On Fibre Bundles and Differential Geometry

Total Page:16

File Type:pdf, Size:1020Kb

On Fibre Bundles and Differential Geometry Lectures On Fibre Bundles and Differential Geometry By J.L. Koszul Notes by S. Ramanan No part of this book may be reproduced in any form by print, microfilm or any other means without written permission from the Tata Insti- tute of Fundamental Research, Apollo Pier Road, Bombay-1 Tata Institute of Fundamental Research, Bombay 1960 Contents 1 Differential Calculus 1 1.1 .............................. 1 1.2 Derivationlaws ...................... 2 1.3 Derivation laws in associated modules . 4 1.4 TheLiederivative... ..... ...... ..... .. 6 1.5 Lie derivation and exterior product . 8 1.6 Exterior differentiation . 8 1.7 Explicit formula for exterior differentiation . 10 1.8 Exterior differentiation and exterior product . 11 1.9 The curvature form . 12 1.10 Relations between different derivation laws . 16 1.11 Derivation law in C .................... 17 1.12 Connections in pseudo-Riemannian manifolds . 18 1.13 Formulae in local coordinates . 19 2 Differentiable Bundles 21 2.1 .............................. 21 2.2 Homomorphisms of bundles . 22 2.3 Trivial bundles . 23 2.4 Induced bundles . 24 2.5 Examples ......................... 25 2.6 Associated bundles . 26 2.7 Vector fields on manifolds . 29 2.8 Vector fields on differentiable principal bundles . 30 2.9 Projections vector fields . 31 iii iv Contents 3 Connections on Principal Bundles 35 3.1 .............................. 35 3.2 Horizontal vector fields . 37 3.3 Connection form . 39 3.4 Connection on Induced bundles . 39 3.5 Maurer-Cartan equations . 40 3.6 Curvatureforms. 43 3.7 Examples ......................... 46 4 Holonomy Groups 49 4.1 Integral paths . 49 4.2 Displacement along paths . 50 4.3 Holonomygroup ..................... 51 4.4 Holonomy groups at points of the bundle . 52 4.5 Holonomy groups for induced connections . 53 4.6 Structure of holonomy groups . 54 4.7 Reduction of the structure group . 55 4.8 Curvature and the holonomy group . 57 5 Vector Bundles and Derivation Laws 61 5.1 .............................. 61 5.2 Homomorphisms of vector bundles . 63 5.3 Induced vector bundles . 63 5.4 Locally free sheaves and vector bundles . 64 5.5 Sheaf of invariant vector fields . 67 5.6 Connections and derivation laws . 70 5.7 Parallelism in vector bundles . 74 5.8 Differential forms with values in vector bundles . 76 5.9 Examples ......................... 77 5.10 Linear connections and geodesics . 78 5.11 Geodesic vector field in local coordinates . 79 5.12 Geodesic paths and geodesic vector field . 79 6 Holomorphic Connections 81 6.1 Complex vector bundles . 81 6.2 Almost complex manifolds . 82 Contents v 6.3 Derivation law in the complex case . 83 6.4 Connections and almost complex structures . 85 6.5 Connections in holomorphic bundles . 88 6.7 Atiyah obstruction . 91 6.8 Line bundles over compact Kahler manifolds . 93 Chapter 1 Differential Calculus 1.1 Let k be a commutative ring with unit and A a commutative and asso- 1 ciative algebra over k having 1 as its element. In Applications, k will usually be the real number field and A the algebra of differentiable func- tions on a manifold. Definition 1. A derivation X is a map X : A A such that → i) X Hom (A, A), and ∈ k ii) X(ab) = (Xa)b + a(Xb) for every a, b A. ∈ If no non-zero element in k annihilates A, k can be identified with a subalgebra of A and with this identification we have Xx = 0 for every x k. In fact, we have only to take a = b = 1 in (ii) to get X = 0 and ∈ 1 consequently Xx = xX(1) = 0. We shall denote the set of derivations by C. Then C is obviously an A-module with the following operations: (X + Y)(a) = Xa + Ya (aX)(b) = a(Xb) for a, b A and X, Y C. ∈ ∈ We have actually something more: If X, Y, C, then [X, Y] C. ∈ ∈ 1 2 1. Differential Calculus This bracket product has the following properties: [X1 + X2, Y] = [X1, Y] + [X2, Y] [X, Y] = [Y, X] − X, [Y, Z] + Y, [Z, X] + Z, [X, Y] = 0, 2 for X, Y, Z C. The bracket is not bilinear over A, but only over k. We ∈ have [X, aY](b) = X(aY) (aY)(X) (b) { − } = (Xa)(Yb) + a[X, Y](b) so that [X, aY] = (Xa)Y + a[X, Y] for X, Y C, a A. The skew com- ∈ ∈ mutativity of the bracket gives [aX, Y] = (Ya)X + a[X, Y]. − When A is the algebra of differentiable functions on a manifold, C is the space of differentiable vector fields. 