Social and Behavioural Sciences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Russian-Chinese Trade in Kyakhta — Trade Development and Volume Indicators 1727–1861
Russian-Chinese Trade in Kyakhta — Trade Development and Volume Indicators 1727–1861 Michal Wanner This study is a follow-up to the author’s previous articles featuring the beginning of the Russian-Chinese diplomatic and trade relations, and the early forms of the Rus- sian-Chinese trade,1 as well as characteristic of the Russian-Chinese trade exchange organisation and practice in Kyakhta and May-ma-chen, or both Russian and Chi- OPEN ACCESS nese export commodity structure; but also to a few fundamental logistics issues hav- ing considerable impact on character of the trade in Kyakhta.2 The author focused this, third in row but last study, on portions of this broad topic, which had not been possible to include in the previous articles for the reasons of their size, specifically, the trade quantification and capturing single stages development in the monitored period, the trade influence on the overall advance of the region, and also the reasons that resulted in the decline and end of the Russian-Chinese trade in Kyakhta, more specifically, on other forms of the trade exchange as the replacement. THE TRADE DEVELOPMENT AND VOLUME In December 1728, shortly after The Treaty of Kyakhta had been entered into, Chinese merchants began to have complaints about the shortage of Russian merchants and their goods, but also because they had been only selling cloth and Russian leather. However, the situation would shortly change. Russian goods on 1,430 carriages and 96 sleighs were delivered to Kyakhta between 1736 and 1740, whereas Chinese goods were carried on 806 carriages and 37 sleighs.3 1 M. -
Do Compositions of Lipid Fraction Correspond to Species Differentiation in Bupleurum L
plants Article Do Compositions of Lipid Fraction Correspond to Species Differentiation in Bupleurum L. (Apiaceae)? Zhargal Alexandrovich Tykheev 1,2 , Oleg Arnoldovich Anenkhonov 3 , Svetlana Vasilievna Zhigzhitzhapova 1, Vasiliy Vladimirovich Taraskin 1 , Larisa Dorzhievna Radnaeva 1 and Faqi Zhang 4,* 1 Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; [email protected] (Z.A.T.); [email protected] (S.V.Z.); [email protected] (V.V.T.); [email protected] (L.D.R.) 2 Laboratory of the Chemistry of Natural Systems, Banzarov Buryat State University, 670000 Ulan-Ude, Russia 3 Institute of General and Experimental Biology, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; [email protected] 4 Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining 810008, China * Correspondence: [email protected]; Tel.: +86-0971-6105845 Received: 31 August 2020; Accepted: 21 October 2020; Published: 22 October 2020 Abstract: Bupleurum L. has been widely used in various medical systems as an agent with a wide range of activities. The qualitative composition and content of lipid fraction components of the aerial parts of B. longifolium and B. chinense were elucidated in this work. The available data on the fatty acids (FAs) in Bupleurum plants were compiled and compared with species differentiation in the genus. As a result, the content of FAs in the studied Bupleurum plant species only partially corresponded to the species differentiation and, in some cases, contradicted it. The prognostic value of Bupleurum’s species differentiation for the identification of the potential composition of FAs was insignificant, and it was limited only by particular groups of species. -
IAPT/IOPB Chromosome Data 22 TAXON 65 (5) • October 2016: 1200–1207
