"Isothermal Flow in All Knudsen Regimes"

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSITÉ D’AIX MARSEILLE ÉCOLE DOCTORAL ED353 SCIENCES POUR L’INGÉNIEUR : MÉCANIQUE, PHYSIQUE, MICRO ET NANOELÉCTRONIQUE THÈSE DE DOCTORAT pour obtenir le grade de Docteur de l’Université d’Aix Marseille Specialté : Mécanique et Énergétique Mustafa HADJ NACER Tangential Momentum Accommodation Coefficient in Microchannels with Different Surface Materials (measurements and simulations) préparé au laboratoire IUSTI, UMR CNRS 7343, Marseille Soutenue publiquement devant le jury composé de: Rapporteurs Stéphane Colin - Université de Toulouse David Newport - University of Limerick Éxaminateurs Lounes Tadrist - Université d’Aix-Marseille Guy Lauriat - Université de Paris-Est Hiroki Yamaguchi - University of Nagoya Martin Wuest - INFICON, Liechtenstein. Directeur de thèse Irina Graur - Université d’Aix-Marseille Co-directeur Pierre Perrier - Université d’Aix-Marseille Invités Amor Bouhdjar - CDER- Alger Gilbert Méolans - Université d’Aix-Marseille 17 Décembre 2012 Tangential Momentum Accommodation Coefficient in Microchannels with Different Surface Materials (measurements and simulations) Mustafa HADJ NACER UNIVERSITY OF AIX MARSEILLE DOCTORAL SCHOOL ED353 THESIS submitted to obtain the degree of Doctor of Philosophy of the University of Aix Marseille Specialty : Mechanical engineering defended on December 17, 2012 to my Mother and Father, to my sister and brothers, and especially to my wife "Soumia". Mustafa Acknowledgments First of all I want to thank "Allah" for giving me the courage and the strength to complete this thesis. Then, I would like to take this opportunity to thank and express my sincere gratitude to my supervisor Professor Irina Graur and my co-supervisor Pierre Perrier, without forgetting J. Gilbert Méolans, for giving me the opportunity to do a research degree in a project where I feel very lucky to be a part of, and for their experts’ guidance and support. I would also thank Doctor Martin Wüest for receiving me within the Company INFICON, Liechtenstein for a period of two months and Professor Julio Croce for receiving within the Universita degli studi di Udine (UNIUD), Italy for a period of six months. On this occasion I do not forget to thank my previous professors Philippe Bournot, Olivier Vauquelin, George Le Palec, Amor Boudjar and Bouzid Benkoussas who were the cause to come to France and to start this thesis. I am also deeply grateful to the team DTF and all the personnel of the IUSTI Laboratory, with whom I developed good professional relationships and friendships. Most of all, I thank Vincent Pavan, Jean Luc Frippo, Tadrist Lounès, Lazhar Houas, Georges Jourdan, Christian Mariani, Yann Jobic, Jeanne Pullino for their kindness and helps. I thank also my office mates: Alice Chauvin, Mariusz Wozniak, Alexey Polikarpov, Charely André, Ali Dinler, Laurent Biamino, Minh Tuan Ho and special thank to my friends Abdelafour Zaabout, Mohammed Drissi, Salim Zeguai. Many thanks go to my housemates over the last three years Hadj Youb Bouras, Mo- hammed Bahachou, Mahfoud Bakli and Brahim Bazamlel for their invaluable friendship and help, and many thanks also to all the community of Tawat of Marseille, especially Seddik Ben Yahia, Bahmed Zaabi, Mohammed and Mustapha Ben Drissou and Bamoune Abderahmane and to all the members of my family in Marseille. I thank all of the various support provided me by my family. To my parents for their love and encouragement, to my brothers and sister for their love and friendship, thank you all. Finally, of all the contributions, my wife’s stands out as the most meaningful. Her understanding and steadfast love have always been a source of profound tranquility during this sometimes hectic journey. Thank you Soumia. The research leading to these results has received funding from the European Community’s Seventh Framework Program (ITN - FP7/2007-2013) under grant agreement n◦ 215504. Abstract This thesis is devoted to the study of rarefied gas flows through micro-channels of various cross sections (circular and rectangular) under isothermal and stationary conditions. The objective of this thesis is to contribute to the study of gas-surface interaction by determining the tangential momentum accommodation coefficient for different surface materials (gold, silica, stainless steel and Sulfinert) and associated to various gases (helium, nitrogen, argon and carbon-dioxide). To achieve this