Evaluation of the Detection and Quantification Limits in Electroanalysis Using Two Popular Methods: Application in the Case Study of Paraquat Determination

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of the Detection and Quantification Limits in Electroanalysis Using Two Popular Methods: Application in the Case Study of Paraquat Determination View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) Universidade de São Paulo Biblioteca Digital da Produção Intelectual - BDPI Departamento de Físico-Química - IQSC/SQF Artigos e Materiais de Revistas Científicas - IQSC/SQF 2012 Evaluation of the detection and quantification limits in electroanalysis using two popular methods: application in the case study of paraquat determination ANALYTICAL METHODS, CAMBRIDGE, v. 4, n. 8, supl. 2, Part 3, pp. 2348-2354, DEC, 2012 http://www.producao.usp.br/handle/BDPI/41955 Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo View Article Online / Journal Homepage / Table of Contents for this issue Analytical Dynamic Article LinksC< Methods Cite this: Anal. Methods, 2012, 4, 2348 www.rsc.org/methods PAPER Evaluation of the detection and quantification limits in electroanalysis using two popular methods: application in the case study of paraquat determination Osmair Benedito da Silva and Sergio A. S. Machado* Received 31st January 2012, Accepted 5th May 2012 DOI: 10.1039/c2ay25111f In this work, the reduction reaction of paraquat herbicide was used to obtain analytical signals using electrochemical techniques of differential pulse voltammetry, square wave voltammetry and multiple square wave voltammetry. Analytes were prepared with laboratory purified water and natural water samples (from Mogi-Guac¸u River, SP). The electrochemical techniques were applied to 1.0 mol LÀ1 Na2SO4 solutions, at pH 5.5, and containing different concentrations of paraquat, in the range of 1 to 10 mmol LÀ1, using a gold ultramicroelectrode. 5 replicate experiments were conducted and in each the mean value for peak currents obtained À0.70 V vs. Ag/AgCl yielded excellent linear relationships with pesticide concentrations. The slope values for the calibration plots (method sensitivity) were 4.06 Â 10À3, 1.07 Â 10À2 and 2.95 Â 10À2 A molÀ1 L for purified water by differential pulse voltammetry, square wave voltammetry and multiple square wave voltammetry, respectively. For river water samples, the slope values were 2.60 Â 10À3, 1.06 Â 10À2 and 3.35 Â 10À2 A molÀ1 L, respectively, showing a small interference from the natural matrix components in paraquat determinations. The detection limits for paraquat determinations were calculated by two distinct methodologies, i.e.,as proposed by IUPAC and a statistical method. The values obtained with multiple square waves voltammetry were 0.002 and 0.12 mmol LÀ1, respectively, for pure water electrolytes. The detection limit from IUPAC recommendations, when inserted in the calibration curve equation, an analytical signal (oxidation current) is smaller than the one experimentally observed for the blank solution under the same experimental conditions. This is inconsistent with the definition of detection limit, thus the IUPAC methodology requires further discussion. The same conclusion can be drawn by the analyses of Downloaded by UNIVERSIDAD SAO PAULO on 10/04/2013 19:25:37. Published on 09 May 2012 http://pubs.rsc.org | doi:10.1039/C2AY25111F detection limits obtained with the other techniques studied. A. Introduction different ways in the literature, but is defined as an analyte concentration that yields a signal in the measurement instrument The growing rate of discarded pesticides and drugs is associated (y) which is significantly different from that obtained for the with environmental contamination and subsequent risks to blank.1 Every discussion about methodologies employed to human health. Considering that most of these substances are calculate the detection limit of a given analytical technique synthetic, tiny amounts can result in effects not yet fully under- emerges from the definition of ‘‘significantly different’’. In this stood to health and reproduction in humans and livestock. Thus, way, the International Union of Pure and Applied Chemistry detection and quantification of trace and ultratrace complex (IUPAC) proposes that a good evaluation is given through organic molecules is a constant challenge in analytical chemistry. considering a linear calibration curve, normal data distribution, Pico to nano moles per litre amounts of e.g. pesticides, and constant variance in every measurement2, i.e.: hormones, drugs, should be determined with precision and reli- ability. Modern analytical techniques provide the possibility to LOD ¼ 3SB/S (1) run such determinations, frequently in situ, and in many cases in real time allowing remediation actions to be taken. where SB is the standard deviation of 10 measurements taken In order to present reliable results on the demanded concen- from the signal obtained from the blank (a solution identical to tration range, analytical techniques should feature, as one of the that analysed but without the analyte) and S the slope of the main characteristics, a