Thermodynamic Analysis of Gas Flow and Heat Transfer in Microchannels

Total Page:16

File Type:pdf, Size:1020Kb

Thermodynamic Analysis of Gas Flow and Heat Transfer in Microchannels International Journal of Heat and Mass Transfer 103 (2016) 773–782 Contents lists available at ScienceDirect International Journal of Heat and Mass Transfer journal homepage: www.elsevier.com/locate/ijhmt Thermodynamic analysis of gas flow and heat transfer in microchannels ⇑ Yangyu Guo, Moran Wang Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084, China article info abstract Article history: Thermodynamic analysis, especially the second-law analysis, has been applied in engineering design and Received 4 June 2016 optimization of microscale gas flow and heat transfer. However, following the traditional approaches may Accepted 25 July 2016 lead to decreased total entropy generation in some microscale systems. The present work reveals that the second-law analysis of microscale gas flow and heat transfer should include both the classical bulk entropy generation and the interfacial one which was usually missing in the previous studies. An increase Keywords: of total entropy generation will thus be obtained. Based on the kinetic theory of gases, the mathematical Entropy generation expression is provided for interfacial entropy generation, which shows proportional to the magnitude of Second-law analysis boundary velocity slip and temperature jump. Analyses of two classical cases demonstrate validity of the Microscale gas flow Microscale heat convection new formalism. For a high-Kn flow and heat transfer, the increase of interfacial transport irreversibility Thermodynamic optimization dominates. The present work may promote understanding of thermodynamics in microscale heat and fluid transport, and throw light on thermodynamic optimization of microscale processes and systems. Ó 2016 Elsevier Ltd. All rights reserved. 1. Introductions entropy generation decreased with the increase of Knudsen num- ber (Kn, defined as the ratio of mean free path to characteristic In recent years, with the rapid development of micro- and length) in microscale systems such as in the classical work [18,19]. nanofabrication and nanotechnology [1] and micro- However, the particular phenomena of velocity slip and tem- electromechanical systems (MEMS) [2], there are increasing inter- perature jump occur at the gas–solid interface in microscale gas ests and studies on microscale gas flow [3–7] and heat transport flow [4]. The non-continuous velocity and temperature profiles [8–11]. The thermodynamics at microscale has attached more come from the in-sufficient interactions between gas molecules and more attentions in theory, such as the non-equilibrium and solid walls. In other words, the gas-surface interaction near entropy [12–14], or in applications for optimization of thermal effi- the solid wall cannot reach a local equilibrium state as a funda- ciency of microsystems. The entropy generation minimization mental hypothesis in CIT [17]. Such a non-equilibrium effect, principle [15] or so-called the second-law analysis [16], originated non-doubtfully, will bring additional irreversibility and entropy in classical irreversible thermodynamics (CIT) [17], has been generation. Actually the entropy generation in rarefied gas systems extended from the conventional engineering field to microscale has been declared to consist of two parts [29]: one from the inter- systems. Hitherto the second-law analysis of microscale gas heat molecular interactions and the other from the gas-surface interac- convections in simple geometries (micro-channels, micro-pipes, tions, which are denoted as the bulk and the interfacial entropy micro-ducts, etc.) has been widely performed via either analytical generations, respectively hereafter. The study on interfacial approach [18–24] or numerical simulations [25–28]. All these entropy generation originated earlier in formulating fluid–solid works followed the traditional methodology: ‘‘computing the interfacial boundary conditions in the frame of non-equilibrium entropy generation after a resolution of velocity and temperature thermodynamics [30,31]. The boundary conditions were obtained field distributions” based on the entropy generation formula in as bilinear phenomenological flux-force relations from the non- terms of velocity and temperature gradients [15,16]. The size negative interfacial entropy generation restricted by the second effects at microscale were incorporated in obtaining the velocity law [30]. The kinetic theory foundations were also investigated and temperature distributions by solving the classical hydrody- rooted in linearized Boltzmann transport equation (BTE) [32–34], namic equations with velocity slip and temperature jump bound- where both the boundary conditions and the Onsager reciprocal ary conditions. A common conclusion was made that the total relations for kinetic coefficients [29,35,36] have been derived. These outstanding works laid a solid basis for interfacial boundary conditions from both thermodynamic and statistical physical per- ⇑ Corresponding author. spectives. But they mainly focus on the rarefied gas transport with E-mail address: [email protected] (M. Wang). http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.07.093 0017-9310/Ó 2016 Elsevier Ltd. All rights reserved. 