(12) United States Patent (10) Patent No.: US 9,353,009 B2 Dantin Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 9,353,009 B2 Dantin Et Al US009353009B2 (12) United States Patent (10) Patent No.: US 9,353,009 B2 Dantin et al. (45) Date of Patent: May 31, 2016 (54) DRY COMPOSITION BASED ON MINERAL (56) References Cited BNDER AND INTENDED FOR THE PREPARATION OF A HARDENABLE WET U.S. PATENT DOCUMENTS FORMULATION FOR THE CONSTRUCTION 7,288,147 B2 10/2007 Christensen et al. INDUSTRY 2003. O144386 A1 7/2003 Pakusch et al. 2010, O190888 A1 7/2010 Gaeberlein et al. (75) Inventors: Véronique Dantin, Saint-Quentin Fallavier (FR); Paulo Goncalo, FOREIGN PATENT DOCUMENTS Saint-Quentin Fallavier (FR); Stéphanie FR 2955103 T 2011 Persoz, Saint-Quentin Fallavier (FR) FR 2955 104 T 2011 OTHER PUBLICATIONS (73) Assignee: PAREXGROUP SA, Issy les Portland Cement Wikipedia (downloaded Feb. 3, 2015).* Moulineaux (FR) “Portland Cement Hydration” by Dr. Kimberly Kurtis, published online in 2007 at http://people.ce.gatech.edu/~kk92/hyd07.pdf.* (*) Notice: Subject to any disclaimer, the term of this "Appendix A: Overview of Portland Cement and Concrete” (May 11, patent is extended or adjusted under 35 2015) http://www.epa.gov/epawaste/conserve?tools/cpg/pdf app-a. U.S.C. 154(b) by 0 days. pdf. “Cement Chemist Notation” (May 11, 2015)http://en.wikipedia.org/ wiki/Cement chemist notation. (21) Appl. No.: 13/513,498 “Portland cement” (Feb. 3, 2015) http://en.wikipedia.org/wiki/Port land cement. Zhu, H.; "Computer Simulated Crystal Structures of Major Chemical (22) PCT Fled: Mar. 9, 2012 Compounds in Portland Cement” Presentation at University of Mas sachusetts-Lowell, Jul. 20, 2009. (86) PCT NO.: PCT/EP2012/054166 S371 (c)(1), * cited by examiner (2), (4) Date: Jul. 20, 2012 Primary Examiner — Vu A Nguyen (74) Attorney, Agent, or Firm — Vedder Price P.C.; Thomas (87) PCT Pub. No.: WO2O13/131583 J. Kowalski; Deborah L. Lu (57) ABSTRACT PCT Pub. Date: Sep. 12, 2013 The invention relates to a dry composition for the preparation of a wet formulation for the construction industry. (65) Prior Publication Data The aim of the invention is to provide a dry composition that US 2014/O371351A1 Dec. 18, 2014 results in hardened products for the construction industry having an excellent compromise between its lightweight properties and mechanical properties; optimizing the hydra (51) Int. C. tion of the binder; and making possible a stable lightweight C04B 28/04 (2006.01) property without excessive increase in Volume. C04B 28/06 (2006.01) To this end, the composition according to the invention is C04B 24/26 (2006.01) based on a mineral binder (a) and incorporates at least one BOIF 3/12 (2006.01) SuperAbsorbent Polymer (SAP) (b) and an accelerator com C04B 28/10 (2006.01) ponent (c), characterized in that it comprises at least one C04B 28/02 (2006.01) Source of aluminum ions and, optionally, (d) a setting CO4B 103/OO (2006.01) retarder, (e) an additional setting accelerator, (f) a water (52) U.S. C. retaining agent, (g) a filler: (h) a lightweight filler, (i) a water CPC ............... C04B 28/10 (2013.01); B01F3/1214 repellent; (ii) a coloring agent; (k) fibers: (1) an anti-foaming (2013.01); B0IF 3/1228 (2013.01); C04B agent; (m) a redispersible powder resin, (n) a rheological 24/2641 (2013.01); C04B 24/2652 (2013.01); agent; (O) an air-entraining or foaming agent, (p) a gas-gen C04B 28/02 (2013.01); C04B 28/04 (2013.01); erating agent; (q) a fire retardant. B01F 2215/006 (2013.01); B01 F 2215/0047 The wet formulation obtained by mixing this dry composition (2013.01); C04B 2103/0051 (2013.01); C04B with water, the methods for preparing this dry composition 220 1/32 (2013.01) and the corresponding wet formulation, the construction (58) Field of Classification Search products obtained from the wet formulation and the structures CPC ... CO4B 28/04: CO4B 28/06; C04B 24/2641; produced with these products, are other subjects of the inven CO4B 24/2652 tion. See application file for complete search history. 