, China In eukaryotes, antisense transcription can regulate sense transcription by induction of epigenetic modifications. We showed previously that antisense transcription triggers Dicer-independent siRNA (disiRNA) production and dis- iRNA locus DNA methylation (DLDM) in Neurospora crassa. Here we show that the conserved exonuclease ERI-1 (enhanced RNAi-1) is a critical component in this process. Antisense transcription and ERI-1 binding to target RNAs are necessary and sufficient to trigger DLDM. Convergent transcription causes stalling of RNA polymerase II during transcription, which permits ERI-1 to bind nascent RNAs in the nucleus and recruit a histone methyltransferase complex that catalyzes chromatin modifications. Furthermore, we show that, in the cytoplasm, ERI-1 targets hundreds of transcripts from loci without antisense transcription to regulate RNA stability. Together, our results demonstrate a critical role for transcription kinetics in long noncoding RNA-mediated epigenetic modifications and identify ERI-1 as an important regulator of cotranscriptional gene silencing and post-transcriptional RNA metabolism. [Keywords: DNA methylation; Neurospora; antisense transcription; gene silencing; small RNA] Supplemental material is available for this article.
    [Show full text]
  • DNA Hypomethylation Can Activate Xist Expression and Silence X-Linked Genes
    Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press DNA hypomethylation can activate Xist expression and silence X-linked genes Barbara Panning I and Rudolf Jaenisch L2,3 IWhitehead Institute for Biomedical Research and 2Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 USA Xist and other X-linked gene expression was examined by fluorescence in situ hybridization in cells of wild type and DNA methyltranferase (Dnmt) mutant embryos and embryonic stem (ES) cells to determine whether demethylation-induced Xist expression leads to inappropriate X chromosome inactivation. In undifferentiated ES cells low-level Xist expression was detected from the single active X chromosome (Xa) in male cells and on both Xa's in female cells. Upon differentiation Xist expression was detected only in female cells, in which Xist RNA colocalized with the entire inactive X chromosome (Xi). Differentiated Dnmt mutant ES cells or cells of mutant postgastrulation embryos showed aberrant patterns of Xist expression: Xist transcripts colocalized with the single X chromosome in male cells and with both X chromosomes in female cells. X-linked gene expression was not detected from chromosomes coated with Xist RNA. These results suggest that ectopic Xist expression, induced by DNA hypomethylation, may lead to the inactivation of X-linked genes. We conclude that Xist-mediated X chromosome inactivation can occur in the absence of DNA methylation, arguing that DNA methylation may be required to repress Xist expression for the maintenance of a transcriptionally active Xa. In differentiated Dnmt mutant ES cells the activation of Xist expression correlated with a dramatic increase in apoptotic bodies, suggesting that Xist-mediated X chromosome inactivation may result in cell death and contribute to the embryonic lethality of the Dnmt mutation.
    [Show full text]
  • The Epigenetics of Non-Coding RNA
    CHAPTER 4 The Epigenetics of Non-coding RNA Lesley J. Collins1, Barbara Schönfeld2,3, and Xiaowei Sylvia Chen4 1Massey Genome Service, Massey University, Palmerston North, New Zealand 2Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand 3Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand 4Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand INTRODUCTION Non-protein-coding RNAs (ncRNAs) are RNAs that are transcribed from DNA but are not translated into proteins. Many are functional and are involved in the processing and regulation of other RNAs such as mRNA, tRNA, and rRNA. Processing-type ncRNAs include small nuclear RNAs (snRNAs) involved in splicing, small nucleolar RNAs (snoRNAs) that 49 modify nucleotides in rRNAs and other RNAs, and RNase P that cleaves pre-tRNAs. Other small ncRNAs such as microRNAs (miRNAs) and short interfering RNAs (siRNAs) are involved in the regulation of target mRNAs and chromatin. Although many of these latter ncRNA classes are grouped under the term RNA interference (RNAi), it has become clear that there are many different ways that ncRNAs can interact with genes to up-regulate or down-regulate expression, to silence translation, or guide methylation [1–3]. Adding to these classes are long ncRNAs (typically 200 nt) that have also been implicated in gene regulation [4]. All of these ncRNAs form a network of processes, the RNA-infrastructure [2] that spans the cell not only spatially as RNAs move across the cell, but also temporally as the RNAs regulate gene processes during the cell cycle. Thus, the regulation of RNA processes may not only be transcriptional or translational, but also from their biogenesis and processing pathways [2].
    [Show full text]