1.2 Derivation laws Definition 2. A derivation law in a unitary A-module M is a map D : C Hom (M, M) such that, if D denotes the image of X C under → k X ∈ this map, we have i) DX+Y = DX + DY D = aD for a A, X, Y C. aX X ∈ ∈ i.e., D Hom (C, Hom (M, M)). ∈ A k 3 ii) D (au) = (Xa)u + aD u for a A, u M. X X ∈ ∈ In practice, M will be the module of differentiable sections of a vec- tor bundle over a manifold V. A derivation law enables one thus to differentiate sections of the bundle in specified directions. 1.2. Derivation laws 3 If we consider A as an A-module, then D defined by DXa = Xa is a derivation law in A. This will hereafter be referred to as the canonical derivation in A. Moreover, if V is any module over k, we may define on the A-module A V, a derivation law by setting D (a v) = Xa X ⊗ ⊗ Nk v and extending by linearity. This shall also be termed the canonical derivation in A V. Nk There exist modules which do not admit any derivation law. For instance, let A be the algebra k[t] of polynomial in one variable t over k; then C is easily seen to be the free A-module generated by P = ∂/∂t. Let M be the A-module A/N where N is the ideal of polynomials without constant term. If there were a derivation law is this module, denoting by e the identity coset of A/N, we have 0 = Dp(te) = (P.t)e + t.Dpe = e, which is a contradiction. However, the situation becomes better if we confine overselves to free A-modules. Theorem 1. Let M be a free A-module, (ei)i I being a basis. Given any 4 ∈ system (ωi)i I of elements in HomA(C, M), there exists one and only one derivation law∈ D in M such that D e = ω (X) for every i I. X i i ∈ Let u be an arbitrary element of M. Then u can be expressed in the term u = λiei. If the conditions of the theorem have to be satisfied, = + we have toP define DXu (X i)ei λiλi(X). It is easy to verify that ∧ this is a derivation law. P P We shall now see that the knowledge of one derivation law is enough to compute all the possible derivation laws. In fact, if D, D′ are two such laws, then (D D )(au) = a(D D )(u). Since D, D X − ′X X − ′X ′ ∈ Hom (C, Hom (M, M)), it follows that D D Hom (C, Hom A k − ′ ∈ A A (M, M)). Conversely, if D is a derivation law and h any element of HomA(C, HomA (M, M)), then D′ = D + h is a derivation law as can be easily verified. 4 1. Differential Calculus 1.3 Derivation laws in associated modules i Given module Mi with derivation laws D , we proceed to assign in a canonical way derivation laws to module which are obtained from the Mi by the usual operations. Firstly, if M is the direct sum of the modules Mi, then DX(m) = i =Σ DX(mi) where m mi, gives a derivation law in M. i P Since D are k-linear, we may define D in M1 Mp by set- X ··· Nk Nk ting D (u , u ) = u Di u u . Now, it is easy to see X 1 ⊗···⊗ p 1 ⊗··· X i ⊗··· p that this leaves invariant theP ideal generated by elements of the form u au u u au u with a A. 1 ⊗··· i ⊗···⊗ p − 1 ⊗··· j ⊗···⊗ p ∈ 5 This therefore induces a k-linear map DX of M1 Mp into A ··· A itself, where N N = i DX(u1 up) u1 DXui up ⊗···⊗ X ⊗··· ⊗···⊗ where u u M M . 1 ⊗···⊗ p ∈ 1 ··· p NA NA It is easily seen that D is a derivation law. We will be particularly interested in the case when M = M = = 1 2 ··· M = M. In this case, we denote M M by T p(M). Since we p 1 ⊗···⊗ p have such a law in each T p(M) (for T 0(M) = A, we take the canonical derivation law) we may define a derivation law in the tensor algebra T ∗(M) of M. If t, t′ are two tensors, we still have D (t t′) = D t t′ + t D t′. X ⊗ X ⊗ ⊗ X Now let N be the ideal generated in T ∗(M) by elements of the form u v v u with u, v M. It follows from the above equality that ⊗ − ⊗ ∈ D N N. Consequently D induces a derivation law in T (M)/N, which X ⊂ ∗ is the symmetric algebra over M. Again, if N′ is the ideal in T ∗(M) whose generators are of the form u u, u M, then it is immediate ⊗ ∈ that D N N . Thus we obtain a derivation law in exterior algebra X ′ ⊂ ′ T ∗(M)/N′ of M.
