Sundrops and Friends by Rufino Osorio

Total Page:16

File Type:pdf, Size:1020Kb

Sundrops and Friends by Rufino Osorio The PALMETIO, Summer 1994, Page 9 Sundrops and Friends by Rufino Osorio Eorida's Panhandle is home to one and the sprawling, ground-covering of our most attractive native wild• plants become a solid blanket of color flowers, Oenothera fruticosa, a plant when in full bloom. wi th the delightful common name of Although not invasive under natu• sundrops. Widespread outside of ral conditions where competition Florida throughoutthe eastern United from other plants and the vagaries of States, this is a plant which is found ~ climate keep it in check, this plant is in moist, sunny areas. Early in the o~ extremely aggressive in gardens. It growing season it produces basal ro spreads through underground stems rosettes of leaves that are sometimes ~ (rhizomes) and a single plant can accented by random burgundy spots. $ cover a surprisingly large area. Also, As the season progresses, each rosette (5 self-sown seedlings become readily produces a stem approximately 12 to E established in garden settings. 18 inches (30 to 45 cm) tall. The tips ~ Because showy primrose is so at- v,,9. of the stems are gracefully recurved, Q) tractive, and because it looks "native" like a swan's neck, and carry abun• -s when growing along roadsides, it can dant pointed flower buds. By late Oenothera fruticosa ~ easily find its way into wildflower spring, the buds open into brilliant, ~ gardens. This is all the more likely golden yellow flowers. The color is & since it is perfectly suited for xeric difficult to capture on film, and there § landscape gardens and for dry, ex• often appears to be just a hint of red u:: posed sites where other plants are in the flowers, adding a depth and difficult to establish. However, please intensity to the yellow color which is realize that it is not originally native nearly unrivaled among our native to Florida and should not be grown wildflowers. in public wildflower gardens, nor Plants grown far to the south or Oenothera speciosa should it be planted in sites that are north of their native range sometimes in close proximity to natural areas present problems. Often, they may beds become spectacular sheets of and into which showy primrose grow well but will not flower, or else molten gold when the plants are in might spread. The latter precaution is they will flourish for a year or two bloom. to be taken, not because showy prim• and then collapse, seemingly pining Two relatives of sundrops that rose might prove aggressively inva• away for their far-off home. grow in Florida have potential as sive, but because natural areas are However, I am growing Sundrops garden plants, although both have now so rare that every effort should far from the Panhandle in Palm spreading tendencies and must be be taken to maintain them in a pris• Beach County without any difficul• planted with care so that they will tine state. Fortunately, experience ties. Although favoring moist prairies not overrun the garden. Oenothera with other plants introduced into in nature, I am growing it under humifusa, seaside evening-primrose, Florida from the western states (such average garden conditions where it grows naturally along Florida's coast as Gaillardia pulchella and Phlox receives three to four hours of full where it thrives under harsh condi• drummondii) has shown that such sun. It unflinchingly grows right tions including relentless winds, plants, while sometimes becoming through our dry season even though scorching sun, and irregular rainfall. common, do not become ecologically the garden does not receive supple• The foliage of this plant is attractively disruptive weeds. mental water. Large mature plants clothed with silvery hairs and it Two of the three plants discussed form impressive clumps and are makes an interesting ground cover for here have common names that in• magnificent in full bloom. Propaga• a dry sunny spot. But be warned! If clude the word "primrose"; however, tion is easily effected by dividing the happy, seedlings will pop up every• they are not botanically related to the plant with a sharp knife. where. The small flowers are pale true primroses in the genus Primula. Sundrops is a carefree perennial yellow and, true to their name, open Yellow-flowered species of Oenothera and would make an attractive addi• in the evening and are withered by vaguely reminded Europeans of the tion to any garden. In fact, in Chicago late morning. yellow-flowered primrose of Europe, it is utilized in perennial garden beds Oenothera speciosa, showy primrose, Primula veris. The name stuck, and right along with traditional non-na• is native to the Great Plains; but it is now even species of Oenothera that tive garden plants such as chrysan• becoming established throughout lack yellow flowers carry the word themums, delphiniums, irises, and many parts of the United States, primrose in their common names. peonies. It is also used as a flowering including Florida. Showy primrose is Rufino Osorio is enthusiastic about groundcover, and I have seen huge indeed attractive and lives up to its neglected native plants that have definite beds many square yards in extent common name. The large flowers horticultural potential and are easy to vary from pure white to deep pink, planted solely with sund!ops. These grow throughout a wide range of Florida..