13 Claims, No Drawings US 9,353,009 B2 1. 2 DRY COMPOSITION BASED ON MINERAL mopierre blocks, which have a lambda value close to 0.12 BNDER AND INTENDED FOR THE W/m Kt and mechanical strength of 3-5 MPa approximately) PREPARATION OF A HARDENABLE WET or as non-bearing cladding elements, contributing additional FORMULATION FOR THE CONSTRUCTION thermal insulation (in the case of Multipor R cladding, which INDUSTRY has a lambda value close to 0.048 W/m'K and mechanical strength of 0.5 MPa). Obtaining these elements requires alu CROSS REFERENCE TO RELATED minium powder to be handled, which requires particular pre APPLICATIONS cautions in view of its explosive nature. Moreover, a costly autoclaving stage is necessary to confer the necessary This application is a S371 National Stage Application of 10 mechanical strength on these elements. This technique there PCT/EP2012/0541.66, filed Mar. 9, 2012. fore cannot be used on site. Moreover, with respect to the production of prefabricated parts, there is a demand for alter BACKGROUND OF THE INVENTION native technologies for the production of prefabricated ele ments having the same types of mechanical and thermal insu 1. Field of the Invention 15 lation performance, which avoid the use of aluminium The technical field of the invention is that of powder com powder (eliminating the potential problems of explosion) and positions intended for the preparation of wet formulations for which avoid the costly autoclaving stage: energy cost, low the construction industry, for example renders, mortars, con productivity and specific investments. cretes or adhesives for construction. Air-entraining admixtures are also known for renders, mor These wet formulations can be obtained: tars and concrete, the purpose of which is to trap the Surround directly by mixing the powder compositions on site (e.g. ing air, during blending with water (mixing) of the dry com renders, mortars, concretes or adhesives for construc positions of renders, mortars or concrete. These air-entraining tion), agents are for example surfactants, fatty acids and alkali Salts by mixing the powder compositions on industrial sites to of fatty acids such as Sodium lauryl Sulphate. Such known produce prefabricated parts Such as for example plates, 25 air-entraining admixtures are capable of improvement. concrete blocks or monomer blocks. In fact, all of the difficulty of this route of production of More precisely, the invention relates to dry compositions foams by air-entrainment lies in the stabilization of the air based on mineral binders and a Super Absorbent Polymer trapped within the wet matrix of render, mortar or concrete. (SAP) that are capable, after mixing with water at high mix This stabilization is even more problematical in that it must ing ratios, for example greater than 50%, of producing wet 30 not be obtained to the detriment of the standard properties formulations that make it possible to produce lightweight (e.g. ease of use) of the wet forms of render, mortar or con hardened articles, such as exterior or interior coverings or crete foams, or to the detriment of the properties (in particular renders (e.g. exterior thermal insulation system (ETI)/deco mechanical) expected for the hardened forms of these foams. ration/protection/waterproofing), adhesives, solid objects, Moreover, the stability of the foam must also be present at etc. 35 each stage of the preparation and application processes. This 2. Description of Related Art must be embodied by a density that does not vary during each In this technical field, there is a constant need for a “foam’ stage, whether in the mixing vat, after passing through the system that