Recommended publications
  • Orientability of Real Parts and Spin Structures
    JP Jour. Geometry & Topology 7 (2007) 159-174 ORIENTABILITY OF REAL PARTS AND SPIN STRUCTURES SHUGUANG WANG Abstract. We establish the orientability and orientations of vector bundles that arise as the real parts of real structures by utilizing spin structures. 1. Introduction. Unlike complex algebraic varieties, real algebraic varieties are in general nonorientable, the simplest example being the real projective plane RP2. Even if they are orientable, there may not be canonical orientations. It has been an important problem to resolve the orientability and orientation issues in real algebraic geometry. In 1974, Rokhlin introduced the complex orientation for dividing real algebraic curves in RP2, which was then extended around 1982 by Viro to the so-called type-I real algebraic surfaces. A detailed historic count was presented in the lucid survey by Viro [10], where he also made some speculations on higher dimensional varieties. In this short note, we investigate the following more general situation. We take σ : X → X to be a smooth involution on a smooth manifold of an arbitrary dimension. (It is possible to consider involutions on topological manifolds with appropriate modifications.) Henceforth, we will assume that X is connected for certainty. In view of the motivation above, let us denote the fixed point set by XR, which in general is disconnected and will be assumed to be non-empty throughout the paper. Suppose E → X is a complex vector bundle and assume σ has an involutional lifting σE on E that is conjugate linear fiberwise. We call σE a real structure on E and its fixed point set ER a real part.
    [Show full text]
  • Connections on Bundles Md
    Dhaka Univ. J. Sci. 60(2): 191-195, 2012 (July) Connections on Bundles Md. Showkat Ali, Md. Mirazul Islam, Farzana Nasrin, Md. Abu Hanif Sarkar and Tanzia Zerin Khan Department of Mathematics, University of Dhaka, Dhaka 1000, Bangladesh, Email: [email protected] Received on 25. 05. 2011.Accepted for Publication on 15. 12. 2011 Abstract This paper is a survey of the basic theory of connection on bundles. A connection on tangent bundle , is called an affine connection on an -dimensional smooth manifold . By the general discussion of affine connection on vector bundles that necessarily exists on which is compatible with tensors. I. Introduction = < , > (2) In order to differentiate sections of a vector bundle [5] or where <, > represents the pairing between and ∗. vector fields on a manifold we need to introduce a Then is a section of , called the absolute differential structure called the connection on a vector bundle. For quotient or the covariant derivative of the section along . example, an affine connection is a structure attached to a differentiable manifold so that we can differentiate its Theorem 1. A connection always exists on a vector bundle. tensor fields. We first introduce the general theorem of Proof. Choose a coordinate covering { }∈ of . Since connections on vector bundles. Then we study the tangent vector bundles are trivial locally, we may assume that there is bundle. is a -dimensional vector bundle determine local frame field for any . By the local structure of intrinsically by the differentiable structure [8] of an - connections, we need only construct a × matrix on dimensional smooth manifold . each such that the matrices satisfy II.