774 Y. Guo, M. Wang / International Journal of Heat and Mass Transfer 103 (2016) 773–782 Nomenclature c (cx, cy, cz) molecular velocity [m/s] Greek symbols u (ux) fluid velocity [m/s] k molecular mean free path [m] T thermodynamic temperature [K] l dynamic viscosity of fluid [kg/(mÁs)] x, y, r coordinate components [m] q mass density of fluid [kg/m3] Pr Prandtl number [–] c specific heat ratio [–] Kn Knudsen number [–] s molecular relaxation time [s] Br Brinkman number [–] h dimensionless temperature [–] cp specific heat capacity at constant pressure [J/(kgÁK)] g dimensionless value of r [–] m_ mass flow rate [kg/s] r entropy generation rate per unit volume [W/(KÁm3)] 2 À2 Ac cross-sectional area [m ] Uq dissipation function [s ] R radius of the micro-pipe [m] U, / deviational part of velocity distribution function [–] H half of the height of the micro-channel [m] a, b dummy index [–] k thermal conductivity of fluid [W/(mÁK)] P wetting perimeter [m] Subscripts Y dimensionless value of y [–] s variables of gas at the wall 2 q heat flux supply [W/m ] w variables of the wall A, B combinational parameters [–] m mean value of variables À3 À1 f molecular velocity distribution function [m (m/s) ] 1 parameters of micro-pipe 2 F external force on per unit mass of fluid [m/s ] 2 parameters of micro-channel kB Boltzmann constant [J/K] eq equilibrium state p thermodynamic pressure [Pa] b bulk region e specific internal energy [J/kg] i interface region s specific entropy or specularity parameter of Á wall [J/(K kg)] or [–] Acronyms s Á 2 J entropy flux [W/(K m )] CIT classical irreversible thermodynamics S entropy generation rate [W/K] gen BTE Boltzmann transport equation a finite Kn resulting from enhanced mean free path. Theoretical 2. Theoretical foundation of second-law analysis foundation of the entropy generation is seldom explored in micro- scale gas flow and heat transport, where the reduced system size The theoretical evaluation of thermodynamic irreversibility in contributes to the finite Kn. It will be shown that the interfacial microscale gas flow is intimately related to its hydrodynamic mod- entropy generation obtained in rarefied gas transport is not avail- eling, as is shown in Fig. 1. The microscale gas flow within the slip able directly to analysis of microscale gas flows due to a finite por- regime (0.001 6 Kn 6 0.1) is considered throughout the present tion of Knudsen layer (a thin layer with a thickness about one work, modeled by the Navier–Stokes equation (or Fourier’s law) mean free path near the wall) across the microchannel. On the with a velocity slip (or temperature jump) boundary condition other hand, the interfacial entropy generation has never been [4]. Although in principle the gas behaviors within the Knudsen incorporated into the second-law analysis of microscale gas heat layer should be described through a solution of BTE, the present convections in the previous work [18–28], to the authors’ best modeling has been proved to yield sufficiently accurate results knowledge. With the miniaturization of system and increase of within the slip regime [4,7]. Accordingly, the total entropy genera- Kn, the entropy generation at the interface may become compara- tion includes twofold shown in Fig. 1(b): the bulk part in the ble to or even dominant over that in the bulk region. The thermo- microchannel due to the fluid flow (or heat transport) and the dynamic performance of microscale system will thus be interfacial part at the wall induced by velocity slip (or temperature inadequately or erroneously evaluated when neglecting the inter- jump). The interfacial entropy generation has been calculated for facial irreversibility. It will be shown that the total entropy gener- rarefied gas transport based on kinetic theory of gases, as the dif- ation may increase with increasing Kn when both the bulk and ference between the entropy fluxes at the gas side and the solid interfacial entropy generations are counted. one [32–34]. The velocity distribution function of gases obtained Therefore, the present work aims at a systematic second-law by the Chapman–Enskog solution to BTE in the bulk region (outside analysis of microscale gas flow and heat transport with special the Knudsen layer) was used to evaluate the entropy flux at the gas attention on the role of interfacial entropy generation. Two classi- side. From the authors’ perspective, the obtained entropy genera- cal cases are taken for demonstration: heat convections in micro- tion is actually that within the Knudsen layer, as shown in Fig. 1 pipe [37] and in micro-channel [38]. The remainder of this article (c). As the Knudsen layer is modeled approximately by continuum is organized as: in Section 2, the mathematical expressions of bulk equation, the entropy generation within this layer has been and interfacial entropy generation are derived respectively in the accounted in the bulk part, as indicated in Fig. 1(b).