incorporates air into the wet or hardened renders, pipes (lance output density 1.o.d.) or during spraying, when mortars and concretes, so as to make them lighter and give the application is carried out in this way. Conversely, this them beneficial properties in particular as regards Sound and/ 40 density can be different between each stage. The reproduc orthermal insulation and thermal resistance or fire resistance. ibility and reliability of the method of producing these foams, These low-density wet render, mortar or concrete foams must although problematical in an industrial environment, pose a also have good workability or handling. The Sound and/or real problem of robustness when use directly on site by thermal insulation properties of these render, mortar or con undualified operators is envisaged. In practice, their use on crete foams would be particularly acceptable for floor cover 45 site is very limited as it requires highly qualified labour. ings or resurfacing, exterior renders for protecting facades In order to improve this route of production of air-entrain and firestop mortars, among others. ing foams, FR2955103A proposes a dry composition for the A certain number of admixtures for render, mortar or con preparation of render, mortar or concrete foams for the con crete compositions are already known, the function of which struction industry, which become porous once hardened, so is to generate gases in situ and therefore to form a foam after 50 that they are lightweight, thermally and/or sound insulating, mixing and porosity after hardening. This is the case in par both in paste form and hardened form, and which are obtained ticular for aluminium powders capable of producing hydro by air-entrainment during mixing. This composition includes gen in an aqueous oralkaline medium, as well as for hydrogen a foaming admixture comprising: peroxide, which quickly releases oxygen when it comes into A. a modified starch ether having a Brookfield viscosity contact with catalysts such as silver or potassium permanga 55 comprised between 500 and 25,000 mPas.; nate. Other families of admixtures that generate gas in situ in B.
Recommended publications
  • An Introduction to Pozzolana and Pozzolanic Cement
    An Introduction to Pozzolana and Pozzolanic Cement INTRODUCTION: Pozzolana, also known as pozzolanic ash, is a fine, sandy volcanic ash. Pozzolanic ash was first discovered and dug in Italy at Pozzuoli , in the region around Vesuvius. It was later discovered at a number of other sites as well. Vitruvius speaks of four types of pozzolana: black, white, grey, and red, all of which can be found in the volcanic areas of Italy, such as Naples. Pozzolana is a siliceous and aluminous material which reacts with calcium hydroxide in the presence of water. This forms compounds possessing cementitious properties at room temperature which have the ability to set underwater. It transformed the possibilities for making concrete structures, although it took the Romans some time to discover its full potential. Typically it was mixed two-to-one with lime just prior to mixing with water. The Roman port at Cosa was built of Pozzolana that was poured underwater, apparently using a long tube to carefully lay it up without allowing sea water to mix with it. The three piers are still visible today, with the underwater portions in generally excellent condition even after more than 2100 years. Portland Pozzolanic Cements are a mix of natural or industrial pozzolans and Portland cement. In addition to underwater use, the high alkalinity of pozzolana makes it especially resistant to common forms of corrosion from sulphates. Once fully hardened, the Portland Pozzolana Cement (PPC) will be stronger than Ordinary Portland Cement(OPC), due to its lower porosity, which also makes it more resistant to water absorption and spalling.
