Molecular Defects in the Ehlers-Danlos Syndrome

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Defects in the Ehlers-Danlos Syndrome 0022-202X/82/79o:l-090s$02.00/0 THE .JOURNAL OF INVESTIGATIVE DERMATOLOGY, 79:908-92s, 1982 V "I. 7�). Supplement I Copyright © 1!J82 hy The Williams & Wilkins Co. Printed in U.S.A. Molecular Defects in the Ehlers-Danlos Syndrome SHELDON R. PINNELL, M.D. Division of Dermatology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, U.S.A Several abnormalities in collagen biosynthesis have of lysyl hydroxylase. Two mutant enzymes have been charac­ been described in patients with Ehlers-Danlos syndrome. terized. One has an altered affInity for ascorbate and is ther­ Examples of collagen structural mutations as well as mally labile [5]. This apparently represents a structural muta­ post-translational enzymatic defects have been detected. tion of the enzyme. The other enzyme was kinetically normal Patients with hydroxylysine-deficient collagen disease but the activity was markedly diminished [6). This may repre­ (Ehlers-Danlos type VI) have diminished lysyl hydroxy­ sent a structural or regulatory mutation. lase activity. One mutant enzyme has been characterized The relative hydroxylation of tissue collagens has been vari­ which is thermally labile and had an altered affinity for able in this disorder [2, 7]. Although skin was markedly defIcient ascorbate. Another mutant enzyme had a normal re­ in hydroxylysine, bone was less defIcient and cartilage was quirement for cofactors but activity was diminished. normally hydroxylated. The explanation for this variability is Type VII Ehlers-Danlos syndrome is associated with unknown although enzymatic polymorphism has not been ex­ altered processing of procollagen to collagen. Most often cluded. Indeed evidence for isozymes has been reported [8]. the disorder is associated with deficient procollagen When cell lysates from a lysyl hydroxylase defIcient cell strain aminoprotease activity. One patient appears to repre­ were tested against substrates for types I and IV collagen, sent a structural mutation of pro 0'2 (I) resulting in in­ preferential activity was demonstrated against type IV collagen. complete cleavage of the amino terminal propeptide. One In one study an almost normal hydroxylysine content in skin family with x-linked Ehlers-Danlos syndrome (type V) collagen was described in association with lysyl hydroxylase has been described with altered lysyl oxidase activity. defIciency [9]. Subsequent analysis of these skin fIbroblasts Other patients with this disorder have had normal lysyl however has revealed normallysyl hydroxylase activity (Murad oxidase activity. The ecchymotic form of Ehlers-Danlos S, Pinnell SR: unpublished observations and Steinmann B: syndrome (type IV) has defective type III collagen syn­ personal communcation). thesis. Patients have been described with absent synthe­ The hydroxylysine content of complement component Clq sis, diminished synthesis and diminished secretion. was slightly low [10] or normal [ll] and functional activity was unimpaired. Therapy with large doses of ascorbate was effective in one The Ehlers-Danlos syndrome is a striking clinical syndrome patient with this disorder [12]. He was able to boost his urinary with rubber-like skin, hypermobile joints, a tendency to bruise excretion of hydroxylysine although hydroxyproline excretion easily, and poor wound healing [1). In general most forms of was coordinately increased. The effect appears to be due to an the disorder are compatible with normal longevity; a striking overall stimulation of collagen synthesis by ascorbate [1.3] exception is the ecchymotic form of Ehlers-Danlos syndrome rather than specific stimulation of lysyl hydroxylase activity. in which premature demise occurs regularly from arterial or Kinetic studies of his mutant enzyme failed to detect any intestinal rupture. In 1972, the