low detection limit, together with repro- calibration curve (sensitivity of the analytical method). The ducibility and robustness. This concept has been defined in number 3 comes from the required 90% level of confidence in the difference between the observed signal and the blank response. Such methodology is popular when applied to analytical tech- Instituto de Quımica de Sa˜o Carlos, Universidade, de Sa˜o Paulo, C.P. 780, 13560-970 Sa˜o Carlos, SP, Brazil niques, e.g. electrochemical and spectrophotometry, mainly due 2348 | Anal. Methods, 2012, 4, 2348–2354 This journal is ª The Royal Society of Chemistry 2012 View Article Online to the simplicity of the statistical procedure. Consequently, it is found that a very large number of papers in the literature employ such a methodology.3–7 In Brazil, the Government regulatory agencies adopted a similar concept of detection limit. In this way, the Instituto Nacional de Metrologia, Normalizac¸a˜o e Qualidade Industrial published in March 2003 a guidance only document, where this concept is defined, in a similar fashion to the IUPAC definition.8 On the other hand, the Agencia^ Nacional de Vigi- lancia^ Sanitaria (ANVISA) postulated that the detection limit should be calculated from: LOD ¼ 3A/S (2) where A is the standard deviation of the intercept of the linear Fig. 2 Stationary state cyclic voltammogram on UME-Au in a 4.2 Â À3 À1 À1 À1 calibration curve of, at least, three independent curves. Of 10 mol L paraquat + 0.1 mol L Na2SO4 at 0.1 V s . course, eqn (2) is similar to eqn (1), only with a different meth- odology to calculate S . However, a conceptual criticism of such B This work aims to determine the detection limits of the an approach, although it is widely applied being established by herbicide paraquat in laboratory matrices and in water samples usage methodology, concerns the use of standard deviation of the from the Mogi-Guac¸u River, Brazil, using three different elec- blank signal as the determining parameter in the calculation of troanalytical techniques: differential pulse voltammetry, square detection limit. As observed in eqn (1), the smaller the value of S B wave voltammetry and multiple square wave voltammetry. The the smaller the detection limit of the methodology. But S is B results are compared to those obtained by IUPAC methodology defined as:1 using a far less popular statistical methodology. sPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðx À xÞ2 S ¼ i i (3) B ðn À 1Þ B. Experimental where xi is the analytical signal value and n is the number of Reagents and equipment repetitions done. As can be observed if n increases, SB diminishes and, thus the detection limit also gets lower. Consequently the n All electrochemical experiments were performed at room value should be carefully standardized, which does not seems to temperature, using a 25 mL volume electrochemical cell made of be the case. Several papers that use eqn (1) report values of n borosilicate glass with a polytetrafluorethylene cover. In this between 3 and 20. In this way, the reliability of detection limit cover there were special holes to accommodate the entrance and determination is bonded to the measurement of the smallest exit of N2 gas (White Martins, SS, bubbled in the solution 15 analytical signal (the blank one), with an unavoidable loss of minutes prior to the experiment with the flow kept over the Downloaded by UNIVERSIDAD SAO PAULO on 10/04/2013 19:25:37. surface during the measurements) and the reference (Ag/AgCl, Published on 09 May 2012 http://pubs.rsc.org | doi:10.1039/C2AY25111F precision. À1 2 Another far from logical consequence in the utilization of such 3.0 mol L KCl), auxiliar (Pt foil with 2 cm geometric area) and methodology is concerned with the fact that, as the standard working electrodes (a home-made Au ultramicroelectrode – deviation of the blank solution is normally very low, the UME-Au – obtained by embedding a Goodfellow 99.95% Au m numerical values of detection limit obtained are so small that wire with 25 m diameter in epoxy resin). The electrochemical they are not detectable in the calibration curve.9–11 In this way, experiments of square wave voltammetry (SWV), multiple the physical meaning of such quantitites is not straightforward. square wave voltammetry (MSWV) and differential pulse vol- Paraquat is used worldwide as a non-selective herbicide and is tammetry (DPV) were performed in a model PGZ 402 Voltalab sold under commercial names of Gramoxone, Weedol or Pan- potentiostat/galvanostat controlled by Voltamaster 4.05 soft- thclear.12 Its molecular structure is presented in Fig. 1. Paraquat ware from Radiometer Analytical. During the voltammetric has been determined by several electrochemical techniques13–19 experiments the electrochemical cell was kept in a Faraday cage due to its reversible electrochemical response, its good solubility to minimize background noise. À3 À1 in water and the importance of trace determination of this A 1.0 Â 10 mol L stock solution of paraquat (Aldrich, pesticide in foodstuff, since it is extremely hazardous to human 98%) was prepared with ultrapurified Milli-Q (Millipore Inc.) health.
