Increasing Automation in the Backporting of Linux Drivers Using Coccinelle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Contributor's Guidelines
Contributor’s Guidelines Release 17.11.10 Feb 27, 2020 CONTENTS 1 DPDK Coding Style1 1.1 Description.......................................1 1.2 General Guidelines..................................1 1.3 C Comment Style...................................1 1.4 C Preprocessor Directives..............................2 1.5 C Types.........................................4 1.6 C Indentation......................................7 1.7 C Function Definition, Declaration and Use.....................9 1.8 C Statement Style and Conventions......................... 11 1.9 Python Code...................................... 13 2 Design 14 2.1 Environment or Architecture-specific Sources.................... 14 2.2 Library Statistics.................................... 15 2.3 PF and VF Considerations.............................. 16 3 Managing ABI updates 18 3.1 Description....................................... 18 3.2 General Guidelines.................................. 18 3.3 What is an ABI..................................... 18 3.4 The DPDK ABI policy................................. 19 3.5 Examples of Deprecation Notices.......................... 20 3.6 Versioning Macros................................... 20 3.7 Setting a Major ABI version.............................. 21 3.8 Examples of ABI Macro use............................. 21 3.9 Running the ABI Validator............................... 25 4 DPDK Documentation Guidelines 27 4.1 Structure of the Documentation........................... 27 4.2 Role of the Documentation............................. -
Download Date 24/09/2021 14:31:55
To Upgrade or Not To Upgrade Application Item Type Thesis Authors Francisco, Neil Download date 24/09/2021 14:31:55 Link to Item http://hdl.handle.net/20.500.12648/1799 To Upgrade or Not To Upgrade Application __________________________ A Master's Thesis Project Presented to the Department of Communication and Information Design __________________________ In Partial Fulfillment of the Requirements for the Master of Science Degree State University of New York Polytechnic Institute By Neil Francisco May 2021 TO UPGRADE OR NOT TO UPGRADE SUNY POLYTECHNIC INSTITUTE DEPARTMENT OF INFORMATION DESIGN AND TECHNOLOGY CERTIFICATE OF APPROVAL Approved and recommended for acceptance as a thesis in partial fulfillment of the requirements for the degree of Master of Science in Information Design and Technology. ____________________June 11, 2021 DATE ________________________________ Dr. Kathryn Stam Thesis Advisor ____________________ DATE ________________________________ Dr. Ryan Lizardi Second Reader 2 TO UPGRADE OR NOT TO UPGRADE ABSTRACT New Technology consists of new hardware devices, computational workflows, digital advances, and information systems. As technology continues to evolve over the years, this never-ending cycle of new devices and experiences will always be present amongst consumers. Traditionally, new hardware devices are intriguing because they are designed to improve our access to information, media, and a connection to the digital world, but does this mean our previous-gen devices are no longer valuable? This project involves creating a prototype application designed for both computer and mobile interfaces to help improve the accessibility to information and the overall user experience with an older device. The “To Upgrade or Not To Upgrade” app will inform end-users of their older technological device specifications and suggest hardware/software methods to unlock their full potential. -
Introducting Innovations in Open Source Projects
Introducing Innovations into Open Source Projects Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) am Fachbereich Mathematik und Informatik der Freien Universität Berlin von Sinan Christopher Özbek Berlin August 2010 2 Gutachter: Professor Dr. Lutz Prechelt, Freie Universität Berlin Professor Kevin Crowston, Syracuse University Datum der Disputation: 17.12.2010 4 Abstract This thesis presents a qualitative study using Grounded Theory Methodology on the question of how to change development processes in Open Source projects. The mailing list communication of thirteen medium-sized Open Source projects over the year 2007 was analyzed to answer this question. It resulted in eight main concepts revolving around the introduction of innovation, i.e. new processes, services, and tools, into the projects including topics such as the migration to new systems, the question on where to host services, how radical Open Source projects can change their ways, and how compliance to processes and conventions is enforced. These are complemented with (1) the result of five case studies in which innovation introductions were conducted with Open Source projects, and with (2) a theoretical comparison of the results of this thesis to four theories and scientific perspectives from the organizational and social sciences such as Path Dependence, the Garbage Can model, Social-Network analysis, and Actor-Network theory. The results show that innovation introduction is a multifaceted phenomenon, of which this thesis discusses the most salient conceptual aspects. The thesis concludes with practical advice for innovators and specialized hints for the most popular innovations. 5 6 Acknowledgements I want to thank the following individuals for contributing to the completion of this thesis: • Lutz Prechelt for advising me over these long five years. -