fIrst human molecular disorder alteration in affinity for ascorbate [6). of collagen, hydroxylysine-defIcient collagen disease, was de­ Ehlers-Danlos 2 scribed in 2 sisters with syndrome [ ). Since then TYPE VII EHLERS-DANLOS SYNDROME: several ultrastructural and biochemical collagen defects have ARTHROCHALASIS MULTIPLEX CONGENITA been described in the Ehlers-Danlos syndrome (Table). This manuscript will focus on 4 types of Ehlers-Danlos syndrome in In 1973, Lichtenstein et al reported studies on :1 type VII which biochemical collagen defects are best understood: types Ehlers-Danlos patients with a defect in conversion of procolla­ VI, VII, V, and IV. The range of defects is representative of the gen to collagen [14]. These patients had short stature, hyper­ complex nature of collagen biosynthesis. These appear to in­ extensible joints, and bilateral hip dislocation. Analysis of col­ clude structural and regulatory collagen genomic alterations as lagen extracted from their skin revealed elongated oc] (I) and well as intracellular and extracellular post-translation enzy­ OC2 (I) chains resulting from inefficient conversion of type I matic defects. procollagen. Their cultured skin fibroblasts had deficient pro­ collagen aminoprotease activity. Uncleaved aminoterminal pro­ TYPE VI EHLERS-DANLOS SYNDROME: peptides apparently interfere with fibrillogenesis and intermo­ HYDROXYLYSINE-DEFICIENT COLLAGEN DISEASE lecular crosslinking resulting in the fragile connective tissue. This disorder, inherited as an autosomal recessive, is bio­ In 1972, Pinnell et al described 2 sisters with type VI Ehlers­ chemically similar to dermatosparaxis found in sheep [15] and Danlos syndrome who had marked hyperextensibility of skin cattle [16]. The striking skin fragility characteristic of derma­ and joints, severe scoliosis, and marfanoid features [2). Levels tosparaxis however, is absent in the Ehlers-Danlos patients. of hydroxylysine in skin collagen were found to be less than one The reason for this difference is not understood. per molecule of collagen and levels of hydroxylysine-derived Recently another patient with type VII Ehlers-Danlos syn­ cross-links were marked diminished [3]. The disorder is due to drome has been described with inefficient conversion of procol­ deficient lysyl hydroxylase activity [4] and is inherited as an lagen to collagen [17]. This patient has normal levels of procol­ autosomal recessive. Heterozygotes have intermediate activities lagen aminoprotease. Conversion of pro collagen appears to be impeded by a structural mutation in her pro OC2 (1) near the This work was supported by grant 5 R01 AM-17128 from the protease cleavage site. Pro oc] (I) is normally converted but the National Institutes of Health. aminopropeptide of pro OC2 (I) remains uncleaved apparently This is publication number 121 from the Dermatological Research resulting in similar difficulties in fibrillogenesis found in other Laboratories of Duke University Medical Center. Reprint requests to: Sheldon R. R. Pinnell, M.D., Division of Der­ patients with this form of Ehlers-Danlos syndrome. This patient matology, Department of Medicine, Duke University Medical Center, has, in addition to an abnormal pro OC2 (I), an equal complement Durham, NC 27710. of normal pro (\'2 (I). She apparently represents a new structural 90s July 1982 EHLERS-DANLOS SYNDROME 918 Ultrastructural and biochemical collagen defects in Ehlers-Danlos Danlos syndrome with absent type III collagen synthesis [23]. syndrome Skin, aorta, gut, bone, and tendon were obtained shortly after Major clinical Ultrastructural Biochemical de- death. Cyanogen bromide cleavage of these tissues revealed Type features defect feet absence of peptides characteristic of type III collagen. Skin I (Gravis) Marked joint and Variable collagen Unknown fibroblasts in culture failed to synthesize any detectable type skin hyperexten- fibril diameter