Recommended publications
  • Sensitive Determination of PAH-DNA Adducts
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Matrix Design for Matrix-Assisted Laser Desorption Ionization: Sensitive Determination of PAH-DNA Adducts M. George, J. M. Y. Wellemans, R. L. Cerny, and M. L. Gross* Midwest Center for Mass Spectrometry, Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska USA K. Li and E. L. Cavalieri Eppley institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 600 South 42nd Street, Omaha, Nebraska USA Two matrices, 4-phenyl-cw-cyanocinnamic acid (ICC) and 4-benzyloxy-cu-cyanocinnamic acid (BCC), were identified for the determination of polycyclic aromatic hydrocarbon @‘AH) adducts of DNA bases by matrix-assisted laser desorption ionization. These matrices were designed based on the concept that the matrix and the analyte should have structural similarities. PCC is a good matrix for the desorption of not only PA&modified DNA bases, but also PAHs themselves and their rnetabolites. Detections can be made at the femtomolar level. (1 Am Sot Mass Spectrum 1994, 5, 1021-1025) he success of matrix-assisted laser desorption quire sensitive detection methods at the low picomole ionization (MALDI) for the sensitive detection of and mid-femtomole level, respectively [6]. T an analyte depends on the nature of the matrix. One method for detection that also gives structural Rational design of a matrix requires understanding of information is fast-atom bombardment (FAB) coupled the mechanism of MALDI. The mechanism is not fully with tandem mass spectrometry [6-81. Unfortunately, understood. Nevertheless, empirical criteria for matrix the combination lacks sensitivity because there is in selection have been suggested 111.
    [Show full text]
  • Validation of Rapid Enzymatic Quantification of Acetic Acid In
    foods Article Validation of Rapid Enzymatic Quantification of Acetic Acid in Vinegar on Automated Spectrophotometric System Irene Dini 1,* , Ritamaria Di Lorenzo 1, Antonello Senatore 2, Daniele Coppola 2 and Sonia Laneri 1 1 Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; [email protected] (R.D.L.); [email protected] (S.L.) 2 Lcm Laboratory for Product Analysis of Chamber of Commerce, Corso Meridionale, 80143 Napoli, Italy; [email protected] (A.S.); [email protected] (D.C.) * Correspondence: [email protected] Received: 9 May 2020; Accepted: 4 June 2020; Published: 9 June 2020 Abstract: Vinegar is produced from the fermentation of agricultural materials and diluted acetic acid (diluted with water to 4–30% by volume) via sequential ethanol and acetic acid fermentation. The concentration of acetic acid must be measured during vinegar production. A Community method for analyzing acetic acid in vinegar is a non-specific method based on the assumption that the total acid concentration of the vinegar is attributable to the acetic acid. It consists of titration with a strong base in the presence of an indicator. This test is laborious and has a time-consuming character. In this work, a highly specific automated enzymatic method was validated, for the first time, to quantify the acetic acid in the wine vinegar, in terms of linearity, precision, repeatability, and uncertainty measurement. The results were compared to the Community method of analysis. Regression coefficient 1 and the normal distribution of residuals in the ANOVA test confirmed the method’s linearity.