    [Show full text]
  • ( 12 ) United States Patent
    US010336652B2 (12 ) United States Patent (10 ) Patent No. : US 10 , 336 ,652 B2 Berodier et al. (45 ) Date of Patent: Jul. 2 , 2019 ( 54 ) ENHANCING CALCINED CLAY USE WITH 8 ,435 , 930 B2 * 5/ 2013 Woytowich .. C04B 28/ 02 106 /681 INORGANIC BINDERS 8 , 906 , 155 B2 12 /2014 Gasafi et al . ( 71 ) Applicant: GCP Applied Technologies Inc ., 9 ,212 ,092 B2 12 / 2015 Herfort et al. Cambridge , MA (US ) FOREIGN PATENT DOCUMENTS ( 72 ) Inventors : Elise Berodier , Lausanne (CH ) ; CN 103613303 A * 3 /2014 Josephine H . Cheung , Lexington , MA EP 3109216 6 /2015 (US ) ; Nathan A . Tregger , KR 101219673 B1 * 1 / 2013 Northborough , MA (US ) WO 2016206780 6 / 2016 ( 73 ) Assignee : GCP Applied Technologies Inc ., OTHER PUBLICATIONS Cambridge , MA (US ) Sabir, B . B ., Wild , S . , & Bai, J ., Metakaolin and calcined clays as pozzolans for concrete: a review . Cement and Concrete Composites , ( * ) Notice : Subject to any disclaimer , the term of this 23 ( 6 ) , 441- 454 , 2001 . patent is extended or adjusted under 35 Siddique , R . , & Klaus , J . , Influence of metakaolin on the properties of mortar and concrete : A review . Applied Clay Science , 43 ( 3 ) , U . S . C . 154 ( b ) by 0 days. 392 -400 , 2009 . T . Chappex , K . L . Scrivener , The effect of aluminum in solution on (21 ) Appl . No. : 15 / 809, 530 the dissolution of amorphous silica and its relation to cementitious systems, J . Am . Ceram . Soc . 96 ( 2013 ) 592 - 597 . doi : 10 . 1111/ jace . (22 ) Filed : Nov . 10 , 2017 12098 . L . Nicoleau , E . Schreiner , A . Nonat , Ion - specific effects influencing Prior Publication Data the dissolution of tricalcium silicate , Cem .
    [Show full text]
  • Of 3 113.2 - Portland Cement Clinkers (Solid Form)
    113.2 - Portland Cement Clinkers (solid form) These SRMs provide certified values for the abundance of major phases in cement clinkers, i.e., the percentages of alite (C3S), belite (C2S), aluminate (C3A), and ferrite (C2(A,F)). NOTE: In cement chemist notation, C=CaO, S=SiO2, A=Al2O3 and F=Fe2O3. PLEASE NOTE: The tables are presented to facilitate comparisons among a family of materials to help customers select the best SRM for their needs. For specific values and uncertainties, the certificate is the only official source. Component (mass fraction, in %) Loss on Magnesium Manganese Alkali Aluminate Aluminum oxide Calcium oxide Iron oxide Ignition at oxide trioxide SRM Description Unit Size Alite (C3S) Sulfates (C 3A) (Al2O3) Aphthitalite Arcanite Belite (C2S) (CaO) Ferrite (C2AF) Free CaO (Fe2O3) 1000 ºC (MgO) (Mn2O3) 2686a Portland Cement Clinker 4 vials x 7 g |1 2 63.35 |1 2 |1 2 0.87 |1 2 |1 2 2.46 |1 2 |1 2 (3.70) |1 2 |1 2 0.74 |1 2 |1 2 0.27 |1 2 |1 2 18.68 |1 2 |1 2 (64.09) |1 2 |1 2 10.76 |1 2 |1 2 |1 2 |1 2 (3.65) |1 2 |1 2 (0.51) |1 2 |1 2 (4.81) |1 2 |1 2 (0.13) |1 2 2687a Portland Cement Clinker 5 vials x 8 g |1 2 57.88 |1 2 |1 2 |1 2 |1 2 9.56 |1 2 |1 2 (5.470 ) |1 2 |1 2 (0.16 ) |1 2 |1 2 (0.68 ) |1 2 |1 2 24.70 |1 2 |1 2 (66.172 ) |1 2 |1 2 6.27 |1 2 |1 2 (0.51 ) |1 2 |1 2 (2.403 ) |1 2 |1 2 (0.49 ) |1 2 |1 2 (1.035 ) |1 2 |1 2 (0.031 ) |1 2 2688 Portland Cement Clinker 3 vials x 10 g |1 2 64.95 |1 2 |1 2 |1 2 |1 2 4.99 |1 2 |1 2 (4.90) |1 2 |1 2 |1 2 |1 2 |1 2 |1 2 17.45 |1 2 |1 2 (66.50) |1 2 |1 2 12.20 |1 2 |1 2 (0.2) |1 2 |1 2 (4.07) |1 2 |1 2 (0.21) |1 2 |1 2 (0.98) |1 2 |1 2 (0.03) |1 2 - Certified values are normal font - Reference values are italicized - Values in parentheses are for information only Page 1 of 3 113.2 - Portland Cement Clinkers (solid form) These SRMs provide certified values for the abundance of major phases in cement clinkers, i.e., the percentages of alite (C3S), belite (C2S), aluminate (C3A), and ferrite (C2(A,F)).