Recommended publications
  • Entropy Stable Numerical Approximations for the Isothermal and Polytropic Euler Equations
    ENTROPY STABLE NUMERICAL APPROXIMATIONS FOR THE ISOTHERMAL AND POLYTROPIC EULER EQUATIONS ANDREW R. WINTERS1;∗, CHRISTOF CZERNIK, MORITZ B. SCHILY, AND GREGOR J. GASSNER3 Abstract. In this work we analyze the entropic properties of the Euler equations when the system is closed with the assumption of a polytropic gas. In this case, the pressure solely depends upon the density of the fluid and the energy equation is not necessary anymore as the mass conservation and momentum conservation then form a closed system. Further, the total energy acts as a convex mathematical entropy function for the polytropic Euler equations. The polytropic equation of state gives the pressure as a scaled power law of the density in terms of the adiabatic index γ. As such, there are important limiting cases contained within the polytropic model like the isothermal Euler equations (γ = 1) and the shallow water equations (γ = 2). We first mimic the continuous entropy analysis on the discrete level in a finite volume context to get special numerical flux functions. Next, these numerical fluxes are incorporated into a particular discontinuous Galerkin (DG) spectral element framework where derivatives are approximated with summation-by-parts operators. This guarantees a high-order accurate DG numerical approximation to the polytropic Euler equations that is also consistent to its auxiliary total energy behavior. Numerical examples are provided to verify the theoretical derivations, i.e., the entropic properties of the high order DG scheme. Keywords: Isothermal Euler, Polytropic Euler, Entropy stability, Finite volume, Summation- by-parts, Nodal discontinuous Galerkin spectral element method 1. Introduction The compressible Euler equations of gas dynamics ! ! %t + r · (%v ) = 0; ! ! ! ! ! ! (1.1) (%v )t + r · (%v ⊗ v ) + rp = 0; ! ! Et + r · (v [E + p]) = 0; are a system of partial differential equations (PDEs) where the conserved quantities are the mass ! % ! 2 %, the momenta %v, and the total energy E = 2 kvk + %e.
    [Show full text]
  • Non-Steady, Isothermal Gas Pipeline Flow
    RICE UNIVERSITY NON-STEADY, ISOTHERMAL GAS PIPELINE FLOW Hsiang-Yun Lu A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE Thesis Director's Signature Houston, Texas May 1963 ABSTRACT What has been done in this thesis is to derive a numerical method to solve approximately the non-steady gas pipeline flow problem by assum¬ ing that the flow is isothermal. Under this assumption, the application of this method is restricted to the following conditions: (1) A variable rate of heat transfer through the pipeline is assumed possible to make the flow isothermal; (2) The pipeline is very long as compared with its diameter, the skin friction exists in the pipe, and the velocity and the change of ve¬ locity aYe small. (3) No shock is permitted. 1 The isothermal assumption takes the advantage that the temperature of the entire flow is constant and therefore the problem is solved with¬ out introducing the energy equation. After a few transformations the governing differential equations are reduced to only two simultaneous ones containing the pressure and mass flow rate as functions of time and distance. The solution is carried out by a step-by-step method. First, the simultaneous equations are transformed into three sets of simultaneous difference equations, and then, solve them by computer (e.g., IBM 1620 ; l Computer which has been used to solve the examples in this thesis). Once the pressure and the mass flow rate of the flow have been found, all the other properties of the flow can be determined.
    [Show full text]
  • Compressible Flow
    94 c 2004 Faith A. Morrison, all rights reserved. Compressible Fluids Faith A. Morrison Associate Professor of Chemical Engineering Michigan Technological University November 4, 2004 Chemical engineering is mostly concerned with incompressible flows in pipes, reactors, mixers, and other process equipment. Gases may be modeled as incompressible fluids in both microscopic and macroscopic calculations as long as the pressure changes are less than about 20% of the mean pressure (Geankoplis, Denn). The friction-factor/Reynolds-number correlation for incompressible fluids is found to apply to compressible fluids in this regime of pressure variation (Perry and Chilton, Denn). Compressible flow is important in selected application, however, including high-speed flow of gasses in pipes, through nozzles, in tur- bines, and especially in relief valves. We include here a brief discussion of issues related to the flow of compressible fluids; for more information the reader is encouraged to consult the literature. A compressible fluid is one in which the fluid density changes when it is subjected to high pressure-gradients. For gasses, changes in density are accompanied by changes in temperature, and this complicates considerably the analysis of compressible flow. The key difference between compressible and incompressible flow is the way that forces are transmitted through the fluid. Consider the flow of water in a straw. When a thirsty child applies suction to one end of a straw submerged in water, the water moves - both the water close to her mouth moves and the water at the far end moves towards the lower- pressure area created in the mouth. Likewise, in a long, completely filled piping system, if a pump is turned on at one end, the water will immediately begin to flow out of the other end of the pipe.
