RNF12 Activates Xist and Is Essential for X Chromosome Inactivation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Genetic Background of Clinical Mastitis in Holstein- Friesian Cattle
Animal (2019), 13:1 0p , p 2156–2163 © The Animal Consortium 2019 animal doi:10.1017/S1751731119000338 The genetic background of clinical mastitis in Holstein- Friesian cattle J. Szyda1,2†, M. Mielczarek1,2,M.Frąszczak1, G. Minozzi3, J. L. Williams4 and K. Wojdak-Maksymiec5 1Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631 Wroclaw, Poland; 2Institute of Animal Breeding, Krakowska 1, 32-083 Balice, Poland; 3Department of Veterinary Medicine, Università degli Studi di Milano, Via Giovanni Celoria 10, 20133 Milano, Italy; 4Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia; 5Department of Animal Genetics, West Pomeranian University of Technology, Doktora Judyma 26, 71-466 Szczecin, Poland (Received 15 September 2018; Accepted 28 January 2019; First published online 5 March 2019) Mastitis is an inflammatory disease of the mammary gland, which has a significant economic impact and is an animal welfare concern. This work examined the association between single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) with the incidence of clinical mastitis (CM). Using information from 16 half-sib pairs of Holstein-Friesian cows (32 animals in total) we searched for genomic regions that differed between a healthy (no incidence of CM) and a mastitis-prone (multiple incidences of CM) half-sib. Three cows with average sequence depth of coverage below 10 were excluded, which left 13 half-sib pairs available for comparisons. In total, 191 CNV regions were identified, which were deleted in a mastitis-prone cow, but present in its healthy half-sib and overlapped in at least nine half-sib pairs. -
Revealing the Mechanism of Xist-Mediated Silencing
Revealing the Mechanism of Xist-mediated Silencing Thesis by Chun-Kan Chen In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended November 1, 2017 ii 2017 Chun-Kan Chen ORCID: 0000-0002-1194-9137 iii ACKNOWLEDGEMENTS First of all, I’d like to thank my great mentor, Dr. Mitch Guttman (California Institute of Technology, Pasadena, CA), who led me to become an independent researcher and gave me valuable advice that guided me to accomplish this thesis. He has always been supportive of my future plans and career goals. I really enjoyed every discussion we have had. We often generated some interesting ideas for projects during our discussions. I would also like to send my thanks to my lab mates, Amy Chow, Mario Blanco, and Erik Aznauryan, who helped me with many experiments to move the project forward. I’d like to acknowledge Dr. Kathrin Plath (University of California, Los Angeles, Los Angeles, CA) for the collaboration and his critical comments on this project. Also, I want to thank Jesse Engreitz and Patrick McDonel, who provided helpful comments and suggestions to the project. I want to thank my parents, brother, and parents-in-law who provided both instrumental and emotional support to assist me in completing my Ph.D. degree. I also want to thank my friends, Lily Chen, Pei-Ying Lin, Tzu-Yao Wang, and Wei Li, for giving me valuable social support during my years in graduate school. Last but not least, I would like to send my special thanks to my wife, Christine Juang, who has always been supportive. -
Association of BRCA1 with the Inactive X Chromosome and XIST RNA
FirstCite Published online e-publishing Association of BRCA1 with the inactive X chromosome and XIST RNA Shridar Ganesan1, Daniel P. Silver1, Ronny Drapkin1, Roger Greenberg1, Jean Feunteun2 and David M. Livingston1* 1The Dana-Farber Cancer Institute and Harvard Medical School, 1 Jimmy Fund Way, Boston, MA 02115, USA 2Laboratoire de Genetique et Transfert de Gene, Institut Gustav-Roussy, Villejuif 94805, France Breast cancer, early onset 1 (BRCA1) encodes a nuclear protein that participates in breast and ovarian cancer suppression. The molecular basis for the gender and tissue specificity of the BRCA1 cancer syn- drome is unknown. Recently, we observed that a fraction of BRCA1 in female cells is localized on the inactive X chromosome (Xi). Chromatin immunoprecipitation (ChIP) experiments have