Spatial Architecture Impact in Mediation Open Circuit Voltage Control of Quantum Solar Cell Recovery Systems

Total Page:16

File Type:pdf, Size:1020Kb

Spatial Architecture Impact in Mediation Open Circuit Voltage Control of Quantum Solar Cell Recovery Systems INTERNATIONAL JOURNAL OF ENERGY and ENVIRONMENT Volume 12, 2018 Spatial Architecture Impact in Mediation Open Circuit Voltage Control of Quantum Solar Cell Recovery Systems Moustafa Osman Mohammed can confine electrons (quantum confinement) in quantum solar Abstract—These photocurrent generations are influencing ultra- cell systems [1]. When the size of a QD approaches the size of high efficiency solar cells based on self-assembled quantum dot the material's exciton Bohr radius, quantum confinements, the (QD) nanostructures. Nanocrystal quantum dots (QD) provide a effect becomes prominent and electron energy levels can no great enhancement toward solar cell efficiencies through the use of longer be treated as continuous band, they must be treated as quantum confinement to tune absorbance across the solar spectrum enabled multi-exciton generation. Based on theoretical predictions, discrete energy levels [2]. Hence, QD can be considered as an QD solar cells have potential for efficiencies greater than 50%. In artificial molecule with energy gap and energy levels spacing solar cell devices, an intermediate band formed by the electron dependent on its size (radius). The energy band gap increases levels in quantum dot systems. Spatial architecture is exploring with a decrease in size of the quantum dot. As the size of a QD how can solar cell integrate to produce not only high open circuit increases its absorption peak is red shifted due to shrinkage of voltages (> 1.7 eV) but also large short-circuit currents due to the its band gap of QDs [3]. The adjustable band gaps of quantum efficient absorption of sub band gap photons. In the proposed QD system, the structure allows barrier material to absorb wavelengths dots allow the construction of nanostructured solar cell that is below 700 nm while multi-photon processes in the used quantum able to harvest more of the solar spectrum [4]. QDs have large dots to absorb wavelengths up to 2 µm. The structure and material intrinsic dipole moments, which may lead to rapid charge compositions are flexible to tune the energy bandgap of the barrier separation. Quantum dots have been found to emit up to three material and quantum dot to their respective optimum values. This electrons per photon due to multiple exciton generation structure is expected to outperform single or multi-junction solar (MEG), as opposed to only one for standard crystalline silicon cells in terms of energy virtual conversion efficiency and cost. A key milestone towards achieving the claimed high-efficiency solar solar cell. Theoretically, this could boost solar power cell device is flexibly tuning the energy bandgap between the efficiency from 20 % to as high as 65 % [5]. barrier material and QD according to the designed limits. Despite Initially, there are main important parameters can be this remarkable potential for high photocurrent generation, the characterized to quantify the performance of a photovoltaic achievable open-circuit voltage (V ) is fundamentally limited due oc cell. These are the open-circuit voltage (Voc), the short circuit to non-radiative recombination processes in QD solar cells. current (Isc), and the fill factor (F F). However, the fill factor is Comparing experimental Voc variation with the theoretical upper- limit obtained from one diode modeling of the cells with different also a function of Voc and Isc. Therefore, these focus on two bandgap (Eg), the proposed architecture is clearly demonstrated parameters that are the key factors for determining the cell’s that there is a tremendous opportunity for improvement of Voc to power conversion efficiency. In the regular conditions, each values greater than 1 V by using smaller QDs through QD solar photon incident on the cell with energy greater than the band cells confined states with other nano operation systems. gap will provide energy to produce an electron flowing in the external intermediate circuit. The false or fill factor is Keywords—Nanotechnology, Photovoltaic Solar Cell, Quantum determined from the maximum area of the I-V characteristics Systems, Renewable Energy, Environmental Modeling, under illumination voltage meter with other preliminary circuit current and open circuit voltage, or comply with fundamental I. INTRODUCTION given equation to[6]: IGNIFICANT documents are focus on diagnoses function of (1) S nanocrystal quantum Systems. Quantum Systems are a complete class of semiconductors quantum dots, which are nanocrystals, composed of periodic groups of II-VI, III-V, or where, Vmp and Imp are the majority operating point that will IV-VI of the periodic table, such as CdS, CdSe, CdTe, collect and charge the power output. While, the initial energy CdS@ZnS, CdSe@ZnS, CdSeTe@ZnS. These QDs provide conversion efficiency is given by [7]: excellent fluorescence properties that have been applied in biosensing and intracellular or in vivo imaging materials and (2) Moustafa Osman