Crystalline Topological Phases As Defect Networks
Crystalline topological phases as defect networks The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Else, Dominic V. and Ryan Thorngren. "Crystalline topological phases as defect networks." Physical Review B 99, 11 (March 2019): 115116 © 2019 American Physical Society As Published http://dx.doi.org/10.1103/PhysRevB.99.115116 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/120966 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. PHYSICAL REVIEW B 99, 115116 (2019) Editors’ Suggestion Crystalline topological phases as defect networks Dominic V. Else Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and Department of Physics, University of California, Santa Barbara, California 93106, USA Ryan Thorngren Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel and Department of Mathematics, University of California, Berkeley, California 94720, USA (Received 10 November 2018; published 14 March 2019) A crystalline topological phase is a topological phase with spatial symmetries. In this work, we give a very general physical picture of such phases: A topological phase with spatial symmetry G (with internal symmetry Gint G) is described by a defect network,aG-symmetric network of defects in a topological phase with internal symmetry Gint. The defect network picture works both for symmetry-protected topological (SPT) and symmetry-enriched topological (SET) phases, in systems of either bosons or fermions.
[Show full text]