goal three aspects are considered: experimental, theoretical and numerical. The experimental aspect is considered by measuring the mass flow rate through microchannels using the constant volume technique. The theoretical aspect is considered by the development of a new approach based on the Stokes equations. This approach yields to the analytical expression of the mass flow rate in the slip regime, which takes into account the second order effects. The last aspect, numerical, is considered by the numerical simulations of the mass flow rate in the transitional and free molecular flow regimes by solving the linearized BGK kinetic model. The comparison between the measured mass flow rates and the analytically expressions in the slip regime or with the results of numerical simulations in the transitional and free molecular regimes enabled to deduce the tangential momentum accommodation coefficients corresponding to each pair gas-surface in all flow regimes. Keywords: Rarefied flow, mass flow rate, accommodation coefficient, kinetic model, continuum model. Résumé Cette thèse est consacrée à l’étude des écoulements de gaz raréfiés à travers divers micro- conduits de type circulaire et rectangulaire dans des conditions isotherme et stationnaire. L’objectif de la thèse est de contribuer à l’étude de l’interaction gaz-surface notamment en déterminant le coefficient d’accommodation de la quantité de mouvement pour différent matériaux de surface (Or, Silice, Acier inoxydable et Sulfinert) associés à différents types de gaz (hélium, azote, argon et dioxyde-de-carbone). Afin d’atteindre cet objectif, on adopte un triple point de vue : expérimental, théorique et numérique. L’aspect expérimental est réalisé par des mesures de débit massique à travers les micro-conduits, en utilisant la méthode dite « à volume constant ». L’aspect théorique original est développé à travers une nouvelle approche basée sur la résolution de l’équation de Stokes. Cette approche a permis d’écrire une expression analytique de débit massique en régime de glissement, qui prenne en compte les effets bidimensionnels dans une section de conduit rectangulaire. Cette approche complètement explicite, est conduite au deuxième ordre. Enfin l’aspect numérique permet de calculer le débit massique, en régimes transitionnel et moléculaire libre, en résolvant numériquement l’équation cinétique BGK linéarisée. La comparaison des mesures de débit massique avec l’équation analytique, en régime de glissement, ou avec les calculs numériques, en régimes transitionnel et moléculaire libre, nous a permis de déduire des coefficients de glissement et les coefficients d’accommodation correspondant à chaque couple gaz-surface dans tous les régimes de raréfaction. Keywords: Écoulement raréfié, débit massique, coefficient d’accommodation, modèle cinétique, modèle continu. Contents 1 Introduction1 1.1 Flow regimes....................................1 1.2 Tangential momentum accommodation coefficient (TMAC)..........4 1.3 Aims and structure of the thesis.........................5 2 Microchannels fabrication7 2.1 Lithography.....................................8 2.2 RIE etching..................................... 10 2.3 Wafer coating.................................... 11 2.3.1 Oxidation.................................. 11 2.3.2 Physical Vapor Deposition (PVD).................... 11 2.4 Wafer bonding................................... 12 2.5 Some problems encountered with the microchannels.............. 12 2.5.1 Microchannels Fabrication Summary.................. 13 2.6 Technical characteristics of the microchannels.................. 15 2.6.1 Rectangular cross-section microchannels................. 15 2.6.2 Circular cross-section microchannels................... 18 3 Analytical and Numerical Modeling 21 3.1 Statement of the problem............................. 22 3.2 Continuum and slip regimes............................ 23 3.2.1 Different expressions of the velocity slip coefficient........... 25 3.2.2 Conservation equation........................... 30 3.2.3 Flow between two parallel plates..................... 30 3.2.4 First order velocity slip condition for rectangular cross-section channels 31 3.2.5 Bi-dimensional approach developed in this thesis............ 34 3.2.6 The theoretical bases of our approach.................. 35 3.2.7 Analysis of the boundary conditions. Choice of an orthogonal function set...................................... 37 3.2.8 Search for the reduced velocity...................... 