Marhold & Kučera (eds.) • IAPT/IOPB chromosome data 22 TAXON 65 (5) • October 2016: 1200–1207 IOPB COLUMN Edited by Karol Marhold & Ilse Breitwieser IAPT/IOPB chromosome data 22 Edited by Karol Marhold & Jaromír Kučera DOI http://dx.doi.org/10.12705/655.40 Tatyana V. An’kova,1* Maria N. Lomonosova1 & BORAGINACEAE Victor V. Chepinoga2,3 Lappula anisacantha (Turcz. ex Bunge) Gürke, 2n = 12; Russia, Sakha (Yakutia) Republic, ML & EN 879 (NS). 1 Central Siberian Botanical Garden SB RAS, Zolotodolinskaya Str. 101, 630090 Novosibirsk, Russia CAPRIFOLIACEAE 2 The V.B. Sochava Institute of Geography SB RAS, Ulan- Patrinia rupestris (Pall.) Dufr., 2n = 22; Russia, Sakha (Yakutia) Batorskaya Str. 1, 664033 Irkutsk, Russia Republic, ML & EN 849b (NS). 3 Irkutsk State University, Karl Marx Str. 1, 664003 Irkutsk, Russia GENTIANACEAE * Author for correspondence: [email protected] Halenia corniculata (L.) Cornaz, 2n = 22; Russia, Republic of Buryatia, E. Zolotovskaya & E. Gladkikh C168 (IRKU). All materials CHN; collectors: EN = E.G. Nikolin, ML = M.N. Lomonosova. GERANIACEAE Geranium sibiricum L., 2n = 28; Russia, Sakha (Yakutia) Republic, The reported study was partially supported by Russian Founda- ML & EN 858 (NS). tion for Basic Research (RFBR), project no. 16-05-00783. PLANTAGINACEAE ALLIACEAE Linaria acutiloba Fisch. ex Rchb., 2n = 12; Russia, Krasnoyarskii Allium ramosum L., 2n = 32; Russia, Sakha (Yakutia) Republic, ML Krai, ML 1141h (NS). & EN 831a (NS). Linaria genistifolia (L.) Mill., 2n = 12; Russia, Samarskaya Oblast’, Allium splendens Willd. ex Schult. & Schult.f., 2n = 16; Russia, Sakha ML 1068 (NS). (Yakutia) Republic, ML & EN 798 (NS). Plantago canescens Adams, 2n = 12; Russia, Sakha (Yakutia) Repub- lic, ML & EN 798 (NS). -
Subject of the Russian Federation)
How to use the Atlas The Atlas has two map sections The Main Section shows the location of Russia’s intact forest landscapes. The Thematic Section shows their tree species composition in two different ways. The legend is placed at the beginning of each set of maps. If you are looking for an area near a town or village Go to the Index on page 153 and find the alphabetical list of settlements by English name. The Cyrillic name is also given along with the map page number and coordinates (latitude and longitude) where it can be found. Capitals of regions and districts (raiony) are listed along with many other settlements, but only in the vicinity of intact forest landscapes. The reader should not expect to see a city like Moscow listed. Villages that are insufficiently known or very small are not listed and appear on the map only as nameless dots. If you are looking for an administrative region Go to the Index on page 185 and find the list of administrative regions. The numbers refer to the map on the inside back cover. Having found the region on this map, the reader will know which index map to use to search further. If you are looking for the big picture Go to the overview map on page 35. This map shows all of Russia’s Intact Forest Landscapes, along with the borders and Roman numerals of the five index maps. If you are looking for a certain part of Russia Find the appropriate index map. These show the borders of the detailed maps for different parts of the country. -
Aeolian Material Migration in Transbaikalia (Asian Russia)
Article Aeolian Material Migration in Transbaikalia (Asian Russia) Olga Bazhenova 1,2,*, Dmitrii Kobylkin 1 and Elizaveta Tyumentseva 3 1 V.B. Sochava Institute of Geography SB RAS, Irkutsk, 664033, Russia; [email protected] 2 Irkutsk Scientific Center, Siberian Branch of the Russian Academy of Sciences, Irkutsk, 664033, Russia 3 Irkutsk State University, Irkutsk, 664033, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-3952426920 Received: 25 November 2018; Accepted: 2 January 2019; Published: 14 January 2019 Abstract: We revealed regional features of functioning of a large Transbaikalian aeolian morphodynamic system. Natural pre-conditions, current realities and factors of development of aeolian processes are investigated. The paper considers regularities of spatial distribution of deflation, transit, and aeolian accumulation zones. Main directions of aeolian migration of matter are determined. Pulsating nature of aeolian processes development in Holocene has been established. Identified are intrasecular cycles and Holocene dynamics of aeolian processes. We identified intrasecular (11, 27–35 years old), secular (80 year old) and