Linking LOXL2 to Cardiac Interstitial Fibrosis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human LOXL2 / Lysyl Oxidase Homolog 2 Protein (His Tag)
Human LOXL2 / Lysyl oxidase homolog 2 Protein (His Tag) Catalog Number: 11664-H08H General Information SDS-PAGE: Gene Name Synonym: LOR2; Lysyl oxidase-like 2; WS9-14 Protein Construction: A DNA sequence encoding the human LOXL2 (Q9Y4K0) (Met 1-Gln 774) was expressed, fused with a polyhistidine tag at the C-terminus. Source: Human Expression Host: HEK293 Cells QC Testing Purity: > 90 % as determined by SDS-PAGE Bio Activity: Protein Description Measured by its ability to produce hydrogen peroxide during the oxidation of benzylamine. The specific activity is > 2 pmoles/min/μg. Lysyl oxidase homolog 2, also known as Lysyl oxidase-like protein 2, Lysyl oxidase-related protein 2, Lysyl oxidase-related protein WS9-14 and Endotoxin: LOXL2, is a secreted protein which belongs to thelysyl oxidase family. LOXL2 contains fourSRCR domains. The lysyl oxidase family is made up < 1.0 EU per μg of the protein as determined by the LAL method of five members: lysyl oxidase (LOX) and lysyl oxidase-like 1-4 ( LOXL1, LOXL2, LOXL3, LOXL4 ). All members share conserved C-terminal Stability: catalytic domains that provide for lysyl oxidase or lysyl oxidase-like enzyme Samples are stable for up to twelve months from date of receipt at -70 ℃ activity; and more divergent propeptide regions. LOX family enzyme activities catalyze the final enzymatic conversion required for the formation Predicted N terminal: Gln 26 of normal biosynthetic collagen and elastin cross-links. LOXL2 is expressed by pre-hypertrophic and hypertrophic chondrocytes in vivo, and Molecular Mass: that LOXL2 expression is regulated in vitro as a function of chondrocyte differentiation. -
The Function and Mechanisms of Action of LOXL2 in Cancer (Review)
1200 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 36: 1200-1204, 2015 The function and mechanisms of action of LOXL2 in cancer (Review) LINGHONG WU and YING ZHU Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China Received May 31, 2015; Accepted August 26, 2015 DOI: 10.3892/ijmm.2015.2337 Abstract. The lysyl oxidase (LOX) family is comprised of five copper‑dependent amine oxidase, and its main role is to members, and some members have recently emerged as impor- catalyze the covalent cross‑link of collagen and elastin in tant regulators of tumor progression. Among these, at present, the extracellular matrix (ECM). This occurs through the LOX‑like (LOXL)2 is the prototypical LOX and the most oxidative deamination of peptidyl lysine residues in ECM comprehensively studied member. A growing body of evidence components (1,2). Each member of the LOX family has a has implicated LOXL2 in the promotion of cancer cell inva- highly conserved carboxyl (C)‑terminal domain that contains a sion, metastasis and angiogenesis, as well as in the malignant copper‑binding motif, lysine tyrosylquinone (LTQ) residues and transformation of solid tumors. Moreover, a high expression of a cytokine receptor‑like (CRL) domain, which is essential for LOXL2 is associated with a poor prognosis. These data have catalytic activity (3). The amino‑terminal regions are different piqued the interest of a number of researchers and research and are thought to be important in protein‑protein interactions. groups, who have identified LOXL2 as a strong target candidate The prodomains in LOX and LOXL1 enable their secretion in the development of inhibitors for use as functional and effi- as inactive proenzymes, which are then activated extracel- cacious tumor therapeutics. -
Copper, Lysyl Oxidase, and Extracellular Matrix Protein Cross-Linking1–3
Copper, lysyl oxidase, and extracellular matrix protein cross-linking1–3 Robert B Rucker, Taru Kosonen, Michael S Clegg, Alyson E Mitchell, Brian R Rucker, Janet Y Uriu-Hare, and Carl L Keen Downloaded from https://academic.oup.com/ajcn/article/67/5/996S/4666210 by guest on 01 October 2021 ABSTRACT Protein-lysine 6-oxidase (lysyl oxidase) is a progress toward understanding copper’s role advanced quickly. cuproenzyme that is essential for stabilization of extracellular Lysyl oxidase is responsible for the formation of lysine-derived matrixes, specifically the enzymatic cross-linking of collagen and cross-links in connective tissue, particularly in collagen and elastin. A hypothesis is proposed that