    [Show full text]
  • Standardizing Analytical Methods
    Chapter 5 Standardizing Analytical Methods Chapter Overview 5A Analytical Standards 5B Calibrating the Signal (Stotal) 5C Determining the Sensitivity (kA) 5D Linear Regression and Calibration Curves 5E Compensating for the Reagent Blank (Sreag) 5F Using Excel and R for a Regression Analysis 5G Key Terms 5H Chapter Summary 5I Problems 5J Solutions to Practice Exercises The American Chemical Society’s Committee on Environmental Improvement defines standardization as the process of determining the relationship between the signal and the amount of analyte in a sample.1 In Chapter 3 we defined this relationship as SktotalA=+nSA reagtor Skotal = AAC where Stotal is the signal, nA is the moles of analyte, CA is the analyte’s concentration, kA is the method’s sensitivity for the analyte, and Sreag is the contribution to Stotal from sources other than the sample. To standardize a method we must determine values for kA and Sreag. Strategies for accomplishing this are the subject of this chapter. 1 ACS Committee on Environmental Improvement “Guidelines for Data Acquisition and Data Quality Evaluation in Environmental Chemistry,” Anal. Chem. 1980, 52, 2242–2249. 147 148 Analytical Chemistry 2.1 5A Analytical Standards To standardize an analytical method we use standards that contain known amounts of analyte. The accuracy of a standardization, therefore, depends on the quality of the reagents and the glassware we use to prepare these standards. For example, in an acid–base titration the stoichiometry of the acid–base reaction defines the relationship between the moles of analyte and the moles of titrant. In turn, the moles of titrant is the product of the See Chapter 9 for a thorough discussion of titrant’s concentration and the volume of titrant used to reach the equiva- titrimetric methods of analysis.
    [Show full text]
  • Isoprene Photochemistry Over the Amazon Rainforest
    Isoprene photochemistry over the Amazon rainforest Yingjun Liua, Joel Britob, Matthew R. Dorrisc, Jean C. Rivera-Riosc,d, Roger Secoe, Kelvin H. Batesf, Paulo Artaxob, Sergio Duvoisin Jr.g, Frank N. Keutscha,c,d, Saewung Kime, Allen H. Goldsteinh, Alex B. Guenthere,i, Antonio O. Manzij, Rodrigo A. F. Souzak, Stephen R. Springstonl, Thomas B. Watsonl, Karena A. McKinneya,1, and Scot T. Martina,m,1 aJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; bDepartment of Applied Physics, University of São Paulo, São Paulo 05508, Brazil; cDepartment of Chemistry, University of Wisconsin-Madison, Madison, WI 53706; dDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138; eDepartment of Earth System Science, University of California, Irvine, CA 92697; fDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; gDepartment of Chemistry, Universidade do Estado do Amazonas, Manaus, AM 69050, Brazil; hDepartment of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720; iPacific Northwest National Laboratory, Richland, WA 99354; jInstituto Nacional de Pesquisas da Amazonia, Manaus, AM 69067, Brazil; kDepartment of Meteorology, Universidade do Estado do Amazonas, Manaus, AM 69050, Brazil; lDepartment of Environmental and Climate Sciences, Brookhaven National Laboratory, Upton, NY 11973; and mDepartment of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138 Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved April 13, 2016 (received for review December 23, 2015) Isoprene photooxidation is a major driver of atmospheric chemistry forests like Amazonia where there are few anthropogenic NO over forested regions.
    [Show full text]
  • Single-Molecule Fluorescence Detection
    Proc. Nadl. Acad. Sci. USA Vol. 86, pp. 4087-4091, June 1989 Biophysics Single-molecule fluorescence detection: Autocorrelation criterion and experimental realization with phycoerythrin (laser-induced fluorescence/femtomolar sensitivity/fluorescence assays/phycoerythrin oligomers) KONAN PECK*, LUBERT STRYERt, ALEXANDER N. GLAZERt, AND RICHARD A. MATHIES* *Department of Chemistry, University of California, Berkeley, CA 94720; tDepartment of Cell Biology, Stanford University School of Medicine, Stanford, CA 94305; and tDepartment of Microbiology and Immunology, University of California, Berkeley, CA 94720 Contributed by Lubert Stryer, February 10, 1989 ABSTRACT A theory for single-molecule fluorescence ofindividual molecules. In this paper, we present a theory for detection is developed and then used to analyze data from single-molecule fluorescence detection and apply it in de- subpicomolar solutions of B-phycoerythrin (PE). The distri- tecting phycoerythrin at concentrations as low as 1 fM. bution of detected counts is the convolution of a Poissonian continuous background with bursts arising from the passage of individual fluorophores through the focused laser beam. The THEORY autocorrelation function reveals single-molecule events and Consider a solution of fluorophores flowing through a fo- provides a criterion for optimizing experimental parameters. cused laser beam. The emission from the illuminated volume The transit time of fluorescent molecules through the 120-fl consists of bursts of fluorescence from molecules passing imaged volume was 800 ps. The optimal laser power (32 mW through the beam superimposed on a continuous background at 514.5 nm) gave an incident intensity of 1.8 x 1023 due to Rayleigh and Raman scattering from the solvent (Fig. photons-cm 2.S-, corresponding to a mean time of 1.1 ns lA).