III procollagen. In addition, characteristic cellular staining was sibility. Fragile [29-31] skin, poor absent in cultured skin fibroblasts from the patient using anti­ wound healing sera specific for type III collagen and procollagen [24]. This and easy bruisa - patient may have had a gene deletion for type III procollagen. bility. Subsequent studies of fibroblasts from patients with type IV II (Mitis) Small joint hyper- Variable collagen Unknown mobility fibril diameter Ehlers-Danlos syndrome have revealed diminished but not [30,31] absent levels of type III collagen synthesis [25, 26]. They may III (Benign hy- Large joint hyper- Small collagen fi- Unknown represent structural or regulatory mutations. Electron micro­ perrnobile) mobility bril diameter scopic studies have revealed small collagen fiberdiametrers [26, [30] IV (Ecchy- Marked bruisabil- Small collagen fi- Diminished 27]. In 2 patients distended endoplasmic reticulum has been motic) ity. arterial and bril diameter [25-28] or ab- demonstrated in skin [28] and lung [26] fibroblasts. These intestinal rup- [27] sent [23] type fibroblasts demonstrated diminished total collagen synthesis ture Dilated endoplas- III collagen syn- and markedly deficient type III collagen synthesis [26, 28]. mic reticulum thesis. Some pa- [26,27] tients may have They may represent mutations which interfere with cellular secretion defect secretion. [26,27] The Ehlers-Danlos phenotype is obviously associated with V (X-linked) Moderate joint hy· Variable collagen Some patients defective collagen structure. The variety of structural defects permobility. fibril diameter may have lysyl and abnormalities in post-translational modifications repre­ Heart valve pro- [30,31] oxidase defi- lapse. ciency [17J sented by the different forms of Ehlers-Danlos syndrome are VI (Hydroxy- Marked
Recommended publications
  • Regulation of Procollagen Amino-Propeptide Processing During Mouse Embryogenesis by Specialization of Homologous ADAMTS Protease
    DEVELOPMENT AND DISEASE RESEARCH ARTICLE 1587 Development 133, 1587-1596 (2006) doi:10.1242/dev.02308 Regulation of procollagen amino-propeptide processing during mouse embryogenesis by specialization of homologous ADAMTS proteases: insights on collagen biosynthesis and dermatosparaxis Carine Le Goff1, Robert P. T. Somerville1, Frederic Kesteloot2, Kimerly Powell1, David E. Birk3, Alain C. Colige2 and Suneel S. Apte1,* Mutations in ADAMTS2, a procollagen amino-propeptidase, cause severe skin fragility, designated as dermatosparaxis in animals, and a subtype of the Ehlers-Danlos syndrome (dermatosparactic type or VIIC) in humans. Not all collagen-rich tissues are affected to the same degree, which suggests compensation by the ADAMTS2 homologs ADAMTS3 and ADAMTS14. In situ hybridization of Adamts2, Adamts3 and Adamts14, and of the genes encoding the major fibrillar collagens, Col1a1, Col2a1 and Col3a1, during mouse embryogenesis, demonstrated distinct tissue-specific, overlapping expression patterns of the protease and substrate genes. Adamts3, but not Adamts2 or Adamts14, was co-expressed with Col2a1 in cartilage throughout development, and with Col1a1 in bone and musculotendinous tissues. ADAMTS3 induced procollagen I processing in dermatosparactic fibroblasts, suggesting a role in procollagen I processing during musculoskeletal development. Adamts2, but not Adamts3 or Adamts14, was co-expressed with Col3a1 in many tissues including the lungs and aorta, and Adamts2–/– mice showed widespread defects in procollagen III processing. Adamts2–/– mice had abnormal lungs, characterized by a decreased parenchymal density. However, the aorta and collagen fibrils in the aortic wall appeared normal. Although Adamts14 lacked developmental tissue-specific expression, it was co-expressed with Adamts2 in mature dermis, which possibly explains the presence of some processed skin procollagen in dermatosparaxis.
