Crustacean Biology Advance Access Published 23 November 2018 Journal of Crustacean Biology the Crustacean Society Journal of Crustacean Biology 39(1) 74–81, 2019

Total Page:16

File Type:pdf, Size:1020Kb

Crustacean Biology Advance Access Published 23 November 2018 Journal of Crustacean Biology the Crustacean Society Journal of Crustacean Biology 39(1) 74–81, 2019 Journal of Crustacean Biology Advance Access published 23 November 2018 Journal of Crustacean Biology The Crustacean Society Journal of Crustacean Biology 39(1) 74–81, 2019. doi:10.1093/jcbiol/ruy087 Reproductive potential of Ucides cordatus (Linnaeus, 1763) (Decapoda: Brachyura: Ocypodidae) from two mangrove areas subject to different levels of Downloaded from https://academic.oup.com/jcb/article-abstract/39/1/74/5202066 by guest on 26 May 2020 contaminants Marcio C.A. João and Marcelo A.A. Pinheiro Universidade Estadual Paulista (UNESP), Instituto de Biociências (IB), Campus do Litoral Paulista (CLP), Grupo de Pesquisa em Biologia de Crustáceos (CRUSTA), Praça Infante Dom Henrique, s/nº,CEP 11330–900, São Vicente, SP, Brazil Correspondence: M.A.A. Pinheiro; e-mail: [email protected] (Received 14 May 2018; accepted 2 October 2018) ABSTRACT Ocypodid crabs are common in mangrove areas, and the uçá, Ucides cordatus (Linnaeus, 1763), is a key species. It is abundant and economically relevant in these marine wetlands on the southeastern Atlantic coast of Brazil. Mangroves suffer from intense anthropogenic impact by pollutants affecting the reproductive biology of the animals inhabiting this ecosystem. We analyzed the reproductive potential of U. cordatus, comparing fecundity and fertility equations between two mangroves with distinct pollution levels in São Paulo state, Brazil: a pristine (Juréia-Itatins Ecological Station) and a contaminated (Cubatão) area. There was no differ- ence in egg production (fecundity) between crabs from both areas, possibly due to tolerance mechanisms exhibited by the crabs. There was, however, a substantial difference in larval production, which was three times higher in crabs from the contaminated mangrove than in those from the pristine mangrove. These results are explained by different reproductive condi- tions of the ovigerous females arising from the fertility analysis: primiparous (first spawning from the contaminated area) and multiparous females (second or subsequent spawning from the pristine area). Multiple spawning in the same reproductive season had not been previously reported for this species. Results, however, do not explain the relationship between environ- mental contaminants and fertility, which should be investigated in the future. Key Words: fecundity, fertility, reproductive biology, Ucidinae. INTRODUCTION Reproductive strategies in brachyurans vary with season, spawn- ing number, loss of eggs, and the spawning condition of females Ucides cordatus (Linnaeus, 1763) is a semi-terrestrial brachyuran (Sainte-Marie, 1993; Diez & Lovrich, 2010; Verísimo et al., 2011; crab typical of mangrove areas. The species is widely distributed Hartnoll, 2015; McLay & Becker, 2015). Reproduction can also in the western Atlantic (Melo, 1996) and is considered an impor- be affected by exogenous factors such as salinity, temperature, tant fishery resource (Diele et al., 2005) and a key species because photoperiod (Sastry, 1983; Bembe et al., 2017), and environmental crabs maintain energy and nutrients within mangrove forests by contamination (Depledge & Fossi, 1994; Penha-Lopes et al., 2009; recycling senescent leaves (Nordhaus et al., 2009). These crabs Almeida et al., 2016). Species respond in different ways to con- have a relevant role in environmental monitoring due to their taminants, showing tolerance that change with exposure time and high longevity (~10 years; Pinheiro et al., 2005), reduced mobil- concentration of pollutants (Depledge & Fossi, 1994). Estuarine ity (Nordhaus et al., 2009), endemism, and easy capture (Pinheiro species can be affected by local contamination (Harris & Santos, & Fiscarelli, 2001). They show seasonal reproduction (November 2000; Rotter et al., 2011) but some crustaceans have strategies to to March) with showing two peaks (December and February), survive when exposed to such contaminants (Ortega et al., 2016). each with a different frequency of ovigerous females (Pinheiro & One of the strategies is the synthesis of metallothionein, a protein Fiscarelli, 2001; Sant’Anna et al., 2014; Moraes et al., 2015). that binds metals (Bjerregaard et al., 2005; Gao et al., 2012). © The