    [Show full text]
  • Opportunities for Using Bauxite Residue in Portland Cement Clinker Production
    Opportunities for using bauxite residue in Portland cement clinker production Opportunities for using bauxite residue in Portland cement clinker production International Aluminium Institute: www.world‐aluminium.org Current IAI membership represents over 60 % of global bauxite, alumina and aluminium production. Since its foundation in 1972 (as the International Primary Aluminium Institute), the members of the IAI have been companies engaged in the production of bauxite, alumina, aluminium, the recycling of aluminium, or fabrication of aluminium or as joint venture partners in such. The global objectives of the Institute are: In 2016 the International Aluminium Institute undertook a review of opportunities for bauxite residue in all aspects of cement production and usage. This paper addresses the background to using bauxite residue in the production of Portland cement clinker, separate papers cover possible usage in calcium sulfoaluminate/special/sulfobelite cements and in supplementary cementious materials. 2 Opportunities for using bauxite residue in Portland cement clinker production Summary The prospects for using bauxite residue in Portland cement has been explored for over 80 years with many promising technical studies and several successful large scale commercial initiatives. The iron and aluminium compounds contained in the bauxite residue provide valuable additions in the production of Portland cement at a low cost. The best estimates are that between 1,000,000 to 1,500,000 tonnes of bauxite residue are currently used annually in the production of Portland Cement clinker. The cement plants currently utilising the bauxite residue in clinker production are based in China, Ukraine, India, Russia, Georgia, Moldova, Cyprus and Greece. From the evidence from the cement plants that are already using bauxite residue on an industrial scale, it is clear that bauxite residue can satisfactorily be used in cement clinker manufacture with only slight changes to their operating process.
    [Show full text]
  • Effect of Calcium Silicates on Immobilization of Fluorine in Aqueous Solution
    ISIJ International, Vol. 41 (2001), No. 5, pp. 513–518 Effect of Calcium Silicates on Immobilization of Fluorine in Aqueous Solution Hongye HE and Hideaki SUITO Research Institute for Advanced Materials Processing, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577 Japan. (Received on December 18, 2000; accepted in final form on February 20, 2001) Immobilization of fluorine in aqueous solution with 2CaO · SiO2 (C2S) and 3CaO · SiO2 (C3S), and the effect of C2S and C3S on the fluorine immobilization with 3CaO · Al2O3 (C3A) and 12CaO · 7Al2O3 (C12A7) have been studied. The hydration products are identified by X-ray diffraction method and the fluorine-substituted com- pounds are confirmed by electron microprobe analysis. It is found that C3S appears more effective to immo- Ϫ Ϫ bilization of fluorine than C2S and (OH ) site in calcium silicate hydrates is substituted with F ion. The be- havior of fluorine immobilization by calcium aluminates changes with the addition of calcium silicates be- cause calcium silicates affect the formation of Ca3Al2(OH)12ϪxFx, which is the most effective calcium alumi- Ϫ nate hydrate in view of the incorporation of F ion. The fluorine immobilization with C12A7 can be promoted in the presence of appropriate amount of C2S or C3S. KEY WORDS: immobilization; fluorine; calcium silicate; calcium aluminate; hydration. 2. Experimental 1. Introduction 2.1. Materials Calcium silicates, 3CaO·SiO2 and 2CaO·SiO2, exist in cementitious materials such as Portland cement, slag-based 2CaO·SiO2 (C2S) and 3CaO·SiO2 (C3S) were prepared cement and steelmaking slag. Calcium silicate hydrate by sintering the mixtures of analytical grade CaCO3 and formed by cementitious reaction of calcium silicates in the SiO2 in an appropriate proportion at 1 400 and 1 600°C, re- presence of water is a well known host for a variety of spectively, for 2 d.