    [Show full text]
  • Entropy 2006, 8, 143-168 Entropy ISSN 1099-4300
    Entropy 2006, 8, 143-168 entropy ISSN 1099-4300 www.mdpi.org/entropy/ Full paper On the Propagation of Blast Wave in Earth′s Atmosphere: Adiabatic and Isothermal Flow R.P.Yadav1, P.K.Agarwal2 and Atul Sharma3, * 1. Department of Physics, Govt. P.G. College, Bisalpur (Pilibhit), U.P., India Email: [email protected] 2. Department of Physics, D.A.V. College, Muzaffarnagar, U.P., India Email: [email protected] 3. Department of Physics, V.S.P. Govt. College, Kairana (Muzaffarnagar), U.P., India Email:[email protected] Received: 11 April 2006 / Accepted: 21 August 2006 / Published: 21 August 2006 __________________________________________________________________________________ Abstract Adiabatic and isothermal propagations of spherical blast wave produced due to a nuclear explosion have been studied using the Energy hypothesis of Thomas, in the nonuniform atmosphere of the earth. The explosion is considered at different heights. Entropy production is also calculated along with the strength and velocity of the shock. In both the cases; for adiabatic and isothermal flows, it has been found that shock strength and shock velocity are larger at larger heights of explosion, in comparison to smaller heights of explosion. Isothermal propagation leads to a smaller value of shock strength and shock velocity in comparison to the adiabatic propagation. For the adiabatic case, the production of entropy is higher at higher heights of explosion, which goes on decreasing as the shock moves away from the point of explosion. However for the isothermal shock, the calculation of entropy production shows negative values. With negative values for the isothermal case, the production of entropy is smaller at higher heights of explosion, which goes on increasing as the shock moves away from the point of explosion.
    [Show full text]
  • Maximum Thermodynamic Power Coefficient of a Wind Turbine
    Received: 17 April 2019 Revised: 22 November 2019 Accepted: 10 December 2019 DOI: 10.1002/we.2474 RESEARCH ARTICLE Maximum thermodynamic power coefficient of a wind turbine J. M. Tavares1,2 P. Patrício1,2 1ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Avenida Abstract Conselheiro Emído Navarro, Lisboa, Portugal According to the centenary Betz-Joukowsky law, the power extracted from a wind turbine in 2Centro de Física Teórica e Computacional, Universidade de Lisboa, Lisboa, Portugal open flow cannot exceed 16/27 of the wind transported kinetic energy rate. This limit is usually interpreted as an absolute theoretical upper bound for the power coefficient of all wind turbines, Correspondence but it was derived in the special case of incompressible fluids. Following the same steps of Betz J. M. Tavares, ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de classical derivation, we model the turbine as an actuator disk in a one dimensional fluid flow Lisboa, Avenida Conselheiro Emído Navarro, but consider the general case of a compressible reversible fluid, such as air. In doing so, we are Lisboa, Portugal. obliged to use not only the laws of mechanics but also and explicitly the laws of thermodynamics. Email: [email protected] We show that the power coefficient depends on the inlet wind Mach number M0,andthatits Funding information maximum value exceeds the Betz-Joukowsky limit. We have developed a series expansion for Fundação para a Ciência e a Tecnologia, the maximum power coefficient in powers of the Mach number M0 that unifies all the cases Grant/Award Number: UID/FIS/00618/2019 2 (compressible and incompressible) in the same simple expression: max = 16∕27 + 8∕243M0.