Author(s) 2018. Published by Oxford University Press on behalf of The Crustacean Society. All rights reserved. For permissions, please e-mail: [email protected] REPRODUCTIVE POTENTIAL OF UCIDES CORDATUS Studies on reproductive strategies help in the management of were removed with scissors and tweezers and transferred to 70% fishery resources, and previous contributions on this topic have ethyl alcohol for 48 h and subsequently to absolute alcohol for 72 h. been reported for U. cordatus (Nascimento, 1993; Góes et al., 2000; Each egg mass was dried (60 ºC) until weight was stabilized (~72 h). Sampaio, 2002; Pinheiro et al., 2003; Pinheiro & Hattori, 2003; Pleopod fragments and setae of each dry egg mass were removed Hattori & Pinheiro, 2003; Dalabona et al., 2005; Sant’anna et al., and discarded. Total dry weight of the egg mass was obtained using 2007; Castilho-Westphal et al., 2008, 2011, 2013; Wunderlich an analytical balance (to 0.0001 g precision). Fecundity was deter- et al., 2008; Sant’anna et al., 2014). Fecundity and fertility of Ucides mined by counting the number of eggs in three subsamples (0.3 mg cordatus have been studied by Pinheiro et al. (2003) and Hattori & each) under a stereomicroscope. Calculation of the total number of Pinheiro (2003), respectively. There are, nevertheless, studies show- eggs was performed by the rule of proportions, together with mean ing differences between egg and larval production from contami- number of eggs (NE) for each female. The coefficient of variation nated and pristine mangroves areas, which are relevant to optimal (CV) between three subsamples of each female was calculated to management (Pinheiro et al., 2003; Gonçalves & Reigada, 2012). avoid analytical error, with significant deviations substituted by Mangroves forests have been affected worldwide by anthropo- another counting when CV was larger than 15%. genic impact (e.g., Alongi, 2002; Duke et al., 2007; Abreu-Mota et al., A regression analysis of NE versus CW was performed using NE 2014). Such human pressure has been affecting mangroves along the as a dependent variable and CW as an independent variable; the central coast of São Paulo state, Brazil since European colonization empiric point was fitted by a power function (NE = aCWb). The Downloaded from https://academic.oup.com/jcb/article-abstract/39/1/74/5202066 by guest on 26 May 2020 starting in the 1500’s (Pinheiro et al., 2010). The port of Santos and fecundity equation was evaluated for each mangrove area accord- the Cubatão industrial complex are the main sources of pollution on ing to the determination coefficient (R2), considering R2 > 0.70 this coastal region (Luiz-Silva et al., 2006; Nascimento et al., 2006; as a good fit. Log-transformed data were compared by t-test for Zündt, 2006); stilt houses and untreated sewage are also important each mangrove area to evaluate possible differences between fitted (Pinheiro et al., 2012). Studies have looked at benthic macroinverte- curves. A significance level of 5% was used. brates such as U. cordatus as indicator of pollution aiming to obtain information about local anthropogenic conditions (Eisler, 2010; Fertility Duarte et al., 2017; Pinheiro et al., 2017). Recognizing the mecha- nisms that allow the survival of these species in highly stressful envi- Fertility is defined as the number of larvae hatched in a single batch, ronments is essential for studies of populations impacted by different and is related to female’s size (Sastry, 1983). Fertility was analyzed as levels of pollution (Ortega et al., 2016). We evaluated the reproduct- discussed by Hattori & Pinheiro (2003). Each ovigerous female in final ive strategies of U. cordatus, the uçá crab, by comparing fecundity embryonic stages was maintained in plastic recipients (3 l), with con- (number of eggs), fertility (number of hatched larvae), and hatching trolled salinity (15 ± 1 psu), temperature (26 ± 1 ºC) and photoperiod rate in a pristine (the Juréia-Itatins Ecological Station) and a polluted (12:12 h), until hatching. Larvae were transferred after hatching to a mangrove forest in the municipality of Cubatão. glass recipient and preserved in alcohol 70% until analysis. Each set of larvae released by a female was placed in a larger plastic recipi- ent with water (5 l) in constant aeration for the proper dispersion of MATERIALS AND METHODS larvae in the water column. Fertility was determined by quantifying the number of larvae in ten subsamples (2 ml) using a Stempel pip- Study area ette and calculating the mean by total volume extrapolation (5 l). The total number of larvae (NL) was determined per female by the rule of This study was conducted in two mangrove areas in São Paulo proportion, with sample elimination when CV > 15%. state, Brazil (Fig. 1) impacted by different levels of pollution Empirical points of NL versus CW relationship were submitted (Duarte et al., 2016, 2017): Cubatão, defined as a probably high to regression analysis, with NL the dependent variable and CW impacted (PHI) area and the Juréia-Itatins Ecological Station, the independent variable. These data were fitted by a power func- Peruíbe, defined as a probably non-impacted (PNI) area. tion (NL = aCWb) and confirmed by a determination coefficient (R2). The same procedure was applied to fecundity equations, with Sampling log-transformed
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Phylogenetic Relationships of the Plagusiidae Dana, 1851
    PHYLOGENETIC RELATIONSHIPS OF THE PLAGUSIIDAE DANA, 1851 (BRACHYURA), WITH DESCRIPTION OF A NEW GENUS AND RECOGNITION OF PERCNIDAE ŠTEVCIˇ C,´ 2005, AS AN INDEPENDENT FAMILY BY CHRISTOPH D. SCHUBART1,3) and JOSÉ A. CUESTA2,4) 1) Biologie I, Universität Regensburg, D-93040 Regensburg, Germany 2) Instituto de Ciencias Marinas de Andalucía, CSIC, Avenida República Saharaui, 2, E-11519 Puerto Real, Cádiz, Spain ABSTRACT A molecular and morphological analysis of representatives of the family Plagusiidae, including all members of Plagusia Latreille, 1804, and the recently established Davusia Guinot, 2007, was carried out. Due to marked differences in adult and larval morphology, as well as mitochondrial and nuclear DNA, two species of Plagusia,viz.,P. chabrus (Linnaeus, 1758), and P. dentipes De Haan, 1835, are considered sister taxa but distinct from other members of the genus. They are transferred to a new genus, Guinusia. A molecular phylogeny suggests that Guinusia is not closer related to Plagusia than to the plagusiid genera Euchirograpsus H. Milne Edwards, 1853, and Miersiograpsus Türkay, 1978. Furthermore, with new evidence from mitochondrial and nuclear DNA as well as a reappraisal of the larval morphology, the genus Percnon Gistel, 1848, is formally removed from the Plagusiidae and recognized as a separate family, Percnidae Števciˇ c,´ 2005. RÉSUMÉ Une analyse moléculaire et morphologique des représentants de la famille des Plagusiidae comprenant tous les membres du genre Plagusia Latreille, 1804, et le genre récemment établi Davusia Guinot, 2007, a été réalisée. Pour tenir compte des nettes différences dans la morphologie adulte et larvaire ainsi que sur l’ADN nucléaire et mitochondrial, deux espèces de Plagusia, P.
    [Show full text]
  • The Importance of Burrowing and Leaf Litter Feeding Crabs for the Ecosystem Functioning of Mangrove Forests
    The importance of burrowing and leaf litter feeding crabs for the ecosystem functioning of mangrove forests Dissertation submitted by Nathalie Pülmanns In partial fulfilment of the requirements for the degree of doctor of natural sciences (Dr. rer. nat.) Faculty of Biology/Chemistry University Bremen Germany March 2014 The present thesis has been realized from July 2011 until March 2014 at the Leibniz Center for Tropical Marine Ecology in Bremen. Board of Examiner: Reviewer: Prof. Dr. Ulrich Saint-Paul Leibniz Center for Tropical Marine Ecology, Bremen, Germany Reviewer: Prof. Dr. Juliane Filser Umweltforschung/- Technologie, Universität Bremen, Germany Examiner: Prof. Dr. Matthias Wolff Leibniz Center for Tropical Marine Ecology, Bremen, Germany Examiner: Dr. Karen Diele Edinburgh Napier University, Great Britain Members: Alejandra Sepúlveda Lozada PhD student at the Leibniz Center for Tropical Marine Ecology, Bremen, Germany Members: Constanze Bark Bachelor student at the University of Bremen Thesis supervisors: Dr. Karen Diele - Edinburgh Napier University, Great Britain Dr. Ulf Mehlig - Universidade Federal do Pará, Bragança, PA, Brazil Dr. Inga Nordhaus - Leibniz Center for Tropical Marine Ecology, Bremen, Germany Prof. Dr. Ulrich Saint-Paul - Leibniz Center for Tropical Marine Ecology, Bremen, Germany Table of content Table of content Table of content ...................................................................................................................... I Thesis abstract ......................................................................................................................III
    [Show full text]
  • Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
    THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................