Debian Packaging Tutorial
Debian Packaging Tutorial Lucas Nussbaum [email protected] version 0.27 – 2021-01-08 Debian Packaging Tutorial 1 / 89 About this tutorial I Goal: tell you what you really need to know about Debian packaging I Modify existing packages I Create your own packages I Interact with the Debian community I Become a Debian power-user I Covers the most important points, but is not complete I You will need to read more documentation I Most of the content also applies to Debian derivative distributions I That includes Ubuntu Debian Packaging Tutorial 2 / 89 Outline 1 Introduction 2 Creating source packages 3 Building and testing packages 4 Practical session 1: modifying the grep package 5 Advanced packaging topics 6 Maintaining packages in Debian 7 Conclusions 8 Additional practical sessions 9 Answers to practical sessions Debian Packaging Tutorial 3 / 89 Outline 1 Introduction 2 Creating source packages 3 Building and testing packages 4 Practical session 1: modifying the grep package 5 Advanced packaging topics 6 Maintaining packages in Debian 7 Conclusions 8 Additional practical sessions 9 Answers to practical sessions Debian Packaging Tutorial 4 / 89 Debian I GNU/Linux distribution I 1st major distro developed “openly in the spirit of GNU” I Non-commercial, built collaboratively by over 1,000 volunteers I 3 main features: I Quality – culture of technical excellence We release when it’s ready I Freedom – devs and users bound by the Social Contract Promoting the culture of Free Software since 1993 I Independence – no (single) -
CGD Compute Infrastructure Upgrade Plan
CGD Compute Infrastructure Upgrade Plan 1.0 Introduction The CGD Information Systems (IS) Group (ISG) is charged with providing a modern, progressive, and stable computing environment for the CGD user community. Scientists, engineers, and support staff should be able to concentrate on their individual duties without worrying about systems administration. The current infrastructure is being redesigned and upgraded to meet this goal. Achieving this on a restricted budget requires careful planning, time for implementation, and communication between the user community and the systems staff. Services provided by infrastructure systems will be distributed to provide ease of recovery, ease of upgrade, and flexibility to meet the growing needs of the Division. Hardware will be reused where possible, and eliminated if beyond reasonable use. Automation of services (software builds, user addition/deletion, etc) will be key to managing the growing demands. 2.0 Future CGD Computing Trends Written surveys from 2001 and meetings with each of the sections have revealed a wide variety of needs, desires, and deficiencies. Each section has a unique set of needs that often do not complement other sections. The one common factor among all sections is that more of everything will be needed to meet the common CGD goals: · More disk space for project data, home directories, and e-mail. · More Linux support to take advantage of the price/performance x86 hardware offers. · More computational processing power for modeling development. · More Microsoft products to support presentation/documentation efforts. · More laptops (MS and Linux) for travel and home use. 3.0 General Problems Computers have a useful life span that averages three years. -
The Ultimate Guide to Software Updates on Embedded Linux Devices
The ultimate guide to software updates on embedded Linux devices foss-north 2018 Mirza Krak Session Overview ● Intro ● Basics ● FOSS ecosystem ○ Strategy ○ Key Features ○ Community 2 Mirza Krak ● FOSS enthusiast ● Board Support Package development ● Linux kernel developer ● Yocto/OE-core ● Disclaimer: Mender community member 3 Embedded Linux Devices @internetofshit 4 Embedded Linux environment ● Remote in some cases ○ No physical access to devices ● Long life span ○ 5-10 years ● Unreliable power supply ○ Power loss at any given time ● Unreliable network ○ Mobile ○ Low bandwidth 5 Why do we need update software? ● Fixing issues (bugs) ● Feature growth ● Security updates 6 Software update on-site ● No connectivity ● Easy access to an device ● USB Flash drive ● Technician 7 Software updates (OTA) ● No easy access to device ● Deployment management server ○ status reports ○ current versions 8 What to we need to update? U-boot Linux + DTB Root file-system (distro) Root file-system (apps) MCU/FPGA 9 Requirements (basic) ● Able to update all components ○ Unsafe to update bootloader ● Never render the device unusable (brick) ○ Fail-safe ● Atomic updates ○ No partial install ● Roll-back ○ Not always possible ● Integrity check ● Signed images ○ Trusted images ● Compatibility check ● Persistent data storage 10 Requirements (basic OTA) ● Secure communication channel ○ Encrypted ● Device Authentication (trust) 11 Alternative approaches ● Image/block based updates ○ Easy to implement, test, verify and maintain ● Incremental atomic image upgrade mechanism -