links dietary copper levels elastin. Normal cross-linking is essential in providing resistance to dynamic and proportional changes in lysyl oxidase activity in to elastolysis and collagenolysis by nonspecific proteinases, eg, connective tissue. Although nutritional copper status does not various proteinases involved in blood coagulation (11). Resis- influence the accumulation of lysyl oxidase as protein or lysyl tance to proteolysis occurs within a short period of copper reple- oxidase steady state messenger RNA concentrations, the direct tion in most animals; eg, Tinker et al (12) observed that the depo- influence of dietary copper on the functional activity of lysyl oxi- sition of aortic elastin is restored to near normal values after dase is clear. The hypothesis is based on the possibility that cop- 48–72 h of copper repletion in copper-deficient cockerels. per efflux and lysyl oxidase secretion from cells may share a Effects of copper deprivation are most pronounced in common pathway. -
LOXL1 Confers Antiapoptosis and Promotes Gliomagenesis Through Stabilizing BAG2
Cell Death & Differentiation (2020) 27:3021–3036 https://doi.org/10.1038/s41418-020-0558-4 ARTICLE LOXL1 confers antiapoptosis and promotes gliomagenesis through stabilizing BAG2 1,2 3 4 3 4 3 1 1 Hua Yu ● Jun Ding ● Hongwen Zhu ● Yao Jing ● Hu Zhou ● Hengli Tian ● Ke Tang ● Gang Wang ● Xiongjun Wang1,2 Received: 10 January 2020 / Revised: 30 April 2020 / Accepted: 5 May 2020 / Published online: 18 May 2020 © The Author(s) 2020. This article is published with open access Abstract The lysyl oxidase (LOX) family is closely related to the progression of glioma. To ensure the clinical significance of LOX family in glioma, The Cancer Genome Atlas (TCGA) database was mined and the analysis indicated that higher LOXL1 expression was correlated with more malignant glioma progression. The functions of LOXL1 in promoting glioma cell survival and inhibiting apoptosis were studied by gain- and loss-of-function experiments in cells and animals. LOXL1 was found to exhibit antiapoptotic activity by interacting with multiple antiapoptosis modulators, especially BAG family molecular chaperone regulator 2 (BAG2). LOXL1-D515 interacted with BAG2-K186 through a hydrogen bond, and its lysyl 1234567890();,: 1234567890();,: oxidase activity prevented BAG2 degradation by competing with K186 ubiquitylation. Then, we discovered that LOXL1 expression was specifically upregulated through the VEGFR-Src-CEBPA axis. Clinically, the patients with higher LOXL1 levels in their blood had much more abundant BAG2 protein levels in glioma tissues. Conclusively, LOXL1 functions as an important mediator that increases the antiapoptotic capacity of tumor cells, and approaches targeting LOXL1 represent a potential strategy for treating glioma. -
Downregulation of Lysyl Oxidase and Lysyl Oxidase-Like Protein 2
Xu et al. Experimental & Molecular Medicine (2019) 51:20 https://doi.org/10.1038/s12276-019-0211-9 Experimental & Molecular Medicine ARTICLE Open Access Downregulation of lysyl oxidase and lysyl oxidase-like protein 2 suppressed the migration and invasion of trophoblasts by activating the TGF-β/collagen pathway in preeclampsia Xiang-Hong Xu 1,YuanhuiJia1,XinyaoZhou1,DandanXie1, Xiaojie Huang1, Linyan Jia1, Qian Zhou1, Qingliang Zheng1, Xiangyu Zhou1,KaiWang1 and Li-Ping Jin1 Abstract Preeclampsia is a pregnancy-specific disorder that is a major cause of maternal and fetal morbidity and mortality with a prevalence of 6–8% of pregnancies. Although impaired trophoblast invasion in early pregnancy is known to be closely associated with preeclampsia, the underlying mechanisms remain elusive. Here we revealed that lysyl oxidase (LOX) and LOX-like protein 2 (LOXL2) play a critical role in preeclampsia. Our results demonstrated that LOX and LOXL2 expression decreased in preeclamptic placentas. Moreover, knockdown of LOX or LOXL2 suppressed trophoblast cell migration and invasion. Mechanistically, collagen production was induced in LOX-orLOXL2-downregulated trophoblast cells through activation of the TGF-β1/Smad3 pathway. Notably, inhibition of the TGF-β1/Smad3 pathway 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; could rescue the defects caused by LOX or LOXL2 knockdown, thereby underlining the significance of the TGF-β1/ Smad3 pathway downstream of LOX and LOXL2 in trophoblast cells. Additionally, induced collagen production and activated TGF-β1/Smad3 were observed in clinical samples from preeclamptic placentas. Collectively, our study suggests that the downregulation of LOX and LOXL2 leading to reduced trophoblast cell migration and invasion through activation of the TGF-β1/Smad3/collagen pathway is relevant to preeclampsia. -