    [Show full text]
  • Unit I Basic Concepts and Isentropic Flows
    UNIT I BASIC CONCEPTS AND ISENTROPIC FLOWS Introduction The purpose of this applet is to simulate the operation of a converging-diverging nozzle, perhaps the most important and basic piece of engineering hardware associated with propulsion and the high speed flow of gases. This device was invented by Carl de Laval toward the end of the l9th century and is thus often referred to as the 'de Laval' nozzle. This applet is intended to help students of compressible aerodynamics visualize the flow through this type of nozzle at a range of conditions. Technical Background The usual configuration for a converging diverging (CD) nozzle is shown in the figure. Gas flows through the nozzle from a region of high pressure (usually referred to as the chamber) to one of low pressure (referred to as the ambient or tank). The chamber is usually big enough so that any flow velocities here are negligible. The pressure here is denoted by the symbol p c. Gas flows from the chamber into the converging portion of the nozzle, past the throat, through the diverging portion and then exhausts into the ambient as a jet. The pressure of the ambient is referred to as the 'back pressure' and given the symbol p b. 1 A diffuser is the mechanical device that is designed to control the characteristics of a fluid at the entrance to a thermodynamic open system . Diffusers are used to slow the fluid's velocity and to enhance its mixing into the surrounding fluid. In contrast, a nozzle is often intended to increase the discharge velocity and to direct the flow in one particular direction.
    [Show full text]
  • Chapter 11 ENTROPY
    Chapter 11 ENTROPY There is nothing like looking, if you want to find something. You certainly usually find something, if you look, but it is not always quite the something you were after. − J.R.R. Tolkien (The Hobbit) In the preceding chapters, we have learnt many aspects of the first law applications to various thermodynamic systems. We have also learnt to use the thermodynamic properties, such as pressure, temperature, internal energy and enthalpy, when analysing thermodynamic systems. In this chap- ter, we will learn yet another thermodynamic property known as entropy, and its use in the thermodynamic analyses of systems. 250 Chapter 11 11.1 Reversible Process The property entropy is defined for an ideal process known as the re- versible process. Let us therefore first see what a reversible process is all about. If we can execute a process which can be reversed without leaving any trace on the surroundings, then such a process is known as the reversible process. That is, if a reversible process is reversed then both the system and the surroundings are returned to their respective original states at the end of the reverse process. Processes that are not reversible are called irreversible processes. Student: Teacher, what exactly is the difference between a reversible process and a cyclic process? Teacher: In a cyclic process, the system returns to its original state. That’s all. We don’t bother about what happens to its surroundings when the system is returned to its original state. In a reversible process, on the other hand, the system need not return to its original state.
    [Show full text]
  • Problem Set on Isothermal Flow with Wall Friction
    CP502 Advanced Fluid Mechanics Problem Set #1 in Compressible Fluid Flow (June - Oct 2019) Steady, quasi one-dimesional, isothermal, compressible flow of an ideal gas in a constant area duct with wall friction Ro = 8.31434 kJ/(kmol K) = 1.9858 kcal/(kmol K) (1) Starting from the mass and momentum balances, show that the differential equation de- scribing the quasi one-dimensional, compressible, isothermal, steady flow of an ideal gas through a constant area pipe of diameter D and average Fanning friction factor f¯ shall be written as follows: 4f¯ 2 2 dx + dp + du = 0 (1.1) D ρ u2 u where p, ρ and u are the respective pressure, density, and velocity at distance x from the entrance of the pipe. (2) Show that the differential equation of Problem (1) can be converted into ! 4f¯ 2 2 dx = − p dp + dp (1.2) D RT (_m=A)2 p which in turn can be integrated to yield the following design equation: ! ! 4fL¯ p2 p2 p2 = 1 − L + ln L ; (1.3) D RT (_m=A)2 p2 p2 where p is the pressure at the entrance of the pipe, pL is the pressure at length L from the entrance of the pipe, R is the gas constant, T is the temperature of the gas, m_ is the mass flow rate of the gas flowing through the pipe, and A is the cross-sectional area of the pipe. (3) Show that the design equation of Problem (2) is equivalent to 2 ! 2 ! ¯L 1 M M 4f = 2 1 − 2 + ln 2 ; (1.4) D γM ML ML where M is the Mach number at the entry and ML is the Mach number at length L from the entry.