Consumer Response to Versioning: How Brands Production Methods Affect Perceptions of Unfairness
Consumer Response to Versioning: How Brands’ Production Methods Affect Perceptions of Unfairness ANDREW D. GERSHOFF RAN KIVETZ ANAT KEINAN Marketers often extend product lines by offering limited-capability models that are created by removing or degrading features in existing models. This production method, called versioning, has been lauded because of its ability to increase both consumer and firm welfare. According to rational utility models, consumers weigh benefits relative to their costs in evaluating a product. So the production method should not be relevant. Anecdotal evidence suggests otherwise. Six studies show how the production method of versioning may be perceived as unfair and unethical and lead to decreased purchase intentions for the brand. Building on prior work in fairness, the studies show that this effect is driven by violations of norms and the perceived similarity between the inferior, degraded version of a product and the full-featured model offered by the brand. The idea of Apple gratuitously removing fea- been recommended by economists as a production method tures that would have been actually easier to that benefits both firms and consumers (Deneckere and leave in is downright perplexing. McAfee 1996; Hahn 2006; Varian 2000). Firms benefit by reducing design and production costs and by increasing profits The intentional software crippling stance they have taken with the iPod Touch is disturbing through price discrimination when multiple configurations of at best. (Readers’ responses to iPod Touch re- a product are offered. Consumers benefit because versioning view on www.engadget.com) results in lower prices and makes it possible for many to gain access to products that they might otherwise not be able to afford (Shapiro and Varian 1998; Varian 2000). -
Impacting the Bioscience Progress by Backporting Software for Bio-Linux
Impacting the bioscience progress by backporting software for Bio-Linux Sasa Paporovic [email protected] v0.9 What is Bio-Linux and what is it good for - also its drawbacks: If someone says to use or to have a Linux this is correct as like it is imprecise. It does not exist a Linux as full functional operating system by itself. What was originally meant by the term Linux was the operating system core[1]. The so called kernel, or in a case of a Linux operating system the Linux kernel. It is originally designed and programmed by Linus Torvalds, who is also today the developer in chef or to say it with his words, he is the “alpha-male” of all developers[2]. Anyway, what we have today are Distributions[3]. It has become common to call them simply “a Linux”. This means that there are organizations out there, mostly private, some funded and some other commercial, which gather all what is needed to design around the Linux kernel a full functional operating system. This targets mostly Software, but also web and service infrastructure. Some of them have a history that is nearly as long as the Linux kernel is alive, like Debian. Some others are younger like Ubuntu and some more others are very young, like Bio-Linux[4]. The last Linux, the Bio-Linux, especially its latest version Bio-Linux 7 we are focusing here[5]. In year 2006 Bio-Linux with the work of Tim Booth[42] and team gives its rising[6] and provide an operating system that was and still specialized in providing a bioinformatic specific software environment for the working needs in this corner of bioscience. -
Oracle Unbreakable Linux: an Overview
Oracle Unbreakable Linux: An Overview An Oracle White Paper September 2010 Oracle Unbreakable Linux: An Overview INTRODUCTION Oracle Unbreakable Linux is a support program that provides enterprises with industry-leading global support for the Linux operating system at significantly lower costs. The support program, which is available for any customer whether or not they’re running Oracle Unbreakable Linux currently includes support for three architectures: x86; x86-64 (e.g. the latest Intel Xeon and AMD Opteron chips, as used by most Linux customers); and Linux Itanium (ia64). The program offers support for any existing Red Hat Enterprise Linux installations and for new installations of Oracle Linux, an open source Linux operating system that is fully compatible— both source and binary—with Red Hat Enterprise Linux. Complete