    [Show full text]
  • Horizontal Holonomy and Foliated Manifolds Yacine Chitour, Erlend Grong, Frédéric Jean, Petri Kokkonen
    Horizontal holonomy and foliated manifolds Yacine Chitour, Erlend Grong, Frédéric Jean, Petri Kokkonen To cite this version: Yacine Chitour, Erlend Grong, Frédéric Jean, Petri Kokkonen. Horizontal holonomy and foliated manifolds. Annales de l’Institut Fourier, Association des Annales de l’Institut Fourier, 2019, 69 (3), pp.1047-1086. 10.5802/aif.3265. hal-01268119 HAL Id: hal-01268119 https://hal-ensta-paris.archives-ouvertes.fr//hal-01268119 Submitted on 8 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HORIZONTAL HOLONOMY AND FOLIATED MANIFOLDS YACINE CHITOUR, ERLEND GRONG, FRED´ ERIC´ JEAN AND PETRI KOKKONEN Abstract. We introduce horizontal holonomy groups, which are groups de- fined using parallel transport only along curves tangent to a given subbundle D of the tangent bundle. We provide explicit means of computing these holo- nomy groups by deriving analogues of Ambrose-Singer's and Ozeki's theorems. We then give necessary and sufficient conditions in terms of the horizontal ho- lonomy groups for existence of solutions of two problems on foliated manifolds: determining when a foliation can be either (a) totally geodesic or (b) endowed with a principal bundle structure.
    [Show full text]
  • Vector Bundles on Projective Space
    Vector Bundles on Projective Space Takumi Murayama December 1, 2013 1 Preliminaries on vector bundles Let X be a (quasi-projective) variety over k. We follow [Sha13, Chap. 6, x1.2]. Definition. A family of vector spaces over X is a morphism of varieties π : E ! X −1 such that for each x 2 X, the fiber Ex := π (x) is isomorphic to a vector space r 0 0 Ak(x).A morphism of a family of vector spaces π : E ! X and π : E ! X is a morphism f : E ! E0 such that the following diagram commutes: f E E0 π π0 X 0 and the map fx : Ex ! Ex is linear over k(x). f is an isomorphism if fx is an isomorphism for all x. A vector bundle is a family of vector spaces that is locally trivial, i.e., for each x 2 X, there exists a neighborhood U 3 x such that there is an isomorphism ': π−1(U) !∼ U × Ar that is an isomorphism of families of vector spaces by the following diagram: −1 ∼ r π (U) ' U × A (1.1) π pr1 U −1 where pr1 denotes the first projection. We call π (U) ! U the restriction of the vector bundle π : E ! X onto U, denoted by EjU . r is locally constant, hence is constant on every irreducible component of X. If it is constant everywhere on X, we call r the rank of the vector bundle. 1 The following lemma tells us how local trivializations of a vector bundle glue together on the entire space X.