Mohammed is with the Egyptian Environmental Affairs where Pin is the input power. Agency (EEAA); (e-mail: moustafa_o@ yahoo.com). ISSN: 2308-1007 58 INTERNATIONAL JOURNAL OF ENERGY and ENVIRONMENT Volume 12, 2018 The main objective is to give an introductory coverage of a B. QD Nanotechnology in Solar Cell sophisticated quantum system. Construction model depends on The rays from the sun consist of different energy levels. the physics, designs, structures, and some growth/synthesis Solar spectrum has the photons with the energy level from techniques of quantum solar cell systems. The comprehensive 0.5ev to 3.5ev. So, by the use of the silicon in the solar cell description of spatial architectures of QD solar cells systems most of the photons with the energy level of above 1.14ev will (e.g., Schottky cell, layer of p-i-n configuration, depleted be wasted as the heat. The practice solution is used to heterojunction, and quantum dots sensitized solar cell) provide overcome this problem with Quantum dot as a nano material an innovation nanotechnology to sustainable production of used in the solar cell to increase the efficiency of the solar cell clean energy and reduce greenhouse gases (GHG) [8], [9]. [16]. Quantum dot is a zero dimensional system where electron motion is confined in three dimensions. Therefore, a II. QUANTUM SOLAR CELL SYSTEMS quantum dot possess atomic like density of states that is Current solar cells systems cannot convert all the incoming described mathematically by a delta function δ (EEc/v) . light into usable energy because of the light back out escape of Unlike conventional materials, one photon generates just the cell into the air reflection. Additionally, sunlight has one electron; quantum dots have the potential to convert high- spectrum within a variety of colors and the cell might be more energy pho-tons into multiple electrons. Quantum dots behave efficient at converting bluish light while being less efficient at as the same way, but produce three electrons for every photon converting reddish light. While the light lower energy passes of sunlight that hits the dots. Electron is displaced from the through the cell unused, a higher energy light does excite valance band into the conduction band. These dots have more electrons to the conduction band, and a partial of energy sunlight wave spectrums for improving conversion efficiency beyond the band gap energy is converted as heat. The solar as high as 65% percent. Another area in which quantum dots cell systems are organized to capture these excited electrons could be used to improve efficiency is, so – called a hot carrier aren’t captured and redirected its charge to the electrode, they cells. Typically the extra energy is transferred by a photon as will spontaneously recombine to create differential voltage heat, but with a hot carrier cells the extra energy from the current that produce energy from heat or light [10]. photons result in higher-energy electrons in turn captured to Solar cell is also known as the photovoltaic cell which lead to higher voltage efficiency [17], [18]. converts the solar energy from the sun into electrical energy C. Improving Solar Cell Efficiency with QD based on the principle of photovoltaic effect. Solar cell is the building blocks of photovoltaic effect. The operation of One of the starting points for the increase of the con-version photovoltaic cell requires two functions-one is photo efficiency of solar cells is the use of semiconductor quantum generation of charge carrier in a light absorbing material and dots (QD). By means of quantum dots, the band gaps can be the second is the separation of charge carrier to a conductive adjusted specifically to convert also longer- wave light and contact that will transmit the electricity [11].This is called as thus increase the efficiency of the solar cells. These so called the photovoltaic effect. The photovoltaic cell system was first quantum dot solar cells are, at present still subject, to basic experimentally said by Edmond Becquerel in 1839. The first research. As material systems, QD solar cells, III/V practical photovoltaic cell system was demonstrated in the semiconductors and other material compositions such as Si/Ge year 1954. Later the model of the quantum solar cell systems or Si/Be Te/Se are considered as potential advantages of these was developed and it is used mostly in the solar cell silicon as Si/Ge QD solar cells for: the light absorbing material to convert solar energy into clean 1) Higher light energy absorption in particular to the electrical energy [12]. infra-red spectral region, 2) Compatibility with standard conventional silicon solar cell production (in contrast to III/V semiconductors), A. Conventional Work of a Solar Cell 3) Increasing of photo current at higher temperatures, Solar cell converts the solar energy into electrical energy. 4) Improving radiation hardness in comparing to The sun rays contain certain energy level and some of the conventional silicon solar cells. photons in the sun rays are absorbed by the light absorbing The transport of electrons across the particle net-work is the material which is present in the solar cell.