    [Show full text]
  • I Fluorescent Detection of Chiral Amino Acids
    i Fluorescent Detection of Chiral Amino Acids: A Micelle Approach Gengyu Du Yilong, Sichuan, China B.S. in Chemistry University of Science and Technology of China, Hefei, China, 2015 A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Chemistry University of Virginia April 2020 ii Abstract Fluorescent Detection of Chiral Amino Acids: A Micelle Approach 1,1’-Bi-2-naphthol (BINOL)-based fluorescent probes have been developed as powerful tools for the molecular recognition of many chiral molecules. High sensitivity and enantioselectivity for chiral amino acids have been achieved in organic media, but the recognition in water media has been limited by their poor solubility in aqueous solution. By using a diblock copolymer PEG-PLLA, 3,3’-diformyl-BINOL was encapsulated into micelles to form a micelle probe. It allowed the detection of chiral lysine (Lys) both chemoselectively and enantioselectively in carbonate buffer solution. A limit of detection (LOD) of 848 nM and 2nd order fit of ee detection was obtained for D-Lys. The chemoselectivity was attributed to the selective reaction of Lys’s terminal amino groups with the probe. Series of monoformyl-BINOL with varying substituents were synthesized and engineered into micelle probes. These probes achieved specific detection of chiral tryptophan (Trp) both enantioselectively and chemoselectively in carbonate buffer solution, with LOD of 2.6 µM and 1st order fit of ee detection. A non-C2 symmetric molecule, 3,3’-diformyl-tetrahydro-BINOL, was fabricated into a micelle probe. It achieved specific detection of chiral His both enantioselectively and chemoselectively in carbonate buffer solution, with LOD of 107 nM and 2nd order fit of ee detection.
    [Show full text]
  • Viewed, Most SPME Extractions Are Performed in Aqueous Matrices.11,16 the Organic Solvent Most Likely Acted As an Interference with the Analyte Extraction
    A COMPARISON OF COMMON LABORATORY TECHNIQUES FOR THE ANALYSIS OF THIOCARBAMATE PESTICIDES A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Tammy Schumacher Donohue August, 2012 A COMPARISON OF COMMON LABORATORY TECHNIQUES FOR THE ANALYSIS OF THIOCARBAMATE PESTICIDES Tammy Schumacher Donohue Thesis Approved: Accepted: ________________________________ ________________________________ Advisor Dean of the College Dr. Claire Tessier Dr. Chand Midha ________________________________ ________________________________ Faculty Reader Dean of the Graduate School Dr. Kim C. Calvo Dr. George R. Newkome ________________________________ ________________________________ Department Chair Date Dr. Kim C. Calvo ii ABSTRACT The United States Environmental Protection Agency has devised a set of regulations limiting the use of thiocarbamate pesticides for the health and safety of humans and the environment. These regulations dictate the maximum amount of thiocarbamate compounds that may be released or present in soil, waste, and groundwater. Therefore, it is important to be able to determine their concentration accurately and reproducibly. A study was conducted to determine the best way to identify and quantify six thiocarbamate herbicides using equipment commonly found in industrial laboratories. Three analytical methods were tested: gas chromatography-mass spectrometry, high performance liquid chromatography, and infrared spectroscopy. They were chosen for their common usage, broad application, and operative ability. A comparison of these methods was made to determine the most effective technique for thiocarbamate identification and quantification. iii DEDICATION To my husband, Chris, whose steadfast belief in me never wavered. Thank you for always letting me know you were behind me, no matter what. I love you.