    [Show full text]
  • LECTURE 6: FIBER BUNDLES in This Section We Will Introduce The
    LECTURE 6: FIBER BUNDLES In this section we will introduce the interesting class of fibrations given by fiber bundles. Fiber bundles play an important role in many geometric contexts. For example, the Grassmaniann varieties and certain fiber bundles associated to Stiefel varieties are central in the classification of vector bundles over (nice) spaces. The fact that fiber bundles are examples of Serre fibrations follows from Theorem ?? which states that being a Serre fibration is a local property. 1. Fiber bundles and principal bundles Definition 6.1. A fiber bundle with fiber F is a map p: E ! X with the following property: every ∼ −1 point x 2 X has a neighborhood U ⊆ X for which there is a homeomorphism φU : U × F = p (U) such that the following diagram commutes in which π1 : U × F ! U is the projection on the first factor: φ U × F U / p−1(U) ∼= π1 p * U t Remark 6.2. The projection X × F ! X is an example of a fiber bundle: it is called the trivial bundle over X with fiber F . By definition, a fiber bundle is a map which is `locally' homeomorphic to a trivial bundle. The homeomorphism φU in the definition is a local trivialization of the bundle, or a trivialization over U. Let us begin with an interesting subclass. A fiber bundle whose fiber F is a discrete space is (by definition) a covering projection (with fiber F ). For example, the exponential map R ! S1 is a covering projection with fiber Z. Suppose X is a space which is path-connected and locally simply connected (in fact, the weaker condition of being semi-locally simply connected would be enough for the following construction).
    [Show full text]
  • FOLIATIONS Introduction. the Study of Foliations on Manifolds Has a Long
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 80, Number 3, May 1974 FOLIATIONS BY H. BLAINE LAWSON, JR.1 TABLE OF CONTENTS 1. Definitions and general examples. 2. Foliations of dimension-one. 3. Higher dimensional foliations; integrability criteria. 4. Foliations of codimension-one; existence theorems. 5. Notions of equivalence; foliated cobordism groups. 6. The general theory; classifying spaces and characteristic classes for foliations. 7. Results on open manifolds; the classification theory of Gromov-Haefliger-Phillips. 8. Results on closed manifolds; questions of compact leaves and stability. Introduction. The study of foliations on manifolds has a long history in mathematics, even though it did not emerge as a distinct field until the appearance in the 1940's of the work of Ehresmann and Reeb. Since that time, the subject has enjoyed a rapid development, and, at the moment, it is the focus of a great deal of research activity. The purpose of this article is to provide an introduction to the subject and present a picture of the field as it is currently evolving. The treatment will by no means be exhaustive. My original objective was merely to summarize some recent developments in the specialized study of codimension-one foliations on compact manifolds. However, somewhere in the writing I succumbed to the temptation to continue on to interesting, related topics. The end product is essentially a general survey of new results in the field with, of course, the customary bias for areas of personal interest to the author. Since such articles are not written for the specialist, I have spent some time in introducing and motivating the subject.
    [Show full text]
  • Math 704: Part 1: Principal Bundles and Connections
    MATH 704: PART 1: PRINCIPAL BUNDLES AND CONNECTIONS WEIMIN CHEN Contents 1. Lie Groups 1 2. Principal Bundles 3 3. Connections and curvature 6 4. Covariant derivatives 12 References 13 1. Lie Groups A Lie group G is a smooth manifold such that the multiplication map G × G ! G, (g; h) 7! gh, and the inverse map G ! G, g 7! g−1, are smooth maps. A Lie subgroup H of G is a subgroup of G which is at the same time an embedded submanifold. A Lie group homomorphism is a group homomorphism which is a smooth map between the Lie groups. The Lie algebra, denoted by Lie(G), of a Lie group G consists of the set of left-invariant vector fields on G, i.e., Lie(G) = fX 2 X (G)j(Lg)∗X = Xg, where Lg : G ! G is the left translation Lg(h) = gh. As a vector space, Lie(G) is naturally identified with the tangent space TeG via X 7! X(e). A Lie group homomorphism naturally induces a Lie algebra homomorphism between the associated Lie algebras. Finally, the universal cover of a connected Lie group is naturally a Lie group, which is in one to one correspondence with the corresponding Lie algebras. Example 1.1. Here are some important Lie groups in geometry and topology. • GL(n; R), GL(n; C), where GL(n; C) can be naturally identified as a Lie sub- group of GL(2n; R). • SL(n; R), O(n), SO(n) = O(n) \ SL(n; R), Lie subgroups of GL(n; R).