Matrix Stiffness-Upregulated LOXL2 Promotes Fibronectin Production
Wu et al. Journal of Experimental & Clinical Cancer Research (2018) 37:99 https://doi.org/10.1186/s13046-018-0761-z RESEARCH Open Access Matrix stiffness-upregulated LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation Sifan Wu1, Qiongdan Zheng1, Xiaoxia Xing1, Yinying Dong1, Yaohui Wang2, Yang You1, Rongxin Chen1, Chao Hu3, Jie Chen1, Dongmei Gao1, Yan Zhao1, Zhiming Wang4, Tongchun Xue1, Zhenggang Ren1 and Jiefeng Cui1* Abstract Background: Higher matrix stiffness affects biological behavior of tumor cells, regulates tumor-associated gene/ miRNA expression and stemness characteristic, and contributes to tumor invasion and metastasis. However, the linkage between higher matrix stiffness and pre-metastatic niche in hepatocellular carcinoma (HCC) is still largely unknown. Methods: We comparatively analyzed the expressions of LOX family members in HCC cells grown on different stiffness substrates, and speculated that the secreted LOXL2 may mediate the linkage between higher matrix stiffness and pre- metastatic niche. Subsequently, we investigated the underlying molecular mechanism by which matrix stiffness induced LOXL2 expression in HCC cells, and explored the effects of LOXL2 on pre-metastatic niche formation, such as BMCs recruitment, fibronectin production, MMPs and CXCL12 expression, cell adhesion, etc. Results: Higher matrix stiffness significantly upregulated LOXL2 expression in HCC cells, and activated JNK/c-JUN signaling pathway. Knockdown of integrin β1andα5 suppressed LOXL2 expression and reversed the activation of above signaling pathway. Additionally, JNK inhibitor attenuated the expressions of p-JNK, p-c-JUN, c-JUN and LOXL2, and shRNA-c-JUN also decreased LOXL2 expression. CM-LV-LOXL2-OE and rhLOXL2 upregulated MMP9 expression and fibronectin production obviously in lung fibroblasts. -
Collagens, Modifying Enzymes and Their Mutations in Humans, Flies And
Review TRENDS in Genetics Vol.20 No.1 January 2004 33 Collagens, modifying enzymes and their mutations in humans, flies and worms Johanna Myllyharju and Kari I. Kivirikko Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, FIN-90014 Oulu, Finland Collagens and proteins with collagen-like domains form Collagens are the most abundant proteins in the human large superfamilies in various species, and the numbers body, constituting ,30% of its protein mass. The import- of known family members are increasing constantly. ant roles of these proteins have been clearly demonstrated Vertebrates have at least 27 collagen types with 42 dis- by the wide spectrum of diseases caused by a large number tinct polypeptide chains, >20 additional proteins with of mutations found in collagen genes. This article will collagen-like domains and ,20 isoenzymes of various review the collagen superfamilies and their mutations in collagen-modifying enzymes. Caenorhabditis elegans vertebrates, Drosophila melanogaster and the nematode has ,175 cuticle collagen polypeptides and two base- Caenorhabditis elegans. The genomes of these two model ment membrane collagens. Drosophila melanogaster invertebrate species have been fully sequenced, and it is has far fewer collagens than many other species but therefore possible to identify all of the collagen genes has ,20 polypeptides similar to the catalytic subunits present in these species. Because of the extensive of prolyl 4-hydroxylase, the key enzyme of collagen syn- literature in these fields, this review will focus primarily thesis. More than 1300 mutations have so far been on recent advances. More detailed accounts and more characterized in 23 of the 42 human collagen genes complete references can be found in previous reviews, for in various diseases, and many mouse models and example Refs [1–6]. -
LOXL3 Function Beyond Amino Oxidase and Role in Pathologies, Including Cancer