38 3.2.9 Expansion method............................. 40 3.2.10 Implementation of the expansion method................ 41 3.2.11 Mass flow rate calculation......................... 43 3.2.12 Comparison with other methods..................... 44 3.3 Transitional and free molecular regimes..................... 45 3.3.1 Problem formulation............................ 47 3.3.2 Linearized BGK model........................... 48 3.3.3 Discrete velocity method.......................... 51 3.3.4 Numerical results.............................. 53 xii Contents 4 Description of the experimental approach 61 4.1 Experiments in TMAC............................... 61 4.1.1 Molecular beam technique......................... 62 4.1.2
Recommended publications
  • Entropy Stable Numerical Approximations for the Isothermal and Polytropic Euler Equations
    ENTROPY STABLE NUMERICAL APPROXIMATIONS FOR THE ISOTHERMAL AND POLYTROPIC EULER EQUATIONS ANDREW R. WINTERS1;∗, CHRISTOF CZERNIK, MORITZ B. SCHILY, AND GREGOR J. GASSNER3 Abstract. In this work we analyze the entropic properties of the Euler equations when the system is closed with the assumption of a polytropic gas. In this case, the pressure solely depends upon the density of the fluid and the energy equation is not necessary anymore as the mass conservation and momentum conservation then form a closed system. Further, the total energy acts as a convex mathematical entropy function for the polytropic Euler equations. The polytropic equation of state gives the pressure as a scaled power law of the density in terms of the adiabatic index γ. As such, there are important limiting cases contained within the polytropic model like the isothermal Euler equations (γ = 1) and the shallow water equations (γ = 2). We first mimic the continuous entropy analysis on the discrete level in a finite volume context to get special numerical flux functions. Next, these numerical fluxes are incorporated into a particular discontinuous Galerkin (DG) spectral element framework where derivatives are approximated with summation-by-parts operators. This guarantees a high-order accurate DG numerical approximation to the polytropic Euler equations that is also consistent to its auxiliary total energy behavior. Numerical examples are provided to verify the theoretical derivations, i.e., the entropic properties of the high order DG scheme. Keywords: Isothermal Euler, Polytropic Euler, Entropy stability, Finite volume, Summation- by-parts, Nodal discontinuous Galerkin spectral element method 1. Introduction The compressible Euler equations of gas dynamics ! ! %t + r · (%v ) = 0; ! ! ! ! ! ! (1.1) (%v )t + r · (%v ⊗ v ) + rp = 0; ! ! Et + r · (v [E + p]) = 0; are a system of partial differential equations (PDEs) where the conserved quantities are the mass ! % ! 2 %, the momenta %v, and the total energy E = 2 kvk + %e.
    [Show full text]
  • Non-Steady, Isothermal Gas Pipeline Flow
    RICE UNIVERSITY NON-STEADY, ISOTHERMAL GAS PIPELINE FLOW Hsiang-Yun Lu A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE Thesis Director's Signature Houston, Texas May 1963 ABSTRACT What has been done in this thesis is to derive a numerical method to solve approximately the non-steady gas pipeline flow problem by assum¬ ing that the flow is isothermal. Under this assumption, the application of this method is restricted to the following conditions: (1) A variable rate of heat transfer through the pipeline is assumed possible to make the flow isothermal; (2) The pipeline is very long as compared with its diameter, the skin friction exists in the pipe, and the velocity and the change of ve¬ locity aYe small. (3) No shock is permitted. 1 The isothermal assumption takes the advantage that the temperature of the entire flow is constant and therefore the problem is solved with¬ out introducing the energy equation. After a few transformations the governing differential equations are reduced to only two simultaneous ones containing the pressure and mass flow rate as functions of time and distance. The solution is carried out by a step-by-step method. First, the simultaneous equations are transformed into three sets of simultaneous difference equations, and then, solve them by computer (e.g., IBM 1620 ; l Computer which has been used to solve the examples in this thesis). Once the pressure and the mass flow rate of the flow have been found, all the other properties of the flow can be determined.