Holocene (500, 2000 year old) cycles of aeolian process dynamics. The paper shows the influence of anthropogenic activity on the activation of aeolian migration of material for the historical period. It presents an overview of extreme aeolian events. Regionalization of Transbaikalia was carried out according to the degree of probable desertification of the territory due to development of aeolian processes. Areas of catastrophic manifestation of processes are highlighted. The results of long-term experimental observations of deflation and aeolian accumulation are presented. Particular attention is paid to the characteristics of the aeolian corridors. The important role of aeolian processes in the intensive material transport from Transbaikalia to the south and southeast to neighboring regions of Mongolia and China is shown. -
INDIA-RUSSIA Identifying New Opportunities Contents Russian Federation Fact Sheet
INDIA-RUSSIA Identifying New Opportunities Contents Russian Federation Fact Sheet . 3 n Why Russia? . 3 n Russia vs Rest of World comparison . 6 Russian Far East. 8 n Why the Russian Far East. 8 Title : India-Russia: Identifying New Opportunities v Russia Far East - Basic Facts . 9 Year : September 2017 v International Importance of the Russia Far East . 10 Copyright : No part of this publication may be reproduced in any form by photo, photoprint, microfilm or any other means n without the written permission of FICCI and Ernst & Young Far East and the world. 11 Disclaimer: The information and opinions contained in this document have been compiled or arrived at from sources v International relations . 11 believed to be reliable, but no representation or warranty expressed is made to their accuracy, completeness or correctness. This document is for information purpose only. The information contained in this document is published for n Opportunities for Indian Industry. 11 the assistance of the recipient but is not to be relied upon as authoritative or taken in substitution for the exercise of judgment by any recipient. This document is not intended to be a Reverse SEZs with Russian Far East. 13 substitute for professional, technical or legal advice. All opinions expressed in this document are subject to n change without notice. Background. 13 FICCI and Ernst & Young do not accept any liability whatsoever for any direct or consequential loss howsoever arising from n Reverse SEZs Example. 14 any use of this document or its contents or otherwise arising in connection herewith. 1 Contents Russian Federation Fact Sheet . -
Constituents of Essential Oil and Lipid Fraction from the Aerial Part of Bupleurum Scorzonerifolium Willd
molecules Article Constituents of Essential Oil and Lipid Fraction from the Aerial Part of Bupleurum scorzonerifolium Willd. (Apiaceae) from Different Habitats Zhargal Alexandrovich Tykheev 1 ID , Svetlana Vasilievna Zhigzhitzhapova 1 ID , Faqi Zhang 2,3,* ID , Vasiliy Vladimirovich Taraskin 1 ID , Oleg Arnoldovich Anenkhonov 4 ID , Larisa Dorzhievna Radnaeva 1 and Shilong Chen 2 1 Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, Ulan-Ude 670047, Russia; [email protected] (Z.A.T.); [email protected] (S.V.Z.); [email protected] (V.V.T.); [email protected] (L.D.R.) 2 Key Laboratory of Adaption and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; [email protected] 3 Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, China 4 Institute of General and Experimental Biology, Russian Academy of Sciences, Ulan-Ude, 670047, Russia; [email protected] * Correspondence: [email protected]; Tel.: +86-0971-6105845 Received: 9 May 2018; Accepted: 16 June 2018; Published: 20 June 2018 Abstract: The essential oils and lipid fraction extracted from the aerial parts of Bupleurum scorzonerifolium were determined by a GC-MS method. In total, up to 67 components were identified. cis-b-Ocimene, trans-b-ocimene, limonene, a-pinene, a-copaene, b-elemene, and caryophyllene oxide were recognized as consistent components of the essential oil extracted from the aerial parts of B. scorzonerifolium, regardless of the habitat. The content of these components varied from traces to a significant amount. The volume of the lipid fraction varied from 2.73 to 9.38%. -