Recommended publications
  • Development of Indium Arsenide Quantum Dot Solar Cells for High Conversion Efficiency Mohamed El-Emawy
    University of New Mexico UNM Digital Repository Electrical and Computer Engineering ETDs Engineering ETDs 1-29-2009 Development of indium arsenide quantum dot solar cells for high conversion efficiency Mohamed El-Emawy Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds Recommended Citation El-Emawy, Mohamed. "Development of indium arsenide quantum dot solar cells for high conversion efficiency." (2009). https://digitalrepository.unm.edu/ece_etds/73 This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Mohamed Abdel Rahman El-Emawy Candidat e Department of Electrical and Computer Engineering Departmen t This thesis is approved, and it is acceptable in quality and form for publication on microfilm: Appro ved by the Thesis Committee: Prof. Luke F. Lester , Chairperson Dr. Andreas Stintz Dr. Frederic Grillot Dr. Ganesh Balakrishnan Accepted: Dean, Graduate School Date DEVELOPMENT OF INDIUM ARSENIDE QUANTUM DOT SOLAR CELLS FOR HIGH CONVERSION EFFICIENCY BY MOHAMED ABDEL RAHMAN EL-EMAWY B.S., ELECTRICAL ENGINEERING, UNIVERSITY OF NEW MEXICO, 2006 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Electrical Engineering The University of New Mexico Albuquerque, New Mexico December, 2008 ©2008 , Mohamed Abdel Rahman El-Emawy iii DEDICATION To My Parents iv ACKNOWLEDGMENTS I would like to express my thanks to my advisor Professor Luke F. Lester for his guidance and assistance over the course of my research at the Center for High Technology Materials (CHTM).
    [Show full text]
  • Impact of Dot Size on Dynamical Characteristics of Inas/Gaas Quantum Dot Lasers
    Impact of dot size on dynamical characteristics of InAs/GaAs quantum dot lasers Esfandiar Rajaei* and Mahdi Ahmadi Borji** Department of Physics, The University of Guilan, Namjoo Street, Rasht, Iran * Corresponding author, E-mail: [email protected], ** Email: [email protected] Abstract: The purpose of this research is to study laser dynamics of InAs/GaAs Quantum Dot Lasers (QDLs) by changing QD energy levels. To date, most of the investigations have focused on only one of these circumstances, and hardly the result of change in the energy levels can be seen in lasing. In this work, in the first step, energy levels of lens-shape QDs are investigated by the eight-band k.p method, their variation for different QD sizes are surveyed, and recombination energies of the discrete levels are determined. Then, by representing a three-level InAs/GaAs QD laser, dynamics of such a laser device is numerically studied by rate equations in which homogeneous and inhomogeneous broadenings are taken into account. The lasing process for both Ground State (GS) and Excited States (ES) was found to be much sensitive to the QD size. It was observed that in larger QDs, photon number and bandwidth of the small signal modulation decrease but turn-on delay, maximum output power, and threshold current of gain increase. It was also found that for a good modulation, smaller QDs, and form the point of view of high-power applications, larger QDs seem better. Keywords: quantum dot lasers, QD size, energy level control, small signal modulation I. INTRODUCTION Study of the structure of semiconductors enables to control their parameters such as energy gap, energy levels, band structures, etc; control of the basic factors of these structures results in high-performance devices.