    [Show full text]
  • Cloning of ADAMTS2 Gene and Colony Formation Effect of ADAMTS2 in Saos-2 Cell Line Under Normal and Hypoxic Conditions, ADYU J SCI, 10(2), 413-426
    Aydogan Türkoğlu & Gültekin Tosun (2020) Cloning of ADAMTS2 Gene and Colony Formation Effect of ADAMTS2 in Saos-2 Cell Line Under Normal and Hypoxic Conditions, ADYU J SCI, 10(2), 413-426 Cloning of ADAMTS2 Gene and Colony Formation Effect of ADAMTS2 in Saos-2 Cell Line Under Normal and Hypoxic Conditions Sümeyye AYDOGAN TÜRKOĞLU1,*, Sinem GÜLTEKİN TOSUN2 1Balıkesir University, Faculty of Science and Literature, Department of Molecular Biology and Genetics, Balıkesir, Turkey [email protected], ORCID: 0000-0003-1754-0700 2Erciyes University, Institute of Health Sciences, Faculty of Veterinary Medicine, Department of Genetics, Kayseri, Turkey [email protected], ORCID: 0000-0002-3927-0089 Received: 03.05.2020 Accepted: 25.09.2020 Published: 30.12.2020 Abstract ADAMTS2 (a disintegrin and metalloproteinase with thrombospondin motifs 2), an N- propeptidase isoenzyme, is an enzyme involved in collagen biosynthesis by providing the amino ends of procollagen to be cut away. ADAMTS2 has anti-angiogenic activity as well as provides the processing of collagen. With this activity, it has become a target in cancer studies. Hypoxic regulation is a process that affects the expression of a large number of genes at the cellular level. Within the scope of our study, the cloning of the ADAMTS2 gene and its expression in Saos-2 (human bone carcinoma) cell line were performed ectopically. For this purpose, the transient transfection of the expression vector containing ADAMTS2 coding sequence was transfected by the calcium-phosphate precipitation method. Recombinant ADAMTS2 mRNA expression was checked by Real-Time PCR in Saos-2 cells. It was observed that there was a 50-fold increase in ADAMTS2 mRNA expression in the transfected Saos-2 cells compared to the control group.
    [Show full text]
  • Review Article
    REVIEW ARTICLE COLLAGEN METABOLISM COLLAGEN METABOLISM Types of Collagen 228 Structure of Collagen Molecules 230 Synthesis and Processing of Procollagen Polypeptides 232 Transcription and Translation 233 Posttranslational Modifications 233 Extracellular Processing of Procollagen and Collagen Fibrillogenesis 240 Functions of Collagen in Connective rissue 243 Collagen Degradation 245 Regulation of the Metabolism of Collagen 246 Heritable Diseases of Collagen 247 Recessive Dermatosparaxis 248 Recessive Forms of EDS 251 EDS VI 251 EDS VII 252 EDS V 252 Lysyl Oxidase Deficiency in the Mouse 253 X-Linked Cutis Laxa 253 Menke's Kinky Hair Syndrome 253 Homocystinuria 254 EDS IV 254 Dominant Forms of EDS 254 Dominant Collagen Packing Defect I 255 Dominant and Recessive Forms of Osteogenesis Imperfecta 258 Dominant and Recessive Forms of Cutis Laxa 258 The Marfan Syndrome 259 Acquired Diseases and Repair Processes Affecting Collagen 259 Acquired Changes in the Types of Collagen Synthesis 260 Acquired Changes in Amounts of Collagen Synthesized 263 Acquired Changes in Hydroxylation of Proline and Lysine 264 Acquired Changes in Collagen Cross-Links 265 Acquired Defects in Collagen Degradation 267 Conclusion 267 Bibliography 267 Collagen Metabolism A Comparison of Diseases of Collagen and Diseases Affecting Collagen Ronald R. Minor, VMD, PhD COLLAGEN CONSTITUTES approximately one third of the body's total protein, and changes in synthesis and/or degradation of colla- gen occur in nearly every disease process. There are also a number of newly described specific diseases of collagen in both man and domestic animals. Thus, an understanding of the synthesis, deposition, and turnover of collagen is important for the pathologist, the clinician, and the basic scientist alike.