demonstrated that BRCA1 physically associates with Xi-specific transcript (XIST) RNA, a non-coding RNA known to coat Xi and to participate in the initiation of its inactivation during early embryogenesis. Cells lacking wild- type BRCA1 show abnormalities in Xi, including lack of proper XIST RNA localization. Reintroduction of wild-type, but not mutant, BRCA1 can correct this defect in XIST localization in these cells. Depletion of BRCA1 in female diploid cells led to a defect in proper XIST localization on Xi and in the development of normal Xi heterchromatic superstructure. Moreover, depletion of BRCA1 led to an increased likelihood of re-expression of a green fluorescent protein (GFP) reporter gene embedded on Xi. Taken together, these findings are consistent with a model in which BRCA1 function contributes to the maintenance of proper Xi heterochromatin superstructure. Although the data imply a novel gender-specific consequence of BRCA1 loss, the relevance of the BRCA1/Xi function to the tumour suppressor activity of BRCA1 remains unclear and needs to be tested. -
RNF122: a Novel Ubiquitin Ligase Associated with Calcium-Modulating Cyclophilin Ligand BMC Cell Biology 2010, 11:41 References 1
Peng et al. BMC Cell Biology 2010, 11:41 http://www.biomedcentral.com/1471-2121/11/41 RESEARCH ARTICLE Open Access RNF122:Research article A novel ubiquitin ligase associated with calcium-modulating cyclophilin ligand Zhi Peng1,4, Taiping Shi*1,2,3 and Dalong Ma1,2,3 Abstract Background: RNF122 is a recently discovered RING finger protein that is associated with HEK293T cell viability and is overexpressed in anaplastic thyroid cancer cells. RNF122 owns a RING finger domain in C terminus and transmembrane domain in N terminus. However, the biological mechanism underlying RNF122 action remains unknown. Results: In this study, we characterized RNF122 both biochemically and intracellularly in order to gain an understanding of its biological role. RNF122 was identified as a new ubiquitin ligase that can ubiquitinate itself and undergoes degradation in a RING finger-dependent manner. From a yeast two-hybrid screen, we identified calcium- modulating cyclophilin ligand (CAML) as an RNF122-interacting protein. To examine the interaction between CAML and RNF122, we performed co-immunoprecipitation and colocalization experiments using intact cells. What is more, we found that CAML is not a substrate of ubiquitin ligase RNF122, but that, instead, it stabilizes RNF122. Conclusions: RNF122 can be characterized as a C3H2C3-type RING finger-containing E3 ubiquitin ligase localized to the ER. RNF122 promotes its own degradation in a RING finger-and proteasome-dependent manner. RNF122 interacts with CAML, and its E3 ubiquitin ligase activity was noted to be dependent on the RING finger domain. Background RING finger proteins contain a RING finger domain, The ubiquitin-proteasome system is involved in protein which was first identified as being encoded by the Really degradation and many biological processes such as tran- Interesting New Gene in the early 1990 s [5]. -
Long Non‑Coding Rnas XIST and MALAT1 Hijack the PD‑L1 Regulatory Signaling Pathway in Breast Cancer Subtypes
ONCOLOGY LETTERS 22: 593, 2021 Long non‑coding RNAs XIST and MALAT1 hijack the PD‑L1 regulatory signaling pathway in breast cancer subtypes AMANY SAMIR1, REDA ABDEL TAWAB2 and HEND M. EL TAYEBI1 1Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, German University in Cairo, Cairo 11835; 2Department of General Surgery, Ain Shams University, Cairo 11772, Egypt Received July 18, 2020; Accepted January 14, 2021 DOI: 10.3892/ol.2021.12854 Abstract. Long non‑coding RNAs (lncRNAs) have attracted presence of lncRNAs. Therefore, the results of the present widespread attention as potential biological and patho‑ study indicated that although miR‑182‑5p exhibited an onco‑ logical regulators. lncRNAs are involved in several biological genic effect, XIST exerted a dominant effect on the regulation processes in cancer. Triple negative breast cancer (TNBC) is of the PD‑L1 signaling pathway via the inhibition of the onco‑ characterized by strong heterogeneity and aggressiveness. At genic function of MALAT1. present, the implication of microRNAs (miRs) and