    [Show full text]
  • Compressible Flow
    94 c 2004 Faith A. Morrison, all rights reserved. Compressible Fluids Faith A. Morrison Associate Professor of Chemical Engineering Michigan Technological University November 4, 2004 Chemical engineering is mostly concerned with incompressible flows in pipes, reactors, mixers, and other process equipment. Gases may be modeled as incompressible fluids in both microscopic and macroscopic calculations as long as the pressure changes are less than about 20% of the mean pressure (Geankoplis, Denn). The friction-factor/Reynolds-number correlation for incompressible fluids is found to apply to compressible fluids in this regime of pressure variation (Perry and Chilton, Denn). Compressible flow is important in selected application, however, including high-speed flow of gasses in pipes, through nozzles, in tur- bines, and especially in relief valves. We include here a brief discussion of issues related to the flow of compressible fluids; for more information the reader is encouraged to consult the literature. A compressible fluid is one in which the fluid density changes when it is subjected to high pressure-gradients. For gasses, changes in density are accompanied by changes in temperature, and this complicates considerably the analysis of compressible flow. The key difference between compressible and incompressible flow is the way that forces are transmitted through the fluid. Consider the flow of water in a straw. When a thirsty child applies suction to one end of a straw submerged in water, the water moves - both the water close to her mouth moves and the water at the far end moves towards the lower- pressure area created in the mouth. Likewise, in a long, completely filled piping system, if a pump is turned on at one end, the water will immediately begin to flow out of the other end of the pipe.
    [Show full text]
  • Entropy 2006, 8, 143-168 Entropy ISSN 1099-4300
    Entropy 2006, 8, 143-168 entropy ISSN 1099-4300 www.mdpi.org/entropy/ Full paper On the Propagation of Blast Wave in Earth′s Atmosphere: Adiabatic and Isothermal Flow R.P.Yadav1, P.K.Agarwal2 and Atul Sharma3, * 1. Department of Physics, Govt. P.G. College, Bisalpur (Pilibhit), U.P., India Email: [email protected] 2. Department of Physics, D.A.V. College, Muzaffarnagar, U.P., India Email: [email protected] 3. Department of Physics, V.S.P. Govt. College, Kairana (Muzaffarnagar), U.P., India Email:[email protected] Received: 11 April 2006 / Accepted: 21 August 2006 / Published: 21 August 2006 __________________________________________________________________________________ Abstract Adiabatic and isothermal propagations of spherical blast wave produced due to a nuclear explosion have been studied using the Energy hypothesis of Thomas, in the nonuniform atmosphere of the earth. The explosion is considered at different heights. Entropy production is also calculated along with the strength and velocity of the shock. In both the cases; for adiabatic and isothermal flows, it has been found that shock strength and shock velocity are larger at larger heights of explosion, in comparison to smaller heights of explosion. Isothermal propagation leads to a smaller value of shock strength and shock velocity in comparison to the adiabatic propagation. For the adiabatic case, the production of entropy is higher at higher heights of explosion, which goes on decreasing as the shock moves away from the point of explosion. However for the isothermal shock, the calculation of entropy production shows negative values. With negative values for the isothermal case, the production of entropy is smaller at higher heights of explosion, which goes on increasing as the shock moves away from the point of explosion.
    [Show full text]
  • Maximum Thermodynamic Power Coefficient of a Wind Turbine
    Received: 17 April 2019 Revised: 22 November 2019 Accepted: 10 December 2019 DOI: 10.1002/we.2474 RESEARCH ARTICLE Maximum thermodynamic power coefficient of a wind turbine J. M. Tavares1,2 P. Patrício1,2 1ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Avenida Abstract Conselheiro Emído Navarro, Lisboa, Portugal According to the centenary Betz-Joukowsky law, the power extracted from a wind turbine in 2Centro de Física Teórica e Computacional, Universidade de Lisboa, Lisboa, Portugal open flow cannot exceed 16/27 of the wind transported kinetic energy rate. This limit is usually interpreted as an absolute theoretical upper bound for the power coefficient of all wind turbines, Correspondence but it was derived in the special case of incompressible fluids. Following the same steps of Betz J. M. Tavares, ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de classical derivation, we model the turbine as an actuator disk in a one dimensional fluid flow Lisboa, Avenida Conselheiro Emído Navarro, but consider the general case of a compressible reversible fluid, such as air. In doing so, we are Lisboa, Portugal. obliged to use not only the laws of mechanics but also and explicitly the laws of thermodynamics. Email: [email protected] We show that the power coefficient depends on the inlet wind Mach number M0,andthatits Funding information maximum value exceeds the Betz-Joukowsky limit. We have developed a series expansion for Fundação para a Ciência e a Tecnologia, the maximum power coefficient in powers of the Mach number M0 that unifies all the cases Grant/Award Number: UID/FIS/00618/2019 2 (compressible and incompressible) in the same simple expression: max = 16∕27 + 8∕243M0.