    [Show full text]
  • WO 2013/126587 Al 29 August 2013 (29.08.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/126587 Al 29 August 2013 (29.08.2013) P O P C T (51) International Patent Classification: (74) Agents: MCANDREW, Christopher W. et al; Wilson A61K 38/00 (2006.01) Sonsini Goodrich & Rosati, 650 Page Mill Road, Palo Alto, CA 94304-1050 (US). (21) International Application Number: PCT/US20 13/027 159 (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 2 1 February 2013 (21 .02.2013) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (26) Publication Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 61/601,434 2 1 February 2012 (21.02.2012) US NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, 61/726,815 15 November 2012 (15. 11.2012) US RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, 61/726,840 15 November 2012 (15. 11.2012) US TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, 61/727,433 16 November 2012 (16.
    [Show full text]
  • Novel Types of Mutation Responsible for the Dermatosparactic Type of Ehlers–Danlos Syndrome (Type VIIC) and Common Polymorphisms in the ADAMTS2 Gene
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Novel Types of Mutation Responsible for the Dermatosparactic Type of Ehlers–Danlos Syndrome (Type VIIC) and Common Polymorphisms in the ADAMTS2 Gene Alain Colige,à Lieve Nuytinck,w Ingrid Hausser,z Anthonie J. van Essen,y Marc Thiry,z Christian Herens,# Lesley C. Ade` s,Ãà Fransiska Malfait,w Anne De Paepe,w Peter Franck,ww Gerhard Wolff,zz JanC.Oosterwijk,y J. H. Sillevis Smitt,yy Charles M. Lapie` re,à and Betty V. Nusgensà ÃLaboratory of Connective Tissues Biology, GIGA Research Center, University of Lie` ge, Lie` ge, Belgium; wCentrum voor Medische Genetica, Universitair Ziekenhuis, University of Gent, Gent, Belgium; zElectron Microscopic Laboratory, Department of Dermatology, University Heidelberg, Heidelberg, Germany; yDepartment of Clinical Genetics, University Medical Center, Groningen, The Netherlands; zLaboratoire de Biologie cellulaire et tissulaire, University of Lie` ge, Lie` ge, Belgium; #Center for Human Genetics, University of Lie` ge, Lie` ge, Belgium; ÃÃDepartment of Clinical Genetics, The Children’s Hospital at Westmead, and Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia; wwDepartment of Pediatrics, University Freiburg, Freiburg, Germany; zzInstitute of Human Genetics and Anthropology, University Freiburg, Freiburg, Germany; yyDepartment of Dermatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands Ehlers–Danlos syndrome (EDS) type VIIC, or dermatosparactic type, is a recessively inherited connective tissue disorder characterized, among other symptoms, by an extreme skin fragility resulting from mutations inactivating ADAMTS-2, an enzyme excising the aminopropeptide of procollagens type I, II, and III.
    [Show full text]
  • The Procollagen N-Proteinases ADAMTS2, 3 and 14 in Pathophysiology
    Review The procollagen N-proteinases ADAMTS2, 3 and 14 in pathophysiology Mourad Bekhouche and Alain Colige Laboratory of Connective Tissues Biology, GIGA-R, University of Liège, B-4000 Sart Tilman, Belgium Correspondence to Alain Colige: Laboratory of Connective Tissues Biology, University of Liège, GIGA-Research, Tour de Pathologie B23/3, Avenue de l'Hôpital, 3, B-4000 Sart Tilman, Belgium. [email protected] http://dx.doi.org/10.1016/j.matbio.2015.04.001 Edited by W.C. Parks and S. Apte Abstract Collagen fibers are the main components of most of the extracellular matrices where they provide a structural support to cells, tissues and organs. Fibril-forming procollagens are synthetized as individual chains that associate to form homo- or hetero-trimers. They are characterized by the presence of a central triple helical domain flanked by amino and carboxy propeptides. Although there are some exceptions, these two propeptides have to be proteolytically removed to allow the almost spontaneous assembly of the trimers into collagen fibrils and fibers. While the carboxy-propeptide is mainly cleaved by proteinases from the tolloid family, the amino-propeptide is usually processed by procollagen N-proteinases: ADAMTS2, 3 and 14. This review summarizes the current knowledge concerning this subfamily of ADAMTS enzymes and discusses their potential involvement in physiopathological processes that are not directly linked to fibrillar procollagen processing. © 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Introduction determine the cause of dermatosparaxis, a rare genetic disease that appeared in Belgian cattle herds during an Fibrillar collagens are the most abundant proteins inbreeding program [2,3].