International Journal of Molecular Sciences Review LOXL3 Function Beyond Amino Oxidase and Role in Pathologies, Including Cancer Talita de S. Laurentino * , Roseli da S. Soares, Suely K. N. Marie and Sueli M. Oba-Shinjo Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP 01246-903, Brazil * Correspondence: [email protected]; Tel.: +55-11-3061-8310 Received: 19 June 2019; Accepted: 15 July 2019; Published: 23 July 2019 Abstract: Lysyl oxidase like 3 (LOXL3) is a copper-dependent amine oxidase responsible for the crosslinking of collagen and elastin in the extracellular matrix. LOXL3 belongs to a family including other members: LOX, LOXL1, LOXL2, and LOXL4. Autosomal recessive mutations are rare and described in patients with Stickler syndrome, early-onset myopia and non-syndromic cleft palate. Along with an essential function in embryonic development, multiple biological functions have been attributed to LOXL3 in various pathologies related to amino oxidase activity. Additionally, various novel roles have been described for LOXL3, such as the oxidation of fibronectin in myotendinous junction formation, and of deacetylation and deacetylimination activities of STAT3 to control of inflammatory response. In tumors, three distinct roles were described: (1) LOXL3 interacts with SNAIL and contributes to proliferation and metastasis by inducing epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma cells; (2) LOXL3 is localized predominantly in the nucleus associated with invasion and poor gastric cancer prognosis; (3) LOXL3 interacts with proteins involved in DNA stability and mitosis completion, contributing to melanoma progression and sustained proliferation. Here we review the structure, function and activity of LOXL3 in normal and pathological conditions and discuss the potential of LOXL3 as a therapeutic target in various diseases. -
Discovery and Evaluation of Inhibitor of LARP6 As Specific Antifibrotic
www.nature.com/scientificreports OPEN Discovery and evaluation of inhibitor of LARP6 as specifc antifbrotic compound Received: 6 August 2018 Branko Stefanovic1, Zarko Manojlovic2, Cynthia Vied 3, Crystal-Dawn Badger3,4 & Accepted: 27 November 2018 Lela Stefanovic1 Published: xx xx xxxx Fibrosis is characterized by excessive production of type I collagen. Biosynthesis of type I collagen in fbrosis is augmented by binding of protein LARP6 to the 5′ stem-loop structure (5′SL), which is found exclusively in type I collagen mRNAs. A high throughput screen was performed to discover inhibitors of LARP6 binding to 5′SL, as potential antifbrotic drugs. The screen yielded one compound (C9) which was able to dissociate LARP6 from 5′ SL RNA in vitro and to inactivate the binding of endogenous LARP6 in cells. Treatment of hepatic stellate cells (liver cells responsible for fbrosis) with nM concentrations of C9 reduced secretion of type I collagen. In precision cut liver slices, as an ex vivo model of hepatic fbrosis, C9 attenuated the profbrotic response at 1 μM. In prophylactic and therapeutic animal models of hepatic fbrosis C9 prevented development of fbrosis or hindered the progression of ongoing fbrosis when administered at 1 mg/kg. Toxicogenetics analysis revealed that only 42 liver genes changed expression after administration of C9 for 4 weeks, suggesting minimal of target efects. Based on these results, C9 represents the frst LARP6 inhibitor with signifcant antifbrotic activity. Fibrosis is characterized by excessive synthesis of type I collagen in various organs and major complications of fbrosis are direct result of massive deposition of type I collagen in the extracellular matrix1,2. -
Prognostic Significance of Abnormal Matrix Collagen Remodeling in Colorectal Cancer Based on Histologic and Bioinformatics Analysis
ONCOLOGY REPORTS 44: 1671-1685, 2020 Prognostic significance of abnormal matrix collagen remodeling in colorectal cancer based on histologic and bioinformatics analysis YUQI LIANG1,2, ZHIHAO LV3, GUOHANG HUANG4, JINGCHUN QIN1,2, HUIXUAN LI1,2, FEIFEI NONG1,2 and BIN WEN1,2 1Department of Science and Technology Innovation Center, Guangzhou University of Chinese Medicine; 2Department of PI-WEI Institute of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000; 3Department of Anorectal Surgery, Zhongshan Hospital Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528400; 4Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, P.R. China Received February 25, 2020; Accepted July 20, 2020 DOI: 10.3892/or.2020.7729 Abstract. As the major component of the tumor matrix, CRC. Furthermore, the results of Gene Ontology (GO) and collagen greatly influences tumor