    [Show full text]
  • Verification of Calculation Results for Compressible Isothermal Flow
    Pipe Flow Expert Fluid Flow and Pressure Loss Calculations Software http://www.pipeflow.com Verification of Calculation Results For Compressible Isothermal Flow Pipe Flow Expert Results Data Verification Table of Contents – Results Data: Systems Solved by Pipe Flow Expert Introduction ............................................................................................................................................... 3 Case 01: Mass Flow of Air ....................................................................................................................... 5 Case 02: Air Pipeline Pressure Loss ........................................................................................................ 6 Case 03: Gas Pipeline Flow Rate ............................................................................................................ 7 Case 04: Gas Pipeline Outlet Pressure.................................................................................................... 8 Case 05: Gas Pipeline Inlet Pressure ...................................................................................................... 9 Case 06: Gas Pipeline Outlet Pressure vs Length ................................................................................. 10 Case 07: Gas Pipeline Inlet Pressure vs Flow Rate .............................................................................. 12 Case 08: Natural Gas Pipeline Outlet Pressures with Multiple Take-Offs ............................................. 14 Case 09: Natural Gas Pipeline
    [Show full text]
  • Thermodynamic Characterization of Polymeric Materials Subjected to Non-Isothermal Flows: Experiment, Theory and Simulation
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2006 Thermodynamic Characterization of Polymeric Materials Subjected to Non-isothermal Flows: Experiment, Theory and Simulation Tudor Constantin Ionescu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Chemical Engineering Commons Recommended Citation Ionescu, Tudor Constantin, "Thermodynamic Characterization of Polymeric Materials Subjected to Non- isothermal Flows: Experiment, Theory and Simulation. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1825 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Tudor Constantin Ionescu entitled "Thermodynamic Characterization of Polymeric Materials Subjected to Non-isothermal Flows: Experiment, Theory and Simulation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Chemical Engineering. Brian J. Edwards, David J. Keffer, Major Professor We have read this dissertation and recommend its acceptance: John R. Collier, James R. Morris Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: We are submitting herewith a dissertation written by Tudor Constantin Ionescu entitled “Thermodynamic Characterization of Polymeric Materials Subjected to Non-isothermal Flows: Experiment, Theory and Simulation”.
    [Show full text]
  • "Isothermal Flow in All Knudsen Regimes"
    UNIVERSITÉ D’AIX MARSEILLE ÉCOLE DOCTORAL ED353 SCIENCES POUR L’INGÉNIEUR : MÉCANIQUE, PHYSIQUE, MICRO ET NANOELÉCTRONIQUE THÈSE DE DOCTORAT pour obtenir le grade de Docteur de l’Université d’Aix Marseille Specialté : Mécanique et Énergétique Mustafa HADJ NACER Tangential Momentum Accommodation Coefficient in Microchannels with Different Surface Materials (measurements and simulations) préparé au laboratoire IUSTI, UMR CNRS 7343, Marseille Soutenue publiquement devant le jury composé de: Rapporteurs Stéphane Colin - Université de Toulouse David Newport - University of Limerick Éxaminateurs Lounes Tadrist - Université d’Aix-Marseille Guy Lauriat - Université de Paris-Est Hiroki Yamaguchi - University of Nagoya Martin Wuest - INFICON, Liechtenstein. Directeur de thèse Irina Graur - Université d’Aix-Marseille Co-directeur Pierre Perrier - Université d’Aix-Marseille Invités Amor Bouhdjar - CDER- Alger Gilbert Méolans - Université d’Aix-Marseille 17 Décembre 2012 Tangential Momentum Accommodation Coefficient in Microchannels with Different Surface Materials (measurements and simulations) Mustafa HADJ NACER UNIVERSITY OF AIX MARSEILLE DOCTORAL SCHOOL ED353 THESIS submitted to obtain the degree of Doctor of Philosophy of the University of Aix Marseille Specialty : Mechanical engineering defended on December 17, 2012 to my Mother and Father, to my sister and brothers, and especially to my wife "Soumia". Mustafa Acknowledgments First of all I want to thank "Allah" for giving me the courage and the strength to complete this thesis. Then, I would like to take this opportunity to thank and express my sincere gratitude to my supervisor Professor Irina Graur and my co-supervisor Pierre Perrier, without forgetting J. Gilbert Méolans, for giving me the opportunity to do a research degree in a project where I feel very lucky to be a part of, and for their experts’ guidance and support.
    [Show full text]
  • Isothermal and Non-Isothermal Flow of Air in a Vertical Tube." (1965)
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 8-13-1965 Isothermal and non-isothermal flow of air in a erv tical tube. John I. Vissers University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Vissers, John I., "Isothermal and non-isothermal flow of air in a vertical tube." (1965). Electronic Theses and Dissertations. 6409. https://scholar.uwindsor.ca/etd/6409 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. ISOTHERMAL AND NGN-ISOTHERMAL FLOW OF AIR IN A VERTICAL TUBE BY JOHN I. VISSERS B. E., Nova Scotia Technical College, 1^6k A Thesis Submitted to the Faculty of Graduate Studies through the Department of Mechanical Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor Windsor, Ontario, Canada 1965 Reproduced with permission of the copyright owner.
    [Show full text]