    [Show full text]
  • Cardisoma Guanhumi
    Firmo et al. Journal of Ethnobiology and Ethnomedicine 2012, 8:12 http://www.ethnobiomed.com/content/8/1/12 JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE RESEARCH Open Access Capture and commercialization of blue land crabs (“guaiamum”) Cardisoma guanhumi (Lattreille, 1825) along the coast of Bahia State, Brazil: an ethnoecological approach Angélica MS Firmo1*, Mônica MP Tognella1, Saulo R Silva1,2, Raynner RRD Barboza2 and Rômulo RN Alves2 Abstract Background: Blue Land Crab (Cardisoma guanhumi) is one of the most important crustacean species captured and commercialized in Brazil. Although this species is not considered to be threatened with extinction, populations of C. guanhumi are known to be rapidly diminishing due to heavy harvesting pressures and degradation of their natural habitats, highlighting the necessity of developing and implanting management and protection strategies for their populations. There have been no ethnozoological publications that have focused specifically on C. guanhumi, in spite of importance of this type of information for developing efficient management plans of resource utilization. So, the present work describes the ethnoecological aspects of the capture and commercialization of C. guanhumi by a fishing community in northeastern Brazil. Methods: Field work was carried out in the municipality of Mucuri, Bahia in Brazil, between the months of January and March/2011 through the use of open semi-structured interviews with all of the crustacean harvesters in city who acknowledged their work in capturing this species, totaling 12 interviewees. The informants were identified through the use of the “snowball” sampling technique. In addition to the interviews themselves, the “guided tour” technique and direct observations was employed.
    [Show full text]
  • A New Classification of the Xanthoidea Sensu Lato
    Contributions to Zoology, 75 (1/2) 23-73 (2006) A new classifi cation of the Xanthoidea sensu lato (Crustacea: Decapoda: Brachyura) based on phylogenetic analysis and traditional systematics and evaluation of all fossil Xanthoidea sensu lato Hiroaki Karasawa1, Carrie E. Schweitzer2 1Mizunami Fossil Museum, Yamanouchi, Akeyo, Mizunami, Gifu 509-6132, Japan, e-mail: GHA06103@nifty. com; 2Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. NW, North Canton, Ohio 44720, USA, e-mail: [email protected] Key words: Crustacea, Decapoda, Brachyura, Xanthoidea, Portunidae, systematics, phylogeny Abstract Family Pilumnidae ............................................................. 47 Family Pseudorhombilidae ............................................... 49 A phylogenetic analysis was conducted including representatives Family Trapeziidae ............................................................. 49 from all recognized extant and extinct families of the Xanthoidea Family Xanthidae ............................................................... 50 sensu lato, resulting in one new family, Hypothalassiidae. Four Superfamily Xanthoidea incertae sedis ............................... 50 xanthoid families are elevated to superfamily status, resulting in Superfamily Eriphioidea ......................................................... 51 Carpilioidea, Pilumnoidoidea, Eriphioidea, Progeryonoidea, and Family Platyxanthidae ....................................................... 52 Goneplacoidea, and numerous subfamilies are elevated
    [Show full text]