    [Show full text]
  • Portland Cement Clinker Standard Reference Materials Certificate Of
    National Institute of Standards & Technology Certificate of Analysis Standard Reference Material® SRM 2686 Portland Cement Clinker This Standard Reference Material (SRM) is intended for use in evaluating methods of phase abundance analysis of 1 2 major phases in cement clinkers: the percentages of alite (C3S) , belite (β-C2S), aluminate (C3A), ferrite (C4AF), and periclase (M). Each unit consists of three hermetically-sealed containers of approximately 10 g each of crushed portland cement clinker. The materials selected for SRMs 2686, 2687, and 2688 differ widely in phase abundance, crystal sizes, and distribution of crystals [1,2]. Certified Values: The certified values for SRM 2686, expressed as mass fractions, are provided in Table 1. A NIST certified value is a value for which NIST has the highest confidence in its accuracy, in that all known or suspected sources of bias have been investigated or accounted for by NIST. The certified values listed are based on the results of analyses performed at NIST using quantitative X-ray powder diffraction (QXRD) and from optical microscopy point count analyses conducted by both Construction Technology Laboratories, Inc. (CTL)3 and ASTM C 1.23 Microscopy Task Group (MPC) [3,4]. The MPC analyses followed ASTM C 1356M [5] and the QXRD used Reitveld refinement of powder diffraction data [6,7]. Sampling for the X-ray study allowed assessment of within and between vial homogeneity and found the materials to be homogeneous. The uncertainty listed with each value is an expanded uncertainty, with coverage factor 2, calculated by combining a between-method variance [8,9] with a pooled, within-method variance following the ISO/NIST Guide [10].
    [Show full text]
  • Downloaded And—Like Own Reference Data—Directly 204 Characterisedmatched with by Ditheff Eringsample Spectra Data
    heritage Article Raman Microspectroscopic Imaging of Binder Remnants in Historical Mortars Reveals Processing Conditions 1,2, , 2,3, Thomas Schmid * y and Petra Dariz y 1 BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany 2 School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany; [email protected] 3 Bern University of Applied Sciences, Bern University of the Arts, Conservation-Restoration, Fellerstr. 11, 3027 Bern, Switzerland; [email protected] * Correspondence: [email protected] or [email protected] These authors contributed equally to this work. y Received: 26 April 2019; Accepted: 12 June 2019; Published: 14 June 2019 Abstract: Binder remnants in historical mortars represent a record of the connection between the raw materials that enter the kiln, the process parameters, and the end product of the calcination. Raman microspectroscopy combines high structural sensitivity with micrometre to sub-micrometre spatial resolution and compatibility with conventional thin-sectional samples in an almost unique fashion, making it an interesting complementary extension of the existing methodological arsenal for mortar analysis. Raman spectra are vibrational fingerprints of crystalline and amorphous compounds, and contain marker bands that are specific for minerals and their polymorphic forms. Relative intensities of bands that are related to the same crystalline species change according to crystal orientations,
    [Show full text]
  • Uptake and Reversibility of Aluminium in Calcium Silicate Hydrates
    Uptake and reversibility of aluminium in calcium silicate hydrates Master Thesis by Inga Mathilde Tangen Aalborg University Department of Chemistry and Bioscience Fredrik Bajers Vej 7H DK-9220 Aalborg Aalborg University Department of Chem- istry and Bioscience Fredrik Bajers Vej 7H 9220 Aalborg Ø http://www.bio.aau.dk Title: Uptake and reversibility of aluminium in calcium silicate hydrates Theme: Cement Chemistry Semester: Master thesis Timeframe: 01.09.20 - 06.08.21 ECTS: 60 Supervisors: Yuanzheng Yue Barbara Lothenbach Yiru Yan Number of pages: 80 Number of appendices: 4 (A-D) iii iv Abstract Production of Portland cement (PC) is responsible for a significant amount of anthropogenic CO2 emissions, and