Recommended publications
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Publications of Peter H. Raven
    Peter H. Raven LIST OF PUBLICATIONS 1950 1. 1950 Base Camp botany. Pp. 1-19 in Base Camp 1950, (mimeographed Sierra Club report of trip). [Upper basin of Middle Fork of Bishop Creek, Inyo Co., CA]. 1951 2. The plant list interpreted for the botanical low-brow. Pp. 54-56 in Base Camp 1951, (mimeographed Sierra Club report of trip). 3. Natural science. An integral part of Base Camp. Pp. 51-52 in Base Camp 1951, (mimeographed Sierra Club report of trip). 4. Ediza entomology. Pp. 52-54 in Base Camp 1951, (mimeographed Sierra Club report of trip). 5. 1951 Base Camp botany. Pp. 51-56 in Base Camp 1951, (mimeographed Sierra Club report of trip). [Devils Postpile-Minaret Region, Madera and Mono Counties, CA]. 1952 6. Parsley for Marin County. Leafl. West. Bot. 6: 204. 7. Plant notes from San Francisco, California. Leafl. West. Bot. 6: 208-211. 8. 1952 Base Camp bird list. Pp. 46-48 in Base Camp 1952, (mimeographed Sierra Club report of trip). 9. Charybdis. Pp. 163-165 in Base Camp 1952, (mimeographed Sierra Club report of trip). 10. 1952 Base Camp botany. Pp. 1-30 in Base Camp 1952, (mimeographed Sierra Club report of trip). [Evolution Country - Blaney Meadows - Florence Lake, Fresno, CA]. 11. Natural science report. Pp. 38-39 in Base Camp 1952, (mimeographed Sierra Club report of trip). 1953 12. 1953 Base Camp botany. Pp. 1-26 in Base Camp 1953, (mimeographed Sierra Club report of trip). [Mono Recesses, Fresno Co., CA]. 13. Ecology of the Mono Recesses. Pp. 109-116 in Base Camp 1953, (illustrated by M.
    [Show full text]
  • Bioactive Phenolic Compounds from Primula Veris L.: Influence of the Extraction Conditions and Purification
    molecules Article Bioactive Phenolic Compounds from Primula veris L.: Influence of the Extraction Conditions and Purification Maria Tarapatskyy 1,* , Aleksandra Gumienna 1, Patrycja Sowa 1 , Ireneusz Kapusta 2 and Czesław Puchalski 1 1 Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 35-601 Rzeszów, Poland; [email protected] (A.G.); [email protected] (P.S.); [email protected] (C.P.) 2 Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 35-601 Rzeszów, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-17-7854834 Abstract: Our experiments may help to answer the question of whether cowslip (Primula veris L.) is a rich source of bioactive substances that can be obtained by efficient extraction with potential use as a food additive. A hypothesis assumed that the type of solvent used for plant extraction and the individual morphological parts of Primula veris L. used for the preparation of herbal extracts will have key impacts on the efficiency of the extraction of bioactive compounds, and thus, the health- promoting quality of plant concentrates produced. Most analysis of such polyphenolic compound contents in extracts from Primula veris L. has been performed by using chromatography methods such as ultra-performance reverse-phase liquid chromatography (UPLC−PDA−MS/MS). Experiments ◦ demonstrated that the most effective extraction agent for fresh study material was water at 100 C, whereas for dried material it was 70% ethanol. The richest sources of polyphenolic compounds Citation: Tarapatskyy, M.; were found in cowslip primrose flowers and leaves.
    [Show full text]
  • Assessment Report on Primula Veris L. And/Or Primula Elatior (L.) Hill, Radix
    19 September 2012 EMA/HMPC/113577/2012 Committee on Herbal Medicinal Products (HMPC) Assessment report on Primula veris L. and/or Primula elatior (L.) Hill, radix Based on Article 16d(1), Article 16f and Article 16h of Directive 2001/83/EC as amended (traditional use) Final Herbal substance(s) (binomial scientific Primula veris L., Primula elatior (L.) Hill, radix name of the plant, including plant part) Herbal preparation(s) A) Dry extract (DER 3-9:1), extraction solvent ethanol 40-50% v/v B) Liquid extract (DER 1:1), extraction solvent ethanol 70% v/v C) Liquid extract (DER 1:2.0-2.5), extraction solvent ethanol 70% v/v D) Tincture (ratio of herbal substance to extraction solvent 1:5), extraction solvent ethanol 70% v/v E) Soft extract (DER 5-10:1), extraction solvent water F) Soft extract (DER 1-4:1), extraction solvent ethanol 20-55% v/v G) Soft extract (DER 6-10:1), extraction solvent methanol, water, ammonia solution 10% (50.0:49.5:0.5) H) Soft extract (DER 6-10:1), extraction solvent methanol 50% I) Comminuted herbal substance Pharmaceutical form(s) Comminuted herbal substance as herbal tea for oral use. Other herbal preparations in liquid and solid dosage forms for oral use. Rapporteur R. Länger Assessor(s) R. Länger 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7523 7051 E -mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2013.