    [Show full text]
  • Unit I Basic Concepts and Isentropic Flows
    UNIT I BASIC CONCEPTS AND ISENTROPIC FLOWS Introduction The purpose of this applet is to simulate the operation of a converging-diverging nozzle, perhaps the most important and basic piece of engineering hardware associated with propulsion and the high speed flow of gases. This device was invented by Carl de Laval toward the end of the l9th century and is thus often referred to as the 'de Laval' nozzle. This applet is intended to help students of compressible aerodynamics visualize the flow through this type of nozzle at a range of conditions. Technical Background The usual configuration for a converging diverging (CD) nozzle is shown in the figure. Gas flows through the nozzle from a region of high pressure (usually referred to as the chamber) to one of low pressure (referred to as the ambient or tank). The chamber is usually big enough so that any flow velocities here are negligible. The pressure here is denoted by the symbol p c. Gas flows from the chamber into the converging portion of the nozzle, past the throat, through the diverging portion and then exhausts into the ambient as a jet. The pressure of the ambient is referred to as the 'back pressure' and given the symbol p b. 1 A diffuser is the mechanical device that is designed to control the characteristics of a fluid at the entrance to a thermodynamic open system . Diffusers are used to slow the fluid's velocity and to enhance its mixing into the surrounding fluid. In contrast, a nozzle is often intended to increase the discharge velocity and to direct the flow in one particular direction.
    [Show full text]
  • Thermodynamic Analysis of Gas Flow and Heat Transfer in Microchannels
    International Journal of Heat and Mass Transfer 103 (2016) 773–782 Contents lists available at ScienceDirect International Journal of Heat and Mass Transfer journal homepage: www.elsevier.com/locate/ijhmt Thermodynamic analysis of gas flow and heat transfer in microchannels ⇑ Yangyu Guo, Moran Wang Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084, China article info abstract Article history: Thermodynamic analysis, especially the second-law analysis, has been applied in engineering design and Received 4 June 2016 optimization of microscale gas flow and heat transfer. However, following the traditional approaches may Accepted 25 July 2016 lead to decreased total entropy generation in some microscale systems. The present work reveals that the second-law analysis of microscale gas flow and heat transfer should include both the classical bulk entropy generation and the interfacial one which was usually missing in the previous studies. An increase Keywords: of total entropy generation will thus be obtained. Based on the kinetic theory of gases, the mathematical Entropy generation expression is provided for interfacial entropy generation, which shows proportional to the magnitude of Second-law analysis boundary velocity slip and temperature jump. Analyses of two classical cases demonstrate validity of the Microscale gas flow Microscale heat convection new formalism. For a high-Kn flow and heat transfer, the increase of interfacial transport irreversibility Thermodynamic optimization dominates. The present work may promote understanding of thermodynamics in microscale heat and fluid transport, and throw light on thermodynamic optimization of microscale processes and systems. Ó 2016 Elsevier Ltd.
    [Show full text]
  • Chapter 11 ENTROPY
    Chapter 11 ENTROPY There is nothing like looking, if you want to find something. You certainly usually find something, if you look, but it is not always quite the something you were after. − J.R.R. Tolkien (The Hobbit) In the preceding chapters, we have learnt many aspects of the first law applications to various thermodynamic systems. We have also learnt to use the thermodynamic properties, such as pressure, temperature, internal energy and enthalpy, when analysing thermodynamic systems. In this chap- ter, we will learn yet another thermodynamic property known as entropy, and its use in the thermodynamic analyses of systems. 250 Chapter 11 11.1 Reversible Process The property entropy is defined for an ideal process known as the re- versible process. Let us therefore first see what a reversible process is all about. If we can execute a process which can be reversed without leaving any trace on the surroundings, then such a process is known as the reversible process. That is, if a reversible process is reversed then both the system and the surroundings are returned to their respective original states at the end of the reverse process. Processes that are not reversible are called irreversible processes. Student: Teacher, what exactly is the difference between a reversible process and a cyclic process? Teacher: In a cyclic process, the system returns to its original state. That’s all. We don’t bother about what happens to its surroundings when the system is returned to its original state. In a reversible process, on the other hand, the system need not return to its original state.