lncRNAs in immunotherapy has been poorly studied. Nevertheless, Introduction the blockade of immune checkpoints, particularly that of the programmed cell‑death protein‑1/programmed cell‑death In the context of tumor biology, the six hallmarks of cancer ligand‑1 (PD‑L1) axis, is considered as a principle approach in have been proposed to be associated with progressively breast cancer (BC) therapy. The present study aimed to inves‑ growing tumors and to be responsible for the complexity of tigate the interaction between immune‑modulatory upstream neoplastic diseases, and these are limitless replicative poten‑ signaling pathways of the PD‑L1 transcript that could enhance tial, evading apoptosis, self‑sufficiency in growth signals, personalized targeted therapy. -
Non-Coding RNA: X-Chromosome Inactivation Unravelled
RESEARCH HIGHLIGHTS Nature Reviews Molecular Cell Biology | AOP, published online 8 May 2015; doi:10.1038/nrm3998 NON-CODING RNA X-chromosome inactivation unravelled The long non-coding RNA (lncRNA) specific and reproducible set of ten suggesting that SAFA acts to localize Xist (X inactive-specific transcript) is proteins that directly interact with Xist to genomic DNA. Depleting required for the transcriptional silenc- Xist. Of these proteins, knocking Xist binds to SHARP led to the retention of Pol II ing of one X chromosome in each cell, down the genes encoding scaffold SHARP to at Xist-coated X chromosomes, in a process known as X-chromosome attachment factor A (SAFA; also recruit SMRT indicating that SHARP might be inactivation (XCI) that occurs during known as HNRNPU), SMRT- and required for initiating transcriptional mammalian female development. HDAC1-associated repressor protein and activate silencing following Xist localization, Owing to technical limitations, little (SHARP; also known as SPEN or HDAC3 … possibly by recruiting the transcrip- is known about the mechanism of MSX2-interacting protein) and resulting in tional co-repressors SMRT and transcriptional silencing during XCI. lamin-B receptor (LBR) largely abol- HDAC3. Indeed, depleting SMRT McHugh et al. now describe using ished the silencing of XCI‑affected gene silencing or HDAC3 (but not other HDACs) RNA antisense purification followed genes in the male ES cells as well as in abrogated Xist-dependent gene by quantitative mass spectrometry differentiating female ES cells. These silencing. Another feature of XCI (RAP–MS) — a novel approach for three proteins are therefore required is the recruitment of the Polycomb identifying proteins that directly for Xist-mediated gene silencing. -
140503 IPF Signatures Supplement Withfigs Thorax
Supplementary material for Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis Daryle J. DePianto1*, Sanjay Chandriani1⌘*, Alexander R. Abbas1, Guiquan Jia1, Elsa N. N’Diaye1, Patrick Caplazi1, Steven E. Kauder1, Sabyasachi Biswas1, Satyajit K. Karnik1#, Connie Ha1, Zora Modrusan1, Michael A. Matthay2, Jasleen Kukreja3, Harold R. Collard2, Jackson G. Egen1, Paul J. Wolters2§, and Joseph R. Arron1§ 1Genentech Research and Early Development, South San Francisco, CA 2Department of Medicine, University of California, San Francisco, CA 3Department of Surgery, University of California, San Francisco, CA ⌘Current address: Novartis Institutes for Biomedical Research, Emeryville, CA. #Current address: Gilead Sciences, Foster City, CA. *DJD and SC contributed equally to this manuscript §PJW and JRA co-directed this project Address correspondence to Paul J. Wolters, MD University of California, San Francisco Department of Medicine Box 0111 San Francisco, CA 94143-0111 [email protected] or Joseph R. Arron, MD, PhD Genentech, Inc. MS 231C 1 DNA Way South San Francisco, CA 94080 [email protected] 1 METHODS Human lung tissue samples Tissues were obtained at UCSF from clinical samples from IPF patients at the time of biopsy or lung transplantation. All patients were seen at UCSF and the diagnosis of IPF was established through multidisciplinary review of clinical, radiological, and pathological data according to criteria established by the consensus classification of the American Thoracic Society (ATS) and European Respiratory Society (ERS), Japanese Respiratory Society (JRS), and the Latin American Thoracic Association (ALAT) (ref. 5 in main text). Non-diseased normal lung tissues were procured from lungs not used by the Northern California Transplant Donor Network. -