    [Show full text]
  • Modified Droplet Epitaxy Gaas/Algaas Quantum Dots Grown
    Journal of Crystal Growth 253 (2003) 71–76 Modified droplet epitaxy GaAs/AlGaAs quantum dots grown on a variable thickness wetting layer S. Sanguinettia,b,*, K. Watanabeb, T. Tatenob, M. Guriolia,c, P. Wernerd, M. Wakakie, N. Koguchib a I.N.F.M. Dipartimento di Scienza dei Materiali, Universita" di Milano Bicocca, Via Cozzi 53, I-20125 Milano, Italy b National Institute for Materials Science, 1–2–1 Sengen, Tsukuba, Ibaraki 305–0047, Japan c L.E.N.S., Via Sansone 1, I-50019 Sesto Fiorentino, Italy d Max-Planck-Institut fur. Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany e Department of Electro-Photo Optics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan Received 7 February 2003; accepted 14 February 2003 Communicated by M. Schieber Abstract We show that the use of modified droplet epitaxy allows to tune the wetting layer thickness in GaAs quantum dot structures. Morphological observations demonstrate that the wetting layer at the base of the dots can be controlled or even removed by changing the surface stoichiometry of substrates before droplet formations. Spectroscopical measurements show that the variation of the wetting layer thickness strongly influences the optical properties of the dots. The experimental transition energies of the dots well agree with a theoretical model based on effective mass approximation. r 2003 Elsevier Science B.V. All rights reserved. PACS: 78.67.Hc; 68.35.Fx Keywords: A3. Molecular beam epitaxy; A3. Quantum dots; B2. Semiconducting III–V materials 1. Introduction Stranski–Krastanov (SK) growth mode [4,5], has triggered an in-depth research of the physical The discovery of the self–organized growth of phenomena related to the QD growth.
    [Show full text]
  • Excitons in Ingaas Quantum Dots Without Electron Wetting Layer States
    ARTICLE https://doi.org/10.1038/s42005-019-0194-9 OPEN Excitons in InGaAs quantum dots without electron wetting layer states Matthias C. Löbl 1, Sven Scholz2, Immo Söllner1, Julian Ritzmann2, Thibaud Denneulin3, András Kovács3, Beata E. Kardynał3, Andreas D. Wieck 2, Arne Ludwig 2 & Richard J. Warburton 1 1234567890():,; The Stranski–Krastanov growth-mode facilitates the self-assembly of quantum dots (QDs) by using lattice-mismatched semiconductors, for instance, InAs and GaAs. These QDs are excellent photon emitters: the optical decay of QD-excitons creates high-quality single- photons, which can be used for quantum communication. One significant drawback of the Stranski–Krastanov mode is the wetting layer. It results in a continuum close in energy to the confined states of the QD. The wetting-layer-states lead to scattering and dephasing of QD- excitons. Here, we report a slight modification to the Stranski–Krastanov growth-protocol of InAs on GaAs, which results in a radical change of the QD-properties. We demonstrate that the new QDs have no wetting-layer-continuum for electrons. They can host highly charged excitons where up to six electrons occupy the same QD. In addition, single QDs grown with this protocol exhibit optical linewidths matching those of the very best QDs making them an attractive alternative to conventional InGaAs QDs. 1 Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland. 2 Lehrstuhl für Angewandte Festkörperphysik, Ruhr- Universität Bochum, DE-44780 Bochum, Germany. 3 Ernst Ruska-Centre for Microscopy and Spectroscopy, Peter Grünberg Institute, Forschungszentrum Jülich, DE-52425 Jülich, Germany. Correspondence and requests for materials should be addressed to M.C.L.