  • Crustacea: Decapoda; Brachyura) in the Estuary of the Mamanguape River, Northeast Brazil
    23 POPULATION STRUCTURE OF THE MANGROVE CRAB Ucides cordatus (CRUSTACEA: DECAPODA; BRACHYURA) IN THE ESTUARY OF THE MAMANGUAPE RIVER, NORTHEAST BRAZIL 1,* RÔMULO ROMEU DA NÓBREGA ALVES 2 ALBERTO KIOHARU NISHIDA 1 Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, 58059-900 João Pessoa, PB, Brasil. *Autor para correspondência. E-mail: [email protected] 2 Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, 58059-900 João Pessoa, PB, Brasil. Recebido: 15/06/2003 Aceito: 09/12/2003 ABSTRACT The crab Ucides cordatus (Linnaeus, 1763) or ‘caranguejo-uçá’, as it is known in Brazil, is one of the most conspicuous and abundant components of the epibenthic macrofauna of Brazilian mangrove ecosystems and the most exploited resource by riparian human populations. It is aimed here to study the population structure of this crustacean in the estuary of the Mamanguape river, State of Paraíba, Northeast Brazil. The research was performed between August 2000 and September 2001. An area of 1600m2 was marked out through the mangrove habitat and the density of U. cordatus was determined by counting inhabited burrows. Three-hundred crabs were captured and biometrical and sexual ratio values were obtained. The mean density of inhabited burrows was 1.7 burrows m-2. Males crabs were larger than females and their sexual ratio was 1.85: 1.00. They mate between January and March. The low dimension of captured specimens and the low values of population density here obtained confirm the observation of crab gatherers that ‘caranguejo-uçá’ is decreasing in that mangrove area.
    [Show full text]
  • Fiddler Crabs (Genus Uca )
    www.fiddlercrab.info Fiddler Crabs (Genus Uca ) www.fiddlercrab.info Classification Kingdom Animalia Phylum Arthropoda Class Crustacea Sub-class Malocostraca Order Decapoda Infraorder Brachyura Superfamily Ocypodoidea Family Ocypodidae Subfamily Ocypodinae Uca stylifera (Photo by M. Genus Uca S. Rosenberg) Fiddler crabs are small, semi-terrestrial crabs of the genus Uca that are characterized by extreme cheliped asymmetry in males. They are most closely related to the Ocypode (ghost crabs). There are currently 97 recognized species/subspecies. The common English name “Fiddler Crab” comes from the feeding of the males, where the movement of the small claw from the ground to its mouth resembles the motion of a someone moving a bow across a fiddle (the large claw). (It's more obvious when seen from straight on.) From a Taiwanese website . http://www.fiddlercrab.info/ (1 of 3) [10/23/2007 3:39:12 PM] www.fiddlercrab.info What's New / Site Updates Note: The fiddler crab forum has been shut down due to lack of general interest, except by spammers. Information ● Systematics ● Species, Subspecies, and Synonymy ● Phylogeny ● Morphology ● Life Cycle ● Geographic Ranges ● Common names of fiddler crabs ● Comprehensive fiddler crab reference list (2,486 references / Updated May 17, 2007): HTML or Zipped Endnote File (Version X for Windows) Multimedia ● Photographs ❍ Pictures of specific species are available from the species list. ❍ Pictures of unindentified species found on the net ● Video ❍ Videos of specific species are available from the species list. ❍ Complete video list Miscellaneous ● Fiddler Crab Links ● Fiddler Crab Art ● Michael S. Rosenberg's Website Major References http://www.fiddlercrab.info/ (2 of 3) [10/23/2007 3:39:12 PM] www.fiddlercrab.info The most complete and thorough reference to fiddler crabs is ● Crane, J.