    [Show full text]
  • 18.4.3.7 Detection and Quantification Capabilities
    18.4.3.7 Detection and quantification capabilities Among the most important Performance Characteristics of the Chemical Measurement Process (CMP) are those that can serve as measures of the underlying detection and quantification capabilities. These are essential for applications in research, international commerce, health, and safety. Such measures are important for planning measurements, and for selecting or developing CMPs that can meet specified needs, such as the detection or quantification of a dangerous or regulated level of a toxic substance. Equations 18.4.1-6 provide the basis for our considering the meaning of minimum detectable and minimum quantifiable amounts (signals, concentrations) in Analytical Chemistry. In each case, the determining factor is the distribution function of the estimated quantity (estimated net signal Sˆ , concentration or amount xˆ ). If normality can be assumed, it is sufficient to know the standard deviation of the estimated quantity as a function of S (or x). Detection limits (minimum detectable amounts) are based on the theory of hypothesis testing and the probabilities of false positives α, and false negatives ß. Quantification limits are defined in terms of a specified value for the relative standard deviation. It is important to emphasize that both types of limits are CMP Performance Characteristics, associated with underlying true values of the quantity of interest; they are not associated with any particular outcome or result. The detection decision, on the other hand, is result-specific; it is made by comparing the experimental result with the Critical Value, which is the minimum significant estimated value of the quantity of interest. Terminology. Unfortunately, a host of terms have been used within the chemical community to describe detection and quantification capabilities.
    [Show full text]
  • Guidance for the Validation of Analytical Methodology and Calibration of Equipment Used for Testing of Illicit Drugs in Seized Materials and Biological Specimens
    Vienna International Centre, PO Box 500, 1400 Vienna, Austria Tel.: (+43-1) 26060-0, Fax: (+43-1) 26060-5866, www.unodc.org Guidance for the Validation of Analytical Methodology and Calibration of Equipment used for Testing of Illicit Drugs in Seized Materials and Biological Specimens FOR UNITED NATIONS USE ONLY United Nations publication ISBN 978-92-1-148243-0 Sales No. E.09.XI.16 *0984578*Printed in Austria ST/NAR/41 V.09-84578—October 2009—200 A commitment to quality and continuous improvement Photo credits: UNODC Photo Library Laboratory and Scientific Section UNITED NATIONS OFFICE ON DRUGS AND CRIME Vienna Guidance for the Validation of Analytical Methodology and Calibration of Equipment used for Testing of Illicit Drugs in Seized Materials and Biological Specimens A commitment to quality and continuous improvement UNITED NATIONS New York, 2009 Acknowledgements This manual was produced by the Laboratory and Scientific Section (LSS) of the United Nations Office on Drugs and Crime (UNODC) and its preparation was coor- dinated by Iphigenia Naidis and Satu Turpeinen, staff of UNODC LSS (headed by Justice Tettey). LSS wishes to express its appreciation and thanks to the members of the Standing Panel of the UNODC’s International Quality Assurance Programme, Dr. Robert Anderson, Dr. Robert Bramley, Dr. David Clarke, and Dr. Pirjo Lillsunde, for the conceptualization of this manual, their valuable contributions, the review and finali- zation of the document.* *Contact details of named individuals can be requested from the UNODC Laboratory and Scientific Section (P.O. Box 500, 1400 Vienna, Austria). ST/NAR/41 UNITED NATIONS PUBLICATION Sales No.
    [Show full text]
  • Towards the 1000 Atom Detection Limit for 244Pu. R
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 2978.pdf TOWARDS THE 1000 ATOM DETECTION LIMIT FOR 244PU. R. Trappitsch,1 M. R. Savina,1 J. M. Rolison,1 L. N. Harrison,1 and N. Dauphas2, 1Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Divi- sion, Livermore, CA 94551, ([email protected]) 2The University of Chicago, Enrico Fermi Institute, and Chicago Center for Cosmochemistry, Chicago, IL 60637 Introduction Plutonium-244 is a radionuclide with a size of ∼ 3% of the sample area we slowly desorbed half-life of 80 Ma that can only be produced by the rapid sample material from the surface, subsequently ionized neutron capture (r-) process. While the sources of the Pu neutrals using a three-color, three-photon resonance r-process are poorly constrained and heavily discussed ionization scheme, and then analyzed these photoions in [e.g.,1], optical spectroscopy of the neutron star merger a time-of-flight mass spectrometer. By assuming a ho- associated with the gravitational-wave event GW170817 mogeneous distribution of the sample material over the indicated the presence of freshly nucleosynthesized lan- surface we calculated that 2:6 × 105 239Pu, 3:7 × 104 thanides [2], a main product expected from r-process 240Pu, and 1:8 × 103 242Pu atoms were in the anal- nucleosynthesis calculations. Proxy measurements of ysis spot. Plutonium-238 and 241Pu atoms were also 244Pu in the early Solar System, measured via 244Pu in the analysis spot, however, interferences with non- fission-produced xenon in meteorites [3], show a rather resonantly ionized 238U and 241Am, respectively, pre- high abundance.