ways to lower emissions are highly sought after. One way of reducing emissions is by substituting part of the cement clinker with supplementary cementitious materials (SCMs). SCMs typically contain more silica and alumina and less calcium than ordinary PC, which could change the compositoin of hydrated cement and C-S-H. This study aims to determine how the kinetics and reversibility of aluminium uptake in calcium silicate hydrates (C-S-H) changes, based on its composition. Specifically, it investigates how the Ca/Si molar ratio of C-S-H changes the kinetics of aluminium uptake and properties of the resulting solids, as well as whether the aluminium uptake is reversible. In order to investigate the kinetics of aluminium uptake, 240 samples of varying Ca/Si and Al/Si molar ratio with varying hydration time were synthesised and analysed. The results showed slower uptake of aluminium in low Ca/Si samples, compared to high Ca/Si.
    [Show full text]
  • Technical Report Standard Page 1
    TECHNICAL REPORT STANDARD PAGE 1. Report No. 2. Government Accession 3. Recipient's Catalog No. FHWA/LA.03/366 No. 4. Title and Subtitle 5. Report Date Stabilization Techniques for Reactive Aggregate in Soil- Cement Base Course 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. 366 Amitava Roy, Lan Wang, Roger K. Seals, John B. Metcalf 9. Performing Organization Name and Address 10. Work Unit No. J. Bennett Johnston Sr. Center for Advanced Microstructures 00-4GT and Devices, Louisiana State University, Baton Rouge, LA And Department of Civil and Environmental Engineering, 11. Contract or Grant No. Louisiana State University, Baton Rouge, LA 736-99-0822 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Louisiana Transportation Research Center 04/15/00-06/30/02 4101 Gourrier Avenue Baton Rouge, LA 70808 14. Sponsoring Agency Code 15. Supplementary Notes 16. Abstract Anhydrite (CaSO4) beds occur as a cap rock on a salt dome in Winn Parish in north Louisiana. Locally known as Winn Rock, it has been quarried for gravel for road building. It has been used as a surface course for local parish and logging roads. Stabilization of these roads with Type I portland cement followed by an overlay of asphaltic concrete sometimes resulted in heaving. The causes of heaving and possible solutions were investigated. In the laboratory 2” x 4” molds of Winn Rock containing soil were stabilized with various cementitious mixes and cured in a 40°C water bath, in a 100 percent-relative-humidity room, a sealed plastic bag at room temperature, and air.
    [Show full text]
  • Glossary of Some Terms Used in Cement, Concrete and in the Analysis of Cementitious Materials
    Glossary Version 2.5 © WHD Microanalysis Consultants Ltd 2009 Glossary of some terms used in cement, concrete and in the analysis of cementitious materials NOTES: 1. Thank you for subscribing to the “Understanding Cement” newsletter! This Glossary of terms used in cement, concrete and cementitious analysis is available for free download on subscription to the newsletter and we hope you find it useful. If you are feeling kind to any colleagues who may also benefit from it, do encourage them to sign up for our newsletter, so that they too can get the glossary download and receive updates on the UC web site! 2. The Glossary will be added to over time - there will inevitably be omissions, which should gradually be rectified with the assistance of readers. Please click on the button below if you want to suggest any new words. 3. Please note that the information in the Glossary is supplied free of charge, in good faith and is believed to be correct. However no warranty whatsoever is given as to the accuracy or completeness of the information and the user uses it entirely at his/her own risk. 4. Just save this pdf file to your desktop, or other convenient place, and open it when you need to look something up. 5. Do check back to www.understanding-cement.com/glossary.html for updated versions! 6. How to use: the terms in the column on the left are arranged in alphabetical order. Either scroll down to find what you are looking for, or use the ‘Search’ option in Acrobat Reader for your search term.