    [Show full text]
  • 17 the Crabs Belonging to the Grapsoidea Include a Lot Of
    17 SUPERFAMILY GRAPSOIDEA The crabs belonging to the Grapsoidea include a lot of ubiquitous species collected in the mangrove and/or along the coastline. As a result, most of the species listed here under the ‘Coastal Rock-rubble’ biotope of table 2b could be reasonably listed also with marine species. This is particularly true for the Grapsidae: Grapsus, Pachygrapsus, Pseudograpsus, and Thalassograpsus. FAMILY GECARCINIDAE Cardisoma carnifex (Herbst, 1796). Figure 12. – Cardisoma carnifex - Guinot, 1967: 289 (Checklist of WIO species, with mention of Grande Comore and Mayotte). - Bouchard, 2009: 6, 8, Mayotte, Malamani mangrove, 16 April 2008, St. 1, 12°55.337 S, 44°09.263 E, upper mangrove in shaded area, burrow, about 1.5 m depth, 1 male 61×74 mm (MNHN B32409). - KUW fieldwork November 2009, St. 6, Petite Terre, Badamiers spillway, upper littoral, 1 female 53×64 mm (MNHN B32410), 1 male 65×75.5 mm (MNHN B32411); St. 29, Ngouja hotel, Mboianatsa beach, in situ photographs only. Distribution. – Widespread in the IWP. Red Sea, Somalia, Kenya, Tanzania, Mozambique, South Africa, Europa, Madagascar, Comoros, Seychelles, Réunion, Mauritius, India, Taiwan, Japan, Australia, New Caledonia, Fiji, Wallis & Futuna, French Polynesia. Comment. – Gecarcinid land crabs are of large size and eaten in some places (West Indies, Wallis & Futuna, and French Polynesia). In Mayotte, however, they are not much prized for food and are not eaten. Figure 12. Cardisoma carnifex. Mayotte, KUW 2009 fieldwork: A) aspect of station 29, upper littoral Ngouja hotel, Mboianatsa beach; B) same, detail of a crab at the entrance of its burrow; C) St. 6, 1 female 53×64 mm (MNHN B32410); D) probably the same specimen, in situ at St.
    [Show full text]
  • Growth of the Mangrove Crab Ucides Cordatus (Brachyura, Ocypodidae)
    JOURNAL OF CRUSTACEAN BIOLOGY, 25(2): 293–301, 2005 GROWTH OF THE MANGROVE CRAB UCIDES CORDATUS (BRACHYURA, OCYPODIDAE) Marcelo Antonio Amaro Pinheiro, Ana Gla´ucia Fiscarelli, and Gustavo Yomar Hattori (MAAP, correspondence) Universidade Estadual Paulista (UNESP), Campus do Litoral Paulista, Unidade Sa˜o Vicente / Grupo de Pesquisa–Biologia de Crusta´ceos (CRUSTA)–Prac¸a Infante Dom Henrique, s/n., Parque Bitaru, 11330-900, Sa˜o Vicente (SP), Brasil ([email protected]); (AGF, GYH) Programa de Po´s-Graduac¸a˜o em Zootecnia, A´ rea de Produc¸a˜o Animal-Ph.D. candidates ([email protected]) ABSTRACT During monthly samplings between September 1998 and August 2000, 3,660 specimens of Ucides cordatus (Linnaeus, 1763) (2054 males and 1606 females) were obtained and examined for size (CW ¼ carapace width) to determine growth-age equations for each sex. This species showed a slower growth, with a marked seasonal oscillation, in females as compared to males, suggesting application of the seasonal and nonseasonal von Bertalanffy growth model, respectively. CW‘ and k constant were closely similar for the two sexes (CW‘ male ¼ 90.3 mm; CW‘ female ¼ 88.6 mm; kmale ¼ 0.28; kfemale ¼ 0.26). The age at sexual maturity was estimated to be around 3 years, while the age at legal size (CW ¼ 60 mm) was 3.8 and 4.7 years for males and females, respectively. In the laboratory, juvenile stages did not show differences in growth rates under the same temperature and photoperiod conditions. Ucides cordatus (Linnaeus, 1763) is associated with the been influenced by temperature, salinity, and photoperiod mangrove areas of the Western Atlantic, occuring from (Costlow and Bookhout, 1968; Leffler, 1972; Du Preez and Florida (U.S.A.) to the State of Santa Catarina, Brazil (Melo Mclachlan, 1984).