Agonists Regulate the Expression of Stemness and Differentiation Genes in Brain Tumour Stem Cells
British Journal of Cancer (2012) 106, 1702–1712 & 2012 Cancer Research UK All rights reserved 0007 – 0920/12 www.bjcancer.com PPARg agonists regulate the expression of stemness and differentiation genes in brain tumour stem cells E Pestereva1, S Kanakasabai1 and JJ Bright*,1,2 1 Neuroscience Research Laboratory, Methodist Research Institute, Indiana University Health, 1800 North Capitol Avenue, Noyes Building E504C, 2 Indianapolis, IN 46202, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA BACKGROUND: Brain tumour stem cells (BTSCs) are a small population of cancer cells that exhibit self-renewal, multi-drug resistance, and recurrence properties. We have shown earlier that peroxisome proliferator-activated receptor gamma (PPARg) agonists inhibit the expansion of BTSCs in T98G and U87MG glioma. In this study, we analysed the influence of PPARg agonists on the expression of stemness and differentiation genes in BTSCs. METHODS: The BTSCs were isolated from T98G and DB29 glioma cells, and cultured in neurobasal medium with epidermal growth factor þ basic fibroblast growth factor. Proliferation was measured by WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2 H-5- tetrazolio]-1,3-benzene disulphonate) and 3H thymidine uptake assays, and gene expression was analysed by quantitative reverse– transcription PCR and Taqman array. The expression of CD133, SRY box 2, and nanog homeobox (Nanog) was also evaluated by western blotting, immunostaining, and flow cytometry. 12,14 RESULTS: We found that PPARg agonists, ciglitazone and 15-deoxy-D -ProstaglandinJ2, inhibited cell viability and proliferation of þ T98G- and DB29-BTSCs. The PPARg agonists reduced the expansion of CD133 BTSCs and altered the expression of stemness and differentiation genes. -
Reprogramming Capacity of Nanog Is Functionally Conserved in Vertebrates and Resides in a Unique Homeodomain Thorold W
Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain Thorold W. Theunissen, Yael Costa, Aliaksandra Radzisheuskaya, A., Anouk L. van Oosten, Fabrice Lavial, Bertrand Pain, L. Filipe C. Castro Castro, José C. R. Silva, J. C. R. To cite this version: Thorold W. Theunissen, Yael Costa, Aliaksandra Radzisheuskaya, A., Anouk L. van Oosten, Fabrice Lavial, et al.. Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain. Development (Cambridge, England), Company of Biologists, 2011, 138 (22), pp.4853-4865. 10.1242/dev.068775. hal-02644461 HAL Id: hal-02644461 https://hal.inrae.fr/hal-02644461 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License DEVELOPMENT AND STEM CELLS RESEARCH ARTICLE 4853 Development 138, 4853-4865 (2011) doi:10.1242/dev.068775 © 2011. Published by The Company of Biologists Ltd Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain Thorold W. Theunissen1, Yael Costa1, Aliaksandra Radzisheuskaya1, Anouk L. van Oosten1, Fabrice Lavial2, Bertrand Pain3, L. -
Thoughts About SLC16A2, TSIX and XIST Gene Like Sites in the Human Genome and a Potential Role in Cellular Chromosome Counting Martina Rinčić1, Ivan Y
Rinčić et al. Molecular Cytogenetics (2016) 9:56 DOI 10.1186/s13039-016-0271-7 HYPOTHESIS Open Access Thoughts about SLC16A2, TSIX and XIST gene like sites in the human genome and a potential role in cellular chromosome counting Martina Rinčić1, Ivan Y. Iourov2,3,4 and Thomas Liehr5* Abstract Background: Chromosome counting is a process in which cells determine somehow their intrinsic chromosome number(s). The best-studied cellular mechanism that involves chromosome counting is ‘chromosome-kissing’ and X-chromosome inactivation (XCI) mechanism. It is necessary for the well-known dosage compensation between the genders in mammals to balance the number of active X-chromosomes (Xa) with regard to diploid set of autosomes. At the onset of XCI, two X-chromosomes are coming in close proximity and pair physically by a specific segment denominated X-pairing region (Xpr) that involves the SLC16A2 gene. Results: An Ensembl