    [Show full text]
  • Quantum Cascade Transitions in Nanostructures
    Advances in Physics, 2003, Vol. 52, No. 5, 455–521 Quantum cascade transitions in nanostructures Tapash Chakraborty1* and Vadim M. Apalkov2y 1Institute of Mathematical Sciences, Chennai 600 113, India 2University of Utah, Physics Department, Salt Lake City, UT 84112-0830, USA [Received 5 September 2002; revised 20 February 2003; accepted 24 April 2003] Abstract In this article we review the physical characteristics of quantum cascade transitions (QCTs) in various nanoscopic systems. The quantum cascade laser which utilizes such transitions in quantum wells is a brilliant outcome of quantum engineering that has already demonstrated its usefulness in various real-world applications. After a brief introduction to the background of this transition process, we discuss the physics behind these transitions in an externally applied magnetic field. This has unravelled many intricate phenomena related to intersub- band resonance and electron relaxation modes in these systems. We then discuss QCTs in a situation where the quantum wells in the active regions of a quantum cascade structure are replaced by quantum dots. The physics of quantum dots is a rapidly developing field with its roots in fundamental quantum mechanics, but at the same time, quantum dots have tremendous potential applications. We first present a brief review of those aspects of quantum dots that are likely to be reflected in a quantum-dot cascade structure. We then go on to demonstrate how the calculated emission peaks of a quantum-dot cascade structure with or without an external magnetic field are correlated with the properties of quantum dots, such as the choice of confinement potentials, shape, size and the low-lying energy spectra of the dots.
    [Show full text]
  • Inas/Alsb Based Mid-Infrared QCL Growth and XRD Simulation
    InAs/AlSb Based Mid-Infrared QCL Growth and XRD Simulation by Xueren Wang A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science in Electrical and Computer Engineering Waterloo, Ontario, Canada, 2016 © Xueren Wang 2016 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract In the past two decades, mid-infrared (MIR) quantum cascade laser (QCL) research has been rapidly developed and has resulted in an enabling platform for the remote sensing and metrology. QCL is designed by spatial confinement in quantum well structures on a nanometer scale, enabling the transitions between the electron confined states. In order to obtain the particular characteristics via quantum engineering, the material growth needs to be precisely controlled across the large number of layers. In this work, the growth condition of InAs/AlSb based MIR-QCL, grown by molecular beam epitaxy (MBE), is investigated. A low defect density growth result is observed by employing the optimized growth condition. Laser devices with disk mesa or ridge waveguide are fabricated, and the further electrical characterization exhibits the device lasing at 3.4 µm with a threshold current density of around 2.1 kA/cm2. The superlattice average layer thickness is determined by using high resolution X-ray diffraction (HRXRD), which is considered as one of the non-destructive analysis technique to extract the information about the thin film constructions.
    [Show full text]
  • Impacts of Wetting Layer and Excited State on the Modulation Response of Quantum-Dot Lasers Cheng Wang, Frederic Grillot, Jacky Even
    Impacts of Wetting Layer and Excited State on the Modulation Response of Quantum-Dot Lasers Cheng Wang, Frederic Grillot, Jacky Even To cite this version: Cheng Wang, Frederic Grillot, Jacky Even. Impacts of Wetting Layer and Excited State on the Modu- lation Response of Quantum-Dot Lasers. IEEE Journal of Quantum Electronics, Institute of Electrical and Electronics Engineers, 2012, 48 (9), pp.1144. 10.1109/JQE.2012.2205224. hal-00725665 HAL Id: hal-00725665 https://hal.archives-ouvertes.fr/hal-00725665 Submitted on 27 Aug 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1144 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 48, NO. 9, SEPTEMBER 2012 Impacts of Wetting Layer and Excited State on the Modulation Response of Quantum-Dot Lasers Cheng Wang, Frédéric Grillot, Senior Member, IEEE, and Jacky Even Abstract— The modulation response of quantum-dot (QD) The resonance frequency is limited by the maximum modal lasers is studied. Based on a set of four rate equations, a gain and by gain compression effects [12] while the damping new analytical modulation transfer function is developed via a factor much stronger in QD lasers sets the limit of the small-signal analysis.