    [Show full text]
  • Fig. 9. Leucosiidae. 1–4, Leucosia Spp., Right Chela, MFM142559; 2, Right
    65 Fig. 9. Leucosiidae. 1–4, Leucosia spp.,rightchela,MFM142559;2,rightchela,MFM142560;3,merusofchela,MFM14239 9; 4, female abdomen, MFM142561. 5, 6, Seulocia rhomboidalis (De Haan, 1841),carapace,5,MFM142562;6,MFM142563. 7, Leucosia anatum (Herbst, 1783),carapace,MFM142558.8–15, Urnalana haematosticta (Adams and White, 1849), 8, carapace, MFM142511; 9, ventral carapace, sternum, and abdomen, MFM142511; 10, carapace, MFM142511; 11, gonopod, MFM142511; 12, carapace, MFM142488; 13, carapace, MFM142556; 14, carapace, MFM142557; carapace and pereiopods, MFM 142489. Scale bar=5 mm. Fig. 9. 1–4, , ,MFM142559;2,,MFM142560;3,,MFM142399;4,, MFM142561. 5, 6, , , 5, MFM142562; 6, MFM142563). 7, , , MFM142558). 8–15, ,8,,MFM142511;9,,MFM142511;10,,MFM142511;11,,MFM142511;12,,MFM142488;13,, MFM142556; 14, ,MFM142557;, , ,MFM142489. 5mm. 66 ,1992 Superfamily Majoidea Samouelle, 1819 Family Epialtidae MacLeay, 1838 Subfamily Leucosiinae Samouelle, 1819 Subfamily Epialtinae MacLeay, 1838 Genus Leucosia Weber, 1875 Genus Pugettia Dana, 1851 Leucosia anatum Herbst, 1783 Pugettia sp. Fig. 9.7 Fig. 10.3 :5MFM142558 :2MFM142562 . Kato and Karasawa, 1998; 2001 Subfamily Pisinae Dana, 1851 Genus Hyastenus White, 1847 Leucosia spp. Fig. 9.1–9.4 Hyastenus sp. cfr. H . diacanthusDe Haan, 1835 :23MFM142399, 142559–142561 Fig. 10.4–10.7 :40MFM142563–142566 1994 Genus Seulocia Galil, 2005 Seulocia rhomboidalis De Haan, 1841 Family Inachidae MacLeay, 1838 Genus Achaeus Leach, 1817 Fig. 9.5, 9.6 :2MFM142562, 142563 Achaeus sp. cfr. A . japonicus De Haan, 1839 2 Galil2005Seulocia Fig. 10.8 :1MFM142567 Genus Urnalana Galil, 2005 1 Urnalana haematostictaAdams and White, 1849 Family Mithracidae MacLeay, 1838 Fig. 9.8–9.15 Genus Micippa Leach, 1817 :92MFM142488, 142489, 142511, 142516, 142556, 142557 Micippa thalia Herbst, 1803 Karasawa and Goda1996 Leucosia haematostica Fig.
    [Show full text]
  • Biometric Differences in Ucides Cordatus (LINNAEUS, 1763) (Crustacea; Brachyura; Ocypodidae) As an Indicative of Environmental Stress
    Revista Ibero-Americana de Ciências Ambientais Ibero-American Journal of Environmental Sciences Fev a Mar 2020 - v.11 - n.2 ISSN: 2179-6858 This article is also available online at: www.sustenere.co Biometric differences in Ucides cordatus (LINNAEUS, 1763) (Crustacea; Brachyura; Ocypodidae) as an indicative of environmental stress Growing urban development, port expansion, and the deployment of industries along the northeast coast of Brazil are some of the major threats to crustacean fauna that depend directly on the mangrove ecosystem to survive. In response to these environmental changes, the swamp ghost crab (Ucides cordatus) presents biological dysfunctions in body size to invest in mechanisms that regulate homeostasis. The present study aimed to evaluate the size and condition factor of crabs from two distinct mangrove areas, being an impacted area and a reference area. Male crabs were collected through the braking technique, weighed with an analytical balance and the width and length of the carapace were measured with a digital caliper. We used a t test to observe differences between two areas and different periods, and the power function (y = axb) for the ratio between the weight and width of the carapace of each individual was used in order to observe the type of growth. There were significant differences between the weight and length of the individuals between the two sample areas and the growth classified as negative allometric. Keywords: Condition factor; Mangrove; Environmental impact; Adaptive strategies. Diferenças biométricas de Ucides cordatus (LINNAEUS, 1763) (Crustacea; Brachyura; Ocypodidae) como indicativo de estresse ambiental O crescente desenvolvimento urbano, a ampliação de portos e a implantação de indústrias ao longo da costa nordeste do Brasil são algumas das principais ameaças a fauna de crustáceos que dependem diretamente do ecossistema manguezal para sobreviver.
    [Show full text]