BLAST search for human and mouse SLC16A2/Slc16a2 homologues revealed, that highly similar sequences can be found at almost each chromosome in the corresponding genomes. Additionally, a BLAST search for SLC16A2/TSIX/XIST (genes responsible for XCI) reveled that “SLC16A2/TSIX/XIST like sequences” cover equally all chromosomes, too. With respect to this we provide following hypotheses. Hypotheses: If a single genomic region containing the SLC16A2 gene on X-chromosome is responsible for maintaining “balanced” active copy numbers, it is possible that similar sequences or gene/s have the same function on other chromosomes (autosomes). SLC16A2 like sequences on autosomes could encompass evolutionary older, but functionally active key regions for chromosome counting in early embryogenesis. -
Ubiquitin-Dependent Regulation of the WNT Cargo Protein EVI/WLS Handelt Es Sich Um Meine Eigenständig Erbrachte Leistung
DISSERTATION submitted to the Combined Faculty of Natural Sciences and Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Lucie Magdalena Wolf, M.Sc. born in Nuremberg, Germany Date of oral examination: 2nd February 2021 Ubiquitin-dependent regulation of the WNT cargo protein EVI/WLS Referees: Prof. Dr. Michael Boutros apl. Prof. Dr. Viktor Umansky If you don’t think you might, you won’t. Terry Pratchett This work was accomplished from August 2015 to November 2020 under the supervision of Prof. Dr. Michael Boutros in the Division of Signalling and Functional Genomics at the German Cancer Research Center (DKFZ), Heidelberg, Germany. Contents Contents ......................................................................................................................... ix 1 Abstract ....................................................................................................................xiii 1 Zusammenfassung .................................................................................................... xv 2 Introduction ................................................................................................................ 1 2.1 The WNT signalling pathways and cancer ........................................................................ 1 2.1.1 Intercellular communication ........................................................................................ 1 2.1.2 WNT ligands are conserved morphogens ................................................................. -
The Role of the Transmembrane RING Finger Proteins in Cellular and Organelle Function
Membranes 2011, 1, 354-393; doi:10.3390/membranes1040354 OPEN ACCESS membranes ISSN 2077-0375 www.mdpi.com/journal/membranes Review The Role of the Transmembrane RING Finger Proteins in Cellular and Organelle Function Nobuhiro Nakamura Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan; E-Mail: [email protected]; Tel.: +81-45-924-5726; Fax: +81-45-924-5824 Received: 26 October 2011; in revised form: 24 November 2011 / Accepted: 5 December 2011 / Published: 9 December 2011 Abstract: A large number of RING finger (RNF) proteins are present in eukaryotic cells and the majority of them are believed to act as E3 ubiquitin ligases. In humans, 49 RNF proteins are predicted to contain transmembrane domains, several of which are specifically localized to membrane compartments in the secretory and endocytic pathways, as well as to mitochondria and peroxisomes. They are thought to be molecular regulators of the organization and integrity of the functions and dynamic architecture of cellular membrane and membranous organelles. Emerging evidence has suggested that transmembrane RNF proteins control the stability, trafficking and activity of proteins that are involved in many aspects of cellular and physiological processes. This review summarizes the current knowledge of mammalian transmembrane RNF proteins, focusing on their roles and significance. Keywords: endocytosis; ERAD; immune regulation; membrane trafficking; mitochondrial dynamics; proteasome; quality control; RNF; ubiquitin; ubiquitin ligase 1. Introduction Ubiquitination is a posttranslational modification that mediates the covalent attachment of ubiquitin (Ub), a small, highly conserved, cytoplasmic protein of 76 amino acid residues, to target proteins.