Socially Engaged Buddhism: Cattle-Breeding Initiative of the Buryat Buddhist Sangha and Its Ecological Significance in the Baikal Region, Russia
IOP Conference Series: Earth and Environmental Science PAPER • OPEN ACCESS Socially engaged Buddhism: cattle-breeding initiative of the Buryat Buddhist sangha and its ecological significance in the Baikal region, Russia To cite this article: B Dondukov et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 776 012009 View the article online for updates and enhancements. This content was downloaded from IP address 170.106.35.234 on 26/09/2021 at 17:28 2020 6th International Conference on Advances in Environment Research IOP Publishing IOP Conf. Series: Earth and Environmental Science 776 (2021) 012009 doi:10.1088/1755-1315/776/1/012009 Socially engaged Buddhism: cattle-breeding initiative of the Buryat Buddhist sangha and its ecological significance in the Baikal region, Russia B Dondukov1, O Dorzhigushaeva2 and G Dondukova1 1 Department of Organization and Management of Scientific Researches, East-Siberia State University of Technology and Management, Ulan-Ude, 670013 Russia 2 Department of Philosophy, History and Cultural Studies, East-Siberia State University of Technology and Management, Ulan-Ude, 670013 Russia E-mail: [email protected] Abstract. The article focuses on the environmental consequences of abandoning rural life, increasing urbanization and the problem of deforestation in the Baikal region, Russia. Specifically, it analyzes a recently proposed “Social Flock” project of the Buryat Buddhist community for the revival of nomadic cattle breeding in the districts of Buryatia, and its potential impact on the environment. We argue that taking into consideration the global value of the Lake Baikal, the “Social Flock” project can not only satisfy the practical needs of people and reduce the social aspects of environmental problems in Buryatia, but also potentially contribute to dealing with environmental problems of global importance. -
Professor OM Kowalewski—Mongolian Studies
CORE Metadata, citation and similar papers at core.ac.uk Provided by Acta Orientalia Vilnensia Professor O.M. Kowalewski—Mongolian studies scholar, traveller and enlightener: His biographical landmarks Ramil M. Valeev Kazan (Volga Region) Federal University Irina V. Kulganek Institute of Oriental Manuscripts of Russian Academy of Science Jerzy Tulisow University of Warsaw Abstract. In this article, materials devoted to the basic stages of the life and activity of a graduate of Vilna University (1821), Professor Osip Mikhailovich Kowalewski (1801–1878), are presented. He held the first chair of Mongolian literature in Russia and Europe and served as dean and rector of Kazan University. Prof Kowalewski made scientific trips to Siberia, Buryatia, Mongolia and China (1828–1833); collected unique books, manuscripts, and ethnographic materials of the people of Central Asia; and became the author of classical works concerning Buddhism and the history, languages, literature, religions, folklore, and ethnography of the Mongolian people. A graduate of Vilna (Vilnius) University, Osip Mikhailovich Kovalevskiy (Осип Михайлович Ковалевский, 1801–1878) (henceforth the Polish rendering of his surname ‘Kowalewski’ is used) is one of the founders of Mongolian research in Russia and Europe, an outstanding scholar with a wide range of research, and a corresponding member of the Russian Academy of Science. The name of this Russian and Polish scholar stands alongside other outstanding Russian orientalists: Christian Fren (Христиан Данилович Френ, 1782–1851), Aleksandr Kazem-Bek (Александр Касимович Казем-Бек 1802–1870), Ilya Berezin (Илья Николаевич Березин, 1818–1896), Vasiliy Bartold (Василий Владимирович Бартольд, 1869– 1930), Boris Vladimirtsov (Борис Яковлевич Владимирцов, 1884–1931), and others. -