    [Show full text]
  • Physics of Intraband Quantum Dot Optoelectronic Devices
    Physics of intraband quantum dot optoelectronic devices Nenad Vukmirovi´c BSc (Hons) The University of Leeds School of Electronic and Electrical Engineering Institute of Microwaves and Photonics June 2007 Submitted in accordance with the requirements for the degree of Doctor of Philosophy. The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quoatation from the thesis may be published without proper acknowledgement. i Acknowledgments I would like to gratefully acknowledge the excellent supervision of Professor Paul Harrison and Dr Dragan Indjin during this work. I also thank Dr Zoran Ikoni´c for sharing his strong experience in physics of nanostructures. Both friendship and scientific support of Dr Ivana Savi´c and Dr Vladimir Jovanovi´c made me feel a member of the group from the first day I arrived at Leeds. I would also like to thank all my office mates for providing a pleasant research atmosphere. The work presented in this thesis would be impossible without the strong theoretical background in physics, mathematics and programming. I am grate- ful to all my teachers from Mathematical High School, Belgrade, as well as Fac- ulty of Physics and Faculty of Electrical Engineering, University of Belgrade. Special thanks to Professor Vitomir Milanovi´c, Faculty of Electrical Engineer- ing, who encouraged me to pursue a PhD in the field of nanostructures at Leeds. Thanks are also due to researchers from other institutions, that I visited or collaborated with.
    [Show full text]
  • Growth of Inas Quantum Dot Without Introducing Wetting Layer by Alternate Deposition of Inas and Gaas with Quasi-Monolayer
    Journal of the Korean Physical Society, Vol. 42, February 2003, pp. S476 S479 ∼ Growth of InAs Quantum Dot without Introducing Wetting Layer by Alternate Deposition of InAs and GaAs with Quasi-monolayer Jong Su Kim∗ and Nobuyuki Koguchi Nanomaterials Laboratory, National Institute for Materials Science, Ibaraki 305-0047, Japan D. Y. Lee and I. H. Bae Department of Physics, Yeungnam University, Kyungsan 712-749 J. I. Lee, Gu-Hyun Kim, S. K. Kang and S. I. Ban Korea Research Institute of Standards and Science, Daejon 305-600 Jin Soo Kim Basic Research Laboratory, Electronic and Telecommunication Research Institute, Daejon 305-350 S. H. Lee School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 702-710 H. K. Choi, Minhyon Jeon and Jae-Young Leem Department of Optical Engineering, Inje University, Kimhae 621-749 The structural and optical properties of non-wetting layer InAs quantum dots (QDs) have been investigated by transmission electron microscopy (TEM), photoreflectance (PR) and photolumines- cence (PL). By alternate depositing 0.83 1.2 ML InAs and 1.2 1.5 ML Ga(Al)As with different period on GaAs surface, the wetting layer∼ of InAs QDs was controlled.∼ TEM images clearly show the formation of QDs by using quasi monolayer (QML) deposition and non-wetting layer of InAs QDs. The QDs formed by using QML could not be grown by Stranski-Krastanov (S-K) growth. In PR measurement, the wetting layer transition is not observed for all the QML QDs. These QML QDs growth mechanisms are explained by adatom migration effect due to surface chemical potential.
    [Show full text]
  • Quantum Dot Lasers
    Universidad de Sevilla Escuela Superior de Ingenieros Ingenier´ia de Telecomunicaciones Quantum Dot Lasers Candidato: Tutor en Espa˜na: Jaime P. Mora Pacheco Alejandro Carballar Tutora en Italia: Gabriella Cincotti A˜no Acad´emico: 2004/2005 Contents Introducci´on 1 0 Resumen espa˜nol 4 Resumen Capitulo 1: Conceptos Fundamentales . 4 0.1 Pozoscu´anticos................................. 5 0.2 PuntoCu´antico(QD) .............................. 7 0.2.1 DensidaddeEstados........................... 8 0.3 CristalesFot´onicos . 9 0.4 Definici´onyventajas. 12 0.5 Fabricaci´ondeQDs............................... 13 0.5.1 Elm´etodoStranski-Krastanow . 13 0.6 DOS:funci´ondedensidaddeestados . 15 0.7 EcuacionesdeestadodelQDLaser . 16 0.8 CorrienteUmbral................................. 