    [Show full text]
  • Problem Set on Isothermal Flow with Wall Friction
    CP502 Advanced Fluid Mechanics Problem Set #1 in Compressible Fluid Flow (June - Oct 2019) Steady, quasi one-dimesional, isothermal, compressible flow of an ideal gas in a constant area duct with wall friction Ro = 8.31434 kJ/(kmol K) = 1.9858 kcal/(kmol K) (1) Starting from the mass and momentum balances, show that the differential equation de- scribing the quasi one-dimensional, compressible, isothermal, steady flow of an ideal gas through a constant area pipe of diameter D and average Fanning friction factor f¯ shall be written as follows: 4f¯ 2 2 dx + dp + du = 0 (1.1) D ρ u2 u where p, ρ and u are the respective pressure, density, and velocity at distance x from the entrance of the pipe. (2) Show that the differential equation of Problem (1) can be converted into ! 4f¯ 2 2 dx = − p dp + dp (1.2) D RT (_m=A)2 p which in turn can be integrated to yield the following design equation: ! ! 4fL¯ p2 p2 p2 = 1 − L + ln L ; (1.3) D RT (_m=A)2 p2 p2 where p is the pressure at the entrance of the pipe, pL is the pressure at length L from the entrance of the pipe, R is the gas constant, T is the temperature of the gas, m_ is the mass flow rate of the gas flowing through the pipe, and A is the cross-sectional area of the pipe. (3) Show that the design equation of Problem (2) is equivalent to 2 ! 2 ! ¯L 1 M M 4f = 2 1 − 2 + ln 2 ; (1.4) D γM ML ML where M is the Mach number at the entry and ML is the Mach number at length L from the entry.
    [Show full text]
  • Verification of Calculation Results for Compressible Isothermal Flow
    Pipe Flow Expert Fluid Flow and Pressure Loss Calculations Software http://www.pipeflow.com Verification of Calculation Results For Compressible Isothermal Flow Pipe Flow Expert Results Data Verification Table of Contents – Results Data: Systems Solved by Pipe Flow Expert Introduction ............................................................................................................................................... 3 Case 01: Mass Flow of Air ....................................................................................................................... 5 Case 02: Air Pipeline Pressure Loss ........................................................................................................ 6 Case 03: Gas Pipeline Flow Rate ............................................................................................................ 7 Case 04: Gas Pipeline Outlet Pressure.................................................................................................... 8 Case 05: Gas Pipeline Inlet Pressure ...................................................................................................... 9 Case 06: Gas Pipeline Outlet Pressure vs Length ................................................................................. 10 Case 07: Gas Pipeline Inlet Pressure vs Flow Rate .............................................................................. 12 Case 08: Natural Gas Pipeline Outlet Pressures with Multiple Take-Offs ............................................. 14 Case 09: Natural Gas Pipeline
    [Show full text]
  • Thermodynamic Characterization of Polymeric Materials Subjected to Non-Isothermal Flows: Experiment, Theory and Simulation
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2006 Thermodynamic Characterization of Polymeric Materials Subjected to Non-isothermal Flows: Experiment, Theory and Simulation Tudor Constantin Ionescu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Chemical Engineering Commons Recommended Citation Ionescu, Tudor Constantin, "Thermodynamic Characterization of Polymeric Materials Subjected to Non- isothermal Flows: Experiment, Theory and Simulation. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1825 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Tudor Constantin Ionescu entitled "Thermodynamic Characterization of Polymeric Materials Subjected to Non-isothermal Flows: Experiment, Theory and Simulation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Chemical Engineering. Brian J. Edwards, David J. Keffer, Major Professor We have read this dissertation and recommend its acceptance: John R. Collier, James R. Morris Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: We are submitting herewith a dissertation written by Tudor Constantin Ionescu entitled “Thermodynamic Characterization of Polymeric Materials Subjected to Non-isothermal Flows: Experiment, Theory and Simulation”.
    [Show full text]
  • Isothermal and Non-Isothermal Flow of Air in a Vertical Tube." (1965)
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 8-13-1965 Isothermal and non-isothermal flow of air in a erv tical tube. John I. Vissers University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Vissers, John I., "Isothermal and non-isothermal flow of air in a vertical tube." (1965). Electronic Theses and Dissertations. 6409. https://scholar.uwindsor.ca/etd/6409 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. ISOTHERMAL AND NGN-ISOTHERMAL FLOW OF AIR IN A VERTICAL TUBE BY JOHN I. VISSERS B. E., Nova Scotia Technical College, 1^6k A Thesis Submitted to the Faculty of Graduate Studies through the Department of Mechanical Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor Windsor, Ontario, Canada 1965 Reproduced with permission of the copyright owner.
    [Show full text]