    [Show full text]
  • 3. Tensor Fields
    3.1 The tangent bundle. So far we have considered vectors and tensors at a point. We now wish to consider fields of vectors and tensors. The union of all tangent spaces is called the tangent bundle and denoted TM: TM = ∪x∈M TxM . (3.1.1) The tangent bundle can be given a natural manifold structure derived from the manifold structure of M. Let π : TM → M be the natural projection that associates a vector v ∈ TxM to the point x that it is attached to. Let (UA, ΦA) be an atlas on M. We construct an atlas on TM as follows. The domain of a −1 chart is π (UA) = ∪x∈UA TxM, i.e. it consists of all vectors attached to points that belong to UA. The local coordinates of a vector v are (x1,...,xn, v1,...,vn) where (x1,...,xn) are the coordinates of x and v1,...,vn are the components of the vector with respect to the coordinate basis (as in (2.2.7)). One can easily check that a smooth coordinate trasformation on M induces a smooth coordinate transformation on TM (the transformation of the vector components is given by (2.3.10), so if M is of class Cr, TM is of class Cr−1). In a similar way one defines the cotangent bundle ∗ ∗ T M = ∪x∈M Tx M , (3.1.2) the tensor bundles s s TMr = ∪x∈M TxMr (3.1.3) and the bundle of p-forms p p Λ M = ∪x∈M Λx . (3.1.4) 3.2 Vector and tensor fields.
    [Show full text]
  • Notes on Principal Bundles and Classifying Spaces
    Notes on principal bundles and classifying spaces Stephen A. Mitchell August 2001 1 Introduction Consider a real n-plane bundle ξ with Euclidean metric. Associated to ξ are a number of auxiliary bundles: disc bundle, sphere bundle, projective bundle, k-frame bundle, etc. Here “bundle” simply means a local product with the indicated fibre. In each case one can show, by easy but repetitive arguments, that the projection map in question is indeed a local product; furthermore, the transition functions are always linear in the sense that they are induced in an obvious way from the linear transition functions of ξ. It turns out that all of this data can be subsumed in a single object: the “principal O(n)-bundle” Pξ, which is just the bundle of orthonormal n-frames. The fact that the transition functions of the various associated bundles are linear can then be formalized in the notion “fibre bundle with structure group O(n)”. If we do not want to consider a Euclidean metric, there is an analogous notion of principal GLnR-bundle; this is the bundle of linearly independent n-frames. More generally, if G is any topological group, a principal G-bundle is a locally trivial free G-space with orbit space B (see below for the precise definition). For example, if G is discrete then a principal G-bundle with connected total space is the same thing as a regular covering map with G as group of deck transformations. Under mild hypotheses there exists a classifying space BG, such that isomorphism classes of principal G-bundles over X are in natural bijective correspondence with [X, BG].
    [Show full text]
  • WHAT IS a CONNECTION, and WHAT IS IT GOOD FOR? Contents 1. Introduction 2 2. the Search for a Good Directional Derivative 3 3. F
    WHAT IS A CONNECTION, AND WHAT IS IT GOOD FOR? TIMOTHY E. GOLDBERG Abstract. In the study of differentiable manifolds, there are several different objects that go by the name of \connection". I will describe some of these objects, and show how they are related to each other. The motivation for many notions of a connection is the search for a sufficiently nice directional derivative, and this will be my starting point as well. The story will by necessity include many supporting characters from differential geometry, all of whom will receive a brief but hopefully sufficient introduction. I apologize for my ungrammatical title. Contents 1. Introduction 2 2. The search for a good directional derivative 3 3. Fiber bundles and Ehresmann connections 7 4. A quick word about curvature 10 5. Principal bundles and principal bundle connections 11 6. Associated bundles 14 7. Vector bundles and Koszul connections 15 8. The tangent bundle 18 References 19 Date: 26 March 2008. 1 1. Introduction In the study of differentiable manifolds, there are several different objects that go by the name of \connection", and this has been confusing me for some time now. One solution to this dilemma was to promise myself that I would some day present a talk about connections in the Olivetti Club at Cornell University. That day has come, and this document contains my notes for this talk. In the interests of brevity, I do not include too many technical details, and instead refer the reader to some lovely references. My main references were [2], [4], and [5].