    [Show full text]
  • Limit of Detection for Calibration Methods
    Limit of detection for calibration methods MARÍA JOSÉ RODRÍGUEZ CUESTA Doctoral Thesis ROVIRA I VIRGILI UNIVERSITY Tarragona 2006 UNIVERSITAT ROVIRA I VIRGILI LIMIT OF DETECTION FOR SECOND-ORDER CALIBRATION METHODS. M. José Rodríguez Cuesta ISBN: 978-84-690-7787-0 / DL: T.1349-2007 UNIVERSITAT ROVIRA I VIRGILI LIMIT OF DETECTION FOR SECOND-ORDER CALIBRATION METHODS. M. José Rodríguez Cuesta ISBN: 978-84-690-7787-0 / DL: T.1349-2007 Limit of detection for second-order calibration methods Doctoral thesis ROVIRA I VIRGILI UNIVERSITY UNIVERSITAT ROVIRA I VIRGILI LIMIT OF DETECTION FOR SECOND-ORDER CALIBRATION METHODS. M. José Rodríguez Cuesta ISBN: 978-84-690-7787-0 / DL: T.1349-2007 UNIVERSITAT ROVIRA I VIRGILI LIMIT OF DETECTION FOR SECOND-ORDER CALIBRATION METHODS. M. José Rodríguez Cuesta ISBN: 978-84-690-7787-0 / DL: T.1349-2007 Rovira i Virgili University Department of Analytical Chemistry and Organic Chemistry Limit of detection for second-order calibration methods Dissertation presented by María José Rodríguez Cuesta to receive the degree Doctor of the Rovira i Virgili University European PhD Tarragona, 2006 Supervisor Dr. Ricard Boqué i Martí UNIVERSITAT ROVIRA I VIRGILI LIMIT OF DETECTION FOR SECOND-ORDER CALIBRATION METHODS. M. José Rodríguez Cuesta ISBN: 978-84-690-7787-0 / DL: T.1349-2007 UNIVERSITAT ROVIRA I VIRGILI LIMIT OF DETECTION FOR SECOND-ORDER CALIBRATION METHODS. M. José Rodríguez Cuesta ISBN: 978-84-690-7787-0 / DL: T.1349-2007 ROVIRA I VIRGILI UNIVERSITY Department of Analytical Chemistry and Organic Chemistry Dr
    [Show full text]
  • Bioanalytical Method Validation and Its Pharmaceutical Application
    A tica nal eu yt c ic a a m A r a c t Sonawane et al., Pharm Anal Acta 2014, 5:3 h a P DOI: 10.4172/2153-2435.1000288 ISSN: 2153-2435 Pharmaceutica Analytica Acta Review Article Open Access Bioanalytical Method Validation and Its Pharmaceutical Application- A Review Lalit V Sonawane*, Bhagwat N Poul, Sharad V Usnale, Pradeepkumar V Waghmare and Laxman H Surwase Department of Quality Assurance, MSS’s Maharashtra College of Pharmacy, Nilanga, Maharashtra, India Abstract Bioanalytical methods, based on a variety of physico-chemical and biological techniques such as chromatography, immunoassay and mass spectrometry, must be validated prior to and during use to give confidence in the results generated. It is the process used to establish that a quantitative analytical method is suitable for biomedical applications. Bioanalytical method validation includes all of the procedures that demonstrate that a particular method used for quantitative measurement of analytes in a given biological matrix, such as blood, plasma, serum, or urine is reliable and reproducible for the intended use. The present manuscript focuses on the consistent evaluation of the key bioanalytical validation parameters is discussed: accuracy, precision, sensitivity, selectivity, standard curve, limits of quantification, range, recovery and stability. These validation parameters are described, together with an example of validation methodology applied in the case of chromatographic methods used in bioanalysis, taking in account to the recent Food and Drug Administration (FDA) guidelines and EMA guidelines. Keywords: Bioanalytical method validation; Validation parameters; Bioanalytical method validation is vital not only in terms of Application; FDA and EMA guidelines regulatory submission but also for ensuring generation of high quality data during drug discovery and development.
    [Show full text]