invasion and prognosis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis The present study compared the remodeling of collagen and suggest that collagen may promote tumor development by collagenase in 56 patients with colorectal cancer (CRC) using activating platelets. Collectively, the abnormal collagen Sirius red stain and immunohistochemistry, exploring the remodeling, including associated protein and coding genes is relationship between collagen remodeling and the prognosis associated with the tumorigenesis and metastasis, affecting the of CRC. Weak or strong changes in collagen fiber arrange- prognosis of patients with CRC. ment in birefringence were observed. With the exception of a higher density, weak changes equated to a similar Introduction arrangement in normal collagen, while strong changes facilitated cross-linking into bundles. Compared with normal Colorectal cancer (CRC) has a high global incidence and tissues, collagen I (COL I) and III (COL III) deposition was mortality rate (1). -
Fibronectin and Tenascin-C: Accomplices in Vascular Morphogenesis During Development and Tumor Growth ELLEN VAN OBBERGHEN-SCHILLING*,1,2, RICHARD P
Int. J. Dev. Biol. 55: 511-525 doi: 10.1387/ijdb.103243eo www.intjdevbiol.com Fibronectin and tenascin-C: accomplices in vascular morphogenesis during development and tumor growth ELLEN VAN OBBERGHEN-SCHILLING*,1,2, RICHARD P. TUCKER3, FALK SAUPE4, ISABELLE GASSER4, BOTOND CSEH1,2, GERTRAUD OREND*,4,5,6 1CNRS UMR6543, IBDC, Nice, France, 2University of Nice-Sophia Antipolis, Nice, France, 3Cell Biology and Human Anatomy, University of California at Davis, USA, 4Inserm U682, Strasbourg, France, 5University of Strasbourg, UMR- S682, Strasbourg, France and 6Department of Molecular Biology, CHRU Strasbourg, Strasbourg, France ABSTRACT In addition to soluble factors, the extracellular matrix (ECM) also plays a vital role in normal vasculogenesis and in the pathological angiogenesis of many disease states. Here we will review what is known about the role of the ECM molecules fibronectin and tenascin-C in the vasculature and highlight a potential collaborative interplay between these molecules in develop- mental and tumorigenic angiogenesis. We will address the evolution of these modular proteins, their cellular interactions and how they become assembled into an insoluble matrix that impacts the assembly of other ECM proteins and the bioavailability of pro-angiogenic factors. The role of fibronectin and tenascin-C networks in tumor angiogenesis and metastasis will be described. We will elaborate on lessons learned about their role in vessel function from the functional ablation or the ectopic expression of both molecules. We will also elaborate on potential mechanisms of how fibronectin and tenascin-C affect cell adhesion and signaling that are relevant to angiogenesis. KEY WORDS: tumor angiogenesis, matrix assembly, fibronectin, tenascin-C Introduction blood vessels from preexisting vessels (Risau, 1997). -
LOXL3 Antibody (C-Term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # Ap12837b
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 LOXL3 Antibody (C-term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP12837b Specification LOXL3 Antibody (C-term) - Product Information Application WB, IHC-P,E Primary Accession P58215 Other Accession Q9Z175, NP_115992.1 Reactivity Human Predicted Mouse Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Antigen Region 715-744 LOXL3 Antibody (C-term) - Additional Information Gene ID 84695 Other Names Anti-LOXL3 Antibody (C-term) at 1:2000 Lysyl oxidase homolog 3, 143-, Lysyl dilution + human heart lysate oxidase-like protein 3, LOXL3, LOXL Lysates/proteins at 20 µg per lane. Secondary Goat Anti-Rabbit IgG, (H+L), Target/Specificity Peroxidase conjugated at 1/10000 dilution. This LOXL3 antibody is generated from Predicted band size : 83 kDa rabbits immunized with a KLH conjugated Blocking/Dilution buffer: 5% NFDM/TBST. synthetic peptide between 715-744 amino acids from the C-terminal region of human LOXL3. Dilution WB~~1:2000 IHC-P~~1:10~50 Format Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification. Storage Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. All lanes : Anti-LOXL3 Antibody (C-term) at 1:2000 dilution Lane 1: human lung lysate Precautions Lane 2: human spleen lysate Lysates/proteins LOXL3 Antibody (C-term) is for research use at 20 µg per lane.