17 0.9 Q-Switching.................................... 17 0.10VCSELs...................................... 19 Resumen Capitulo 2: L´aseres de Puntos Cu´anticos . ......... 11 I 0.11 EnsanchamientoHomog´eneo. 20 0.12 EnsanchamientoInhomog´eneo. 21 ResumenCapitulo3:EfectosNoLineales . 20 Resumen Capitulo 4: Aplicaci´on a Cristales Fot´onicos . ............ 24 Conclusiones ...................................... 27 1 Fundamental Concepts 30 1.1 PrinciplesofLasers.............................. 31 1.1.1 Populationinversion . 32 1.1.2 Threshold Conditions & Optical Gain . 34 1.2 Quantumwells .................................. 35 1.3 Quantumdot ................................... 38 1.4 DensityofStates:DOS............................. 39 1.5 ANewDevice:PhotonicCrystal . 40 2
    [Show full text]
  • Evolution of Inas Quantum Dots and Wetting Layer on Gaas (001): Peculiar Photoluminescence Near Onset of Quantum Dot Formation
    Evolution of InAs quantum dots and wetting layer on GaAs (001): Peculiar photoluminescence near onset of quantum dot formation Cite as: J. Appl. Phys. 127, 065306 (2020); https://doi.org/10.1063/1.5139400 Submitted: 19 November 2019 . Accepted: 25 January 2020 . Published Online: 11 February 2020 Rahul Kumar , Yurii Maidaniuk, Samir K. Saha, Yuriy I. Mazur , and Gregory J. Salamo ARTICLES YOU MAY BE INTERESTED IN Advanced Thermoelectrics Journal of Applied Physics 127, 060401 (2020); https://doi.org/10.1063/1.5144998 Mid-infrared electroluminescence from type-II In(Ga)Sb quantum dots Applied Physics Letters 116, 061103 (2020); https://doi.org/10.1063/1.5134808 Excitation intensity and thickness dependent emission mechanism from an ultrathin InAs layer in GaAs matrix Journal of Applied Physics 124, 235303 (2018); https://doi.org/10.1063/1.5053412 J. Appl. Phys. 127, 065306 (2020); https://doi.org/10.1063/1.5139400 127, 065306 © 2020 Author(s). Journal of Applied Physics ARTICLE scitation.org/journal/jap Evolution of InAs quantum dots and wetting layer on GaAs (001): Peculiar photoluminescence near onset of quantum dot formation Cite as: J. Appl. Phys. 127, 065306 (2020); doi: 10.1063/1.5139400 Submitted: 19 November 2019 · Accepted: 25 January 2020 · View Online Export Citation CrossMark Published Online: 11 February 2020 Rahul Kumar,1,2,a) Yurii Maidaniuk,1 Samir K. Saha,1 Yuriy I. Mazur,1 and Gregory J. Salamo1,2 AFFILIATIONS 1Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA 2Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA a)Author to whom correspondence should be addressed: [email protected] ABSTRACT InAs quantum dots (QDs) have been grown on a GaAs (001) substrate in the subcritical region of InAs coverage for transition from a 2-dimensional (2D) to a 3-dimensional growth mode.
    [Show full text]
  • Scanning Tunneling Optical Resonance Microscopy Applied to Indium Arsenide Quantum Dot Structures
    Rochester Institute of Technology RIT Scholar Works Theses 6-1-2008 Scanning tunneling optical resonance microscopy applied to indium arsenide quantum dot structures Daniel P. Byrnes Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Byrnes, Daniel P., "Scanning tunneling optical resonance microscopy applied to indium arsenide quantum dot structures" (2008). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. SCANNING TUNNELING OPTICAL RESONANCE MICROSCOPY APPLIED TO INDIUM ARSENIDE QUANTUM DOT STRUCTURES By Daniel P. Byrnes B.A. State University of New York at Geneseo (2004) A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Chester F. Carlson Center for Imaging Science of the College of Science June 2008 Signature of the Author_________________________________________________ Accepted by__________________________________________________________ Coordinator, M.S. Degree Program Date CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE COLLEGE OF SCIENCE ROCHESTER INSTITUTE OF TECHNOLOGY ROCHESTER, NEW YORK CERTIFICATE OF APPROVAL ________________________________________________________________________ M.S. DEGREE THESIS ________________________________________________________________________ The M.S. Degree Thesis
    [Show full text]