Support for the Complete Software Stack Oracle’s industry-leading support organization offers expertise that looks at the entire application stack running on top of Linux; only Oracle delivers complete support for the complete software stack—database, middleware, applications, management tools, and the operating system itself. By delivering enterprise-class quality support for Linux, Oracle addresses a key enterprise requirement from customers. When problems occur in a large, complex enterprise environment, it’s often impossible to reproduce such occurrences with very simple test cases. Customers need a support vendor who understands their full environment, and has the expertise to diagnose and resolve the problem by drawing from their knowledge of and familiarity with their framework, as opposed to requesting a simple reproducible test case. Another customer demand is for bug fixes to happen in a timely manner, as customers cannot always afford to wait for months to get a fix delivered to them. -
Installing Windows 2016/2019 Drivers
Installing Windows 2016/2019 Drivers • Prerequisite for Installing Windows 2016/2019 Drivers, on page 1 • Installing Windows 2016/2019 Drivers During OS Install, on page 2 • Updating Windows 2016/2019 Drivers, on page 2 Prerequisite for Installing Windows 2016/2019 Drivers Ensure that you adhere to the following best practice for installing the Windows drivers. You must upgrade the infrastructure in the following order before upgrading the drivers. • Upgrade the infrastructure firmware which includes the UCS Manager, the fabric interconnects, and the chassis I/O modules. • Upgrade the server and adapter firmware. Caution Failure to adhere to the proper upgrade sequence can cause the server to crash. Caution The driver installation file modifies certain registry entries, such as the disk timeout value of the system disk driver. Removing the driver does not restore these values. Note Before installing the drivers, the interrupt count should be set to greater than or equal to (2*logical processors + 4) for VIC 14XX adapters. The interrupt value can be rounded up to the nearest second power. For more information on how to set the interrupt field for Ethernet adapter policies in the UCS Manager GUI, refer to the UCSM Network Management Guide. Installing Windows 2016/2019 Drivers 1 Installing Windows 2016/2019 Drivers Installing Windows 2016/2019 Drivers During OS Install Installing Windows 2016/2019 Drivers During OS Install If you are installing Windows on a FC or iSCSI LUN, you must install Cisco VIC drivers for Windows during the OS installation. If you do not provide the drivers during the OS installation, the system is not able to detect the LUN. -
A Guide to Kernel Exploitation Attacking the Core (2011
A Guide to Kernel Exploitation This page intentionally left blank A Guide to Kernel Exploitation Attacking the Core Enrico Perla Massimiliano Oldani Technical Editor Graham Speake AMSTERDAM • BOSTON • HEIDELBERG • LONDON • • • NEW YORK OXFORD PARIS SAN DIEGO SYNGRESS SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO ® Syngress is an imprint of Elsevier Acquiring Editor: Rachel Roumeliotis Development Editor: Matthew Cater Project Manager: Julie Ochs Designer: Alisa Andreola Syngress is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA © 2011 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods or professional practices, may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information or methods described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. -
BIND 9 Administrator Reference Manual
BIND 9 Administrator Reference Manual BIND 9.11.31 (Extended Support Version) Copyright (C) 2000-2021 Internet Systems Consortium, Inc. ("ISC") This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/. Internet Systems Consortium, Inc. PO Box 360 Newmarket, NH 03857 USA https://www.isc.org/ Contents 1 Introduction 1 1.1 Scope of Document . .1 1.2 Organization of This Document . .1 1.3 Conventions Used in This Document . .1 1.4 The Domain Name System (DNS) . .2 DNS Fundamentals . .2 Domains and Domain Names . .2 Zones . .3 Authoritative Name Servers . .3 The Primary Server . .3 Secondary Servers . .4 Stealth Servers . .4 Caching Name Servers . .4 Forwarding . .5 Name Servers in Multiple Roles . .5 2 BIND Resource Requirements7 2.1 Hardware requirements . .7 2.2 CPU Requirements . .7 2.3 Memory Requirements . .7 2.4 Name Server-Intensive Environment Issues . .7 2.5 Supported Operating Systems . .8 iii BIND 9.11.31 CONTENTS CONTENTS 3 Name Server Configuration9 3.1 Sample Configurations . .9 A Caching-only Name Server . .9 An Authoritative-only Name Server . .9 3.2 Load Balancing . 10 3.3 Name Server Operations . 11 Tools for Use With the Name Server Daemon . 11 Diagnostic Tools . 11 Administrative Tools . 12 Signals . 13 4 Advanced DNS Features 15 4.1 Notify . 15 4.2 Dynamic Update . 15 The Journal File . 16 4.3 Incremental Zone Transfers (IXFR) . 16 4.4 Split DNS .