    [Show full text]
  • February, 2017 Department of Civil Engineering Engineering School Of
    Final Report Title: Evaluation of Alternative Pozzolanic Materials for Partial Replacement of Portland Cement in Concrete FDOT Contract Number: BDV31-977-06 Submitted to: The Florida Department of Transportation Research Center FDOT Research Center [email protected] 605 Suwannee Street, MS 30 Tallahassee, FL 32399 c/o Dr. Harvey DeFord, Ph.D. Structures Materials Research Specialist State Materials Office Submitted by: Christopher C. Ferraro, Jerry M. Paris, Timothy G. Townsend, Mang Tia Engineering School of Sustainable Infrastructure and Environment University of Florida Gainesville, Florida 32611 February, 2017 Department of Civil Engineering Engineering School of Sustainable Infrastructure and Environment College of Engineering University of Florida Gainesville, Florida 32611 Disclaimer The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the State of Florida Department of Transportation or the U.S. Department of Transportation. Prepared in cooperation with the State of Florida Department of Transportation and the U.S. Department of Transportation. ii Approximate Conversions to SI Units (from FHWA) Symbol When You Know Multiply By To Find Symbol Length in inches 25.4 millimeters mm ft feet 0.305 meters m yd yards 0.914 meters m mi miles 1.61 kilometers km Area in2 square inches 645.2 square millimeters mm2 ft2 square feet 0.093 square meters m2 yd2 square yard 0.836 square meters m2 mi2 square miles 2.59 square kilometers km2 Volume fl oz fluid ounces 29.57 milliliters mL gal gallons 3.785 liters L ft3 cubic feet 0.028 cubic meters m3 yd3 cubic yards 0.765 cubic meters m3 NOTE: volumes greater than 1000 L shall be shown in m3 Mass oz ounces 28.35 grams g lb pounds 0.454 kilograms kg Temperature (exact degrees) °F Fahrenheit 5 (F-32)/9 Celsius °C or (F-32)/1.8 Illumination fc foot-candles 10.76 lux lx fl foot-Lamberts 3.426 candela/m2 cd/m2 Force and Pressure or Stress lbf pound-force 4.45 newtons N lbf/in2 pound-force per square inch 6.89 kilopascals kPa iii 1.
    [Show full text]
  • Final Thesis
    AN ABSTRACT OF THE THESIS OF Skyler J. Warner for the degree of Master of Science in Civil Engineering presented on March 13, 2012. Title: The Role of Alumina in the Mitigation of Alkali-Silica Reaction Abstract approved: Jason H. Ideker The use of fly ash as a supplementary cementitious material (SCM) has increased in the last century due to its various environmental benefits as a recycled product. Within the last 60 years, it has been found that it can be used to effectively control damage induced by Alkali-Silica Reaction. However, it is not completely understood how to properly assign a dosage of fly ash to control the reaction. This depends greatly on the fly ash characteristics (e.g. composition, particle size, and reactivity), the reactivity of the aggregate (e.g. high to low reactivity level) and the environmental exposure conditions. The characteristics of the fly ash depend on the coal source being burned and the burning conditions that result in the fly ash formation. A major concern when supplementing cement with fly ash for ASR mitigation is the effect of the alkali contribution of the fly ash to the concrete pore solution. Current test methods cannot accurately determine the alkali contribution of fly ashes and there is no standardized test method to doing so. When contributed by the implementation of a SCM, alumina has been found to play a role in the ability of an SCM to mitigate ASR-induced damage. It has been observed that fly ashes containing higher levels of alumina (18-25%) tend to improve concrete durabilty more effectively when compared to fly ashes with lower levels of alumina.
    [Show full text]