    [Show full text]
  • Copper, Lysyl Oxidase, and Extracellular Matrix Protein Cross-Linking1–3
    Copper, lysyl oxidase, and extracellular matrix protein cross-linking1–3 Robert B Rucker, Taru Kosonen, Michael S Clegg, Alyson E Mitchell, Brian R Rucker, Janet Y Uriu-Hare, and Carl L Keen Downloaded from https://academic.oup.com/ajcn/article/67/5/996S/4666210 by guest on 01 October 2021 ABSTRACT Protein-lysine 6-oxidase (lysyl oxidase) is a progress toward understanding copper’s role advanced quickly. cuproenzyme that is essential for stabilization of extracellular Lysyl oxidase is responsible for the formation of lysine-derived matrixes, specifically the enzymatic cross-linking of collagen and cross-links in connective tissue, particularly in collagen and elastin. A hypothesis is proposed that links dietary copper levels elastin. Normal cross-linking is essential in providing resistance to dynamic and proportional changes in lysyl oxidase activity in to elastolysis and collagenolysis by nonspecific proteinases, eg, connective tissue. Although nutritional copper status does not various proteinases involved in blood coagulation (11). Resis- influence the accumulation of lysyl oxidase as protein or lysyl tance to proteolysis occurs within a short period of copper reple- oxidase steady state messenger RNA concentrations, the direct tion in most animals; eg, Tinker et al (12) observed that the depo- influence of dietary copper on the functional activity of lysyl oxi- sition of aortic elastin is restored to near normal values after dase is clear. The hypothesis is based on the possibility that cop- 48–72 h of copper repletion in copper-deficient cockerels. per efflux and lysyl oxidase secretion from cells may share a Effects of copper deprivation are most pronounced in common pathway.
    [Show full text]
  • Collagen: a Brief Analysis REVIEW ARTICLE
    OMPJ 10.5005/jp-journals-10037-1143Collagen: A Brief Analysis REVIEW ARTICLE Collagen: A Brief Analysis 1Supriya Sharma, 2Sanjay Dwivedi, 3Shaleen Chandra, 4Akansha Srivastava, 5Pradkshana Vijay ABSTRACT Its adaptable role is due to its immense properties such as 1 Collagen is the most abounding structural protein in a human biocompatibility, biodegradability and easy availability. body representing 30% of its dry weight and is significant to They are centrally involved in the constructions of health because it designates the structure of skin, connective basement membranes along with diverse structures of the tissues, bones, tendons, and cartilage. Much advancement extracellular matrix, fibrillar and microfibrillar networks has been made in demonstrating the structure of collagen triple of the extracellular matrix. It establishes their fundamental helices and the physicochemical premise for their stability. Collagen is the protein molecule which produces the major part fractional monetary unit and identifies crucial steps in of the extracellular matrix. Artificial collagen fibrils that exhibit the biosynthesis and supramolecular preparing of fibril- some characteristics of natural collagen fibrils are now con- lar collagens.3 They are the most abundant structural gregated using chemical synthesis and self-aggregation. The component of the connective tissue and are present in all indigenous collagen fibrils lead further development of artificial multicellular organisms. In the light microscope, collagen collagenous materials for nanotechnology and biomedicine. fibers typically appear as the wavy structure of variable Keywords: Collagen, Structure of Collagen, Diagnostic Impor- width and intermediate length. tance, Collagen Disorders. They stain readily with eosin and other acidic dyes. How to cite this article: Sharma S, Dwivedi S, Chandra S, When examined with a transmission electron micro- Srivastava A, Vijay P.
