10 Sep 2002 21:18 AR AR174-GE36-10.tex AR174-GE36-10.SGM LaTeX2e(2002/01/18) P1: IBC 10.1146/annurev.genet.36.042902.092433 Annu. Rev. Genet. 2002. 36:233–78 doi: 10.1146/annurev.genet.36.042902.092433 Copyright c 2002 by Annual Reviews. All rights reserved XIST RNA AND THE MECHANISM OF XCHROMOSOME INACTIVATION Kathrin Plath, Susanna Mlynarczyk-Evans, Dmitri A. Nusinow, and Barbara Panning Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, California 94143; e-mail:
[email protected],
[email protected],
[email protected],
[email protected] Key Words dosage compensation, imprinting, Tsix RNA, facultative heterochromatin, differentiation ■ Abstract Dosage compensation in mammals is achieved by the transcriptional inactivation of one X chromosome in female cells. From the time X chromosome inac- tivation was initially described, it was clear that several mechanisms must be precisely integrated to achieve correct regulation of this complex process. X-inactivation ap- pears to be triggered upon differentiation, suggesting its regulation by developmental cues. Whereas any number of X chromosomes greater than one is silenced, only one X chromosome remains active. Silencing on the inactive X chromosome coincides with the acquisition of a multitude of chromatin modifications, resulting in the formation of extraordinarily stable facultative heterochromatin that is faithfully propagated through subsequent cell divisions. The integration of all these processes requires a region of the X chromosome known as the X-inactivation center, which contains the Xist gene and its cis-regulatory elements. Xist encodes an RNA molecule that plays critical roles in the choice of which X chromosome remains active, and in the initial spread and es- tablishment of silencing on the inactive X chromosome.