    [Show full text]
  • Differential Topology
    Differential Topology: Homework Set # 3. 1) Basic on tangent bundles. Recall that the tangent bundle TM to an extrinsicly defined manifold M k ⊂ Rn is defined to be: n n k n ∼ n TM := {(p, v) ∈ R × R | p ∈ M , v ∈ TpM ⊂ TpR = R } This exercise is designed to give you some practice working with tangent bundles. (i) Show that for a manifold M, the tangent bundle TM is well-defined, i.e. does not depend on the embedding M k ⊂ Rn. (ii) If M, N are a pair of smooth manifolds, show that T (M × N) is diffeomorphic to TM × TN. (iii) If f : M → R is a smooth, positive function, show that the corresponding scaling map φ : TM → TM defined by φ(p, v) = (p, f(p) · v) is a diffeomorphism. (iv) Show that the tangent bundle to S1 (the unit sphere) is diffeomorphic to the cylinder S1 × R. (v) Show that if Sn is an arbitrary sphere, then there exists a diffeomorphism between (TSn) × R and Sn × Rn+1. 2) Relatives of the tangent bundle. Closely associated to the tangent bundle are some other manifolds: (i) For an extrinsicly defined manifold M k ⊂ Rn, define the normal bundle as follows: n n k ⊥ n ∼ n N(M) := {(p, v) ∈ R × R | p ∈ M , v ∈ TpM ⊂ TpR = R } Show that N(M) is an n-dimensional manifold. (ii) Show that for the standard n-sphere Sn ⊂ Rn+1, the normal bundle N(Sn) is diffeomorphic to Sn × R. (iii) Consider the subset T 1M of TM consisting of pairs (p, v) ∈ TM with ||v|| = 1 (where || · || denotes the standard norm on Rn).
    [Show full text]
  • Vector Bundles and Connections
    VECTOR BUNDLES AND CONNECTIONS WERNER BALLMANN The exposition of vector bundles and connections below is taken from my lecture notes on differential geometry at the University of Bonn. I included more material than I usually cover in my lectures. On the other hand, I completely deleted the discussion of “concrete examples”, so that a pinch of salt has to be added by the customer. Standard references for vector bundles and connections are [GHV] and [KN], where the interested reader finds a rather comprehensive discussion of the subject. I would like to thank Andreas Balser for pointing out some misprints. The exposition is still in a preliminary state. Suggestions are very welcome. Contents 1. Vector Bundles 2 1.1. Sections 4 1.2. Frames 5 1.3. Constructions 7 1.4. Pull Back 9 1.5. The Fundamental Lemma on Morphisms 10 2. Connections 12 2.1. Local Data 13 2.2. Induced Connections 15 2.3. Pull Back 16 3. Curvature 18 3.1. Parallel Translation and Curvature 21 4. Miscellanea 26 4.1. Metrics 26 4.2. Cocycles and Bundles 27 References 28 Date: December 1999. Last corrections March 2002. 1 2 WERNERBALLMANN 1. Vector Bundles A bundle is a triple (π,E,M), where π : E → M is a map. In other words, a bundle is nothing else but a map. The term bundle is used −1 when the emphasis is on the preimages Ep := π (p) of the points p ∈ M; we call Ep the fiber of π over p and p the base point of Ep.
    [Show full text]