    [Show full text]
  • Impact of Collagen Alterations on Human Health
    International Journal of Molecular Sciences Review From Structure to Phenotype: Impact of Collagen Alterations on Human Health Lavinia Arseni 1,†, Anita Lombardi 2,† and Donata Orioli 2,* 1 Department of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; [email protected] 2 Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy; [email protected] * Correspondence: [email protected]; Tel.: +49-0382-546330. † These authors contributed equally to this work. Received: 31 March 2018; Accepted: 4 May 2018; Published: 8 May 2018 Abstract: The extracellular matrix (ECM) is a highly dynamic and heterogeneous structure that plays multiple roles in living organisms. Its integrity and homeostasis are crucial for normal tissue development and organ physiology. Loss or alteration of ECM components turns towards a disease outcome. In this review, we provide a general overview of ECM components with a special focus on collagens, the most abundant and diverse ECM molecules. We discuss the different functions of the ECM including its impact on cell proliferation, migration and differentiation by highlighting the relevance of the bidirectional cross-talk between the matrix and surrounding cells. By systematically reviewing all the hereditary disorders associated to altered collagen structure or resulting in excessive collagen degradation, we point to the functional relevance of the collagen and therefore of the ECM elements for human health. Moreover, the large overlapping spectrum of clinical features of the collagen-related disorders makes in some cases the patient clinical diagnosis very difficult. A better understanding of ECM complexity and molecular mechanisms regulating the expression and functions of the various ECM elements will be fundamental to fully recognize the different clinical entities.
    [Show full text]
  • Novel Types of Mutation Responsible for the Dermatosparactic Type of Ehlers-Danlos Syndrome (Type VIIC) and Common Polymorphisms in the ADAMTS2 Gene
    Published in : The Journal of investigative dermatology (2004) Status: Postprint (Author’s version) Novel Types of Mutation Responsible for the Dermatosparactic Type of Ehlers-Danlos Syndrome (Type VIIC) and Common Polymorphisms in the ADAMTS2 Gene Alain Colige,* Lieve Nuytinck,† Ingrid Hausser,‡ Anthonie J. van Essen,§ Marc Thiry,¶ Christian Herens,# Lesley C. Adès,** Fransiska Malfait,† Anne De Paepe,† Peter Franck,†† Gerhard Wolff,‡‡ Jan C. Oosterwijk,§ J. H. Sillevis Smitt,§§ Charles M. Lapière,* and Betty V. Nusgens* * Laboratory of Connective Tissues Biology, GIGA Research Center, University of Liège, Liège, Belgium; † Centrum voor Medische Genetica, Universitair Ziekenhuis, University of Gent, Gent, Belgium; ‡ Electron Microscopic Laboratory, Department of Dermatology, University Heidelberg, Heidelberg, Germany; § Department of Clinical Genetics, University Medical Center, Groningen, The Netherlands; ¶ Laboratoire de Biologie cellulaire et tissulaire, University of Liège, Liège, Belgium; # Center for Human Genetics, University of Liège, Liège, Belgium; ** Department of Clinical Genetics, The Children's Hospital at Westmead, and Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia; †† Department of Pediatrics, University Freiburg, Freiburg, Germany; ‡‡ Institute of Human Genetics and Anthropology, University Freiburg, Freiburg, Germany; §§ Department of Dermatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands Abstract Ehlers-Danlos syndrome (EDS) type VIIC, or dermatosparactic
    [Show full text]
  • Insights on ADAMTS Proteases and ADAMTS-Like Proteins from Mammalian Genetics
    Review Insights on ADAMTS proteases and ADAMTS-like proteins from mammalian genetics Johanne Dubail and Suneel S. Apte⁎ Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA Correspondence to Suneel S. Apte: Department of Biomedical Engineering (ND20), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA. [email protected] http://dx.doi.org/10.1016/j.matbio.2015.03.001 Edited by R. Iozzo Abstract The mammalian ADAMTS superfamily comprises 19 secreted metalloproteinases and 7 ADAMTS-like proteins, each the product of a distinct gene. Thus far, all appear to be relevant to extracellular matrix function or to cell–matrix interactions. Most ADAMTS functions first emerged from analysis of spontaneous human and animal mutations and genetically engineered animals. The clinical manifestations of Mendelian disorders resulting from mutations in ADAMTS2, ADAMTS10, ADAMTS13, ADAMTS17, ADAMTSL2 and ADAMTSL4 identified essential roles for each gene, but also suggested potential cooperative functions of ADAMTS proteins. These observations were extended by analysis of spontaneous animal mutations, such as in bovine ADAMTS2, canine ADAMTS10, ADAMTS17 and ADAMTSL2 and mouse ADAMTS20. These human and animal disorders are recessive and their manifestations appear to result from a loss-of-function mechanism. Genome-wide analyses have determined an association of some ADAMTS loci such as ADAMTS9 and ADAMTS7, with specific traits and acquired disorders. Analysis of genetically engineered rodent mutations, now achieved for over half the superfamily, has provided novel biological insights and animal models for the respective human genetic disorders and suggested potential candidate genes for related human phenotypes. Engineered mouse mutants have been interbred to generate combinatorial mutants, uncovering cooperative functions of ADAMTS proteins in morphogenesis.
    [Show full text]
  • Downregulation of Lysyl Oxidase and Lysyl Oxidase-Like Protein 2
    Xu et al. Experimental & Molecular Medicine (2019) 51:20 https://doi.org/10.1038/s12276-019-0211-9 Experimental & Molecular Medicine ARTICLE Open Access Downregulation of lysyl oxidase and lysyl oxidase-like protein 2 suppressed the migration and invasion of trophoblasts by activating the TGF-β/collagen pathway in preeclampsia Xiang-Hong Xu 1,YuanhuiJia1,XinyaoZhou1,DandanXie1, Xiaojie Huang1, Linyan Jia1, Qian Zhou1, Qingliang Zheng1, Xiangyu Zhou1,KaiWang1 and Li-Ping Jin1 Abstract Preeclampsia is a pregnancy-specific disorder that is a major cause of maternal and fetal morbidity and mortality with a prevalence of 6–8% of pregnancies. Although impaired trophoblast invasion in early pregnancy is known to be closely associated with preeclampsia, the underlying mechanisms remain elusive. Here we revealed that lysyl oxidase (LOX) and LOX-like protein 2 (LOXL2) play a critical role in preeclampsia. Our results demonstrated that LOX and LOXL2 expression decreased in preeclamptic placentas. Moreover, knockdown of LOX or LOXL2 suppressed trophoblast cell migration and invasion. Mechanistically, collagen production was induced in LOX-orLOXL2-downregulated trophoblast cells through activation of the TGF-β1/Smad3 pathway. Notably, inhibition of the TGF-β1/Smad3 pathway 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; could rescue the defects caused by LOX or LOXL2 knockdown, thereby underlining the significance of the TGF-β1/ Smad3 pathway downstream of LOX and LOXL2 in trophoblast cells. Additionally, induced collagen production and activated TGF-β1/Smad3 were observed in clinical samples from preeclamptic placentas. Collectively, our study suggests that the downregulation of LOX and LOXL2 leading to reduced trophoblast cell migration and invasion through activation of the TGF-β1/Smad3/collagen pathway is relevant to preeclampsia.
    [Show full text]