    [Show full text]
  • Mutations of Oenothera Suaveolens Desf
    MUTATIONS OF OENOTHERA SUAVEOLENS DESF. HUGO DE VRIES Lunteren. Holland [R,eceived March 27, 19171 Besides Oenothera Lamarckiana there are quite a number of other species of the Onagra group, which exhibit analogous phenomena of mutability more or less frequently. The condition of Oe. Lamalrckiana is thereby ‘shown not to be an isolated one, as was formerly believed. All attempts to explain the mutations in this group by means of qualities observed in or assumed for this main species have now to be abandoned, unless they hold good for the explanation of the whole range of new facts. Such is especially the case for the views of those authors, who, by means of numerous unproven auxiliary hypotheses, try to compress the large group of the phenomena of mutation into the narrow limits of Mendelian segregation. .. I.. I.* . Considered from a broad point of view some mdatihpse. i .* aFe, pa$lV ones, recurring in two or more different specieg*.wbereas. ath.76 .ve special for one type only. Of course, the paralkf :t%&t&&.&€&rn’*G prominent place in our theoretical considerations. Among them the gigas type is generally described as a progressive change, on account of the doubling of the number of its chromosomes. It has sprung from Oe. Lamarckiana first, it arose of late in the cultures of BARTLETTamong Oe. stenomeres and Oe. Reynoldsii and a very beautiful Oe. grandipora mut. gigas with 28 chromosomes was observed in 1915in my garden. Moreover Oe. biennis is known to mutate in the same direction, giving Oe. biennis mut. semi-gigas.’ No wild species of Onagra with 28 chro- mosomes is known, and no serious attempt to explain this character on the ground of Mendelian splitting has as yet been made.
    [Show full text]
  • Allopatric Speciation with Little Niche Divergence Is Common Among
    Journal of Biogeography (J. Biogeogr.) (2016) 43, 591–602 ORIGINAL Allopatric speciation with little niche ARTICLE divergence is common among alpine Primulaceae Florian C. Boucher1*, Niklaus E. Zimmermann2,3 and Elena Conti1 1Institute of Systematic Botany, University of ABSTRACT Zurich,€ 8008 Zurich,€ Switzerland, 2Dynamic Aim Despite the accumulation of cases describing fast radiations of alpine Macroecology, Swiss Federal Research plants, we still have limited understanding of the drivers of speciation in alpine Institute WSL, 8903 Birmensdorf, Switzerland, 3Department of Environmental floras and of the precise the timing of their diversification. Here, we investi- Systems Science, Swiss Federal Institute of gated spatial and temporal patterns of speciation in three groups of alpine Technology ETH, CH-8092 Zurich,€ Primulaceae. Switzerland Location Mountains of the European Alpine System. Methods We built a new phylogeny of Primulaceae including all species in three focal groups: Androsace sect. Aretia, Primula sect. Auricula and Soldanella. Combining phylogenetic information with a detailed climatic data set, we investigated patterns of range and ecological overlap between sister-species using an approach that takes phylogenetic uncertainty into account. Finally, we investigated temporal trajectories of diversification in the three focal groups. Results We found that a large majority of sister-species pairs in the three groups are strictly allopatric and show little differences in substrate and cli- matic preferences, a result that was robust to phylogenetic uncertainty. While rates of diversification have remained constant in Soldanella, both Androsace sect. Aretia and Primula sect. Auricula showed decreased diversification rates in the Pleistocene compared to previous geological epochs. Main conclusions Allopatric speciation with little niche divergence appears to have been by far the most common mode of speciation across the three groups studied.
    [Show full text]
  • Observations on the Chromosomes and Relationships of Hauya and Xylonagra Peter H
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 4 | Issue 3 Article 3 1960 Observations on the Chromosomes and Relationships of Hauya and Xylonagra Peter H. Raven University of California, Los Angeles Harlan Lewis University of California, Los Angeles Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Raven, Peter H. and Lewis, Harlan (1960) "Observations on the Chromosomes and Relationships of Hauya and Xylonagra," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 4: Iss. 3, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol4/iss3/3 ALISO VoL. 4, No.3, pp. 483-484 APRIL 29, 1960 OBSERVATIONS ON THE CHROMOSOMES AND RELATIONSHIPS OF HAUYA AND XYLONAGRA 1 PETER H. RAVEN AND HARLAN LEWIS Univer.rity of California, Los Angele.r. During the course of observations on chromosome number and morphology in Onagra­ ceae, we have examined chromosomes of Hauya ruacophila Donnell Smith & Rose and of Xylonagra arborea (Kell.) Donnell Smith & Rose, originally described as Hauya. Our material of Hauya was cultivated in West Los Angeles, Los Angeles County, California (Raven 14356, RSA). Two plants investigated each had n=20 chromosomes (figure 1). The configuration at metaphase I of meiosis is of special interest, since many of the chromo­ somes are associated in rings or chains of 4, with as many as 7 such multivalent associations (out of a possible 10) in one cell, and 6 in another. Because of this association of chromo­ somes, it was difficult to determine the configurations in metaphase I cells. One of the clear­ est of these is shown in figure 2.
    [Show full text]
  • Flora Mediterranea 26
    FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M.
    [Show full text]
  • Two New Species of Primula (Primulaceae) from China
    Two New Species of Primula (Primulaceae) from China Hu Chi Ming South China Institute of Botany, Academia Sinica, Guangzhou 510650, People's Republic of China. [email protected] Geng Yu Ying West China Subalpine Botanical Garden, Institute of Botany, Academia Sinica, Dujiangyan 611830, China ABSTRACT. Two new species of Primula from Species af®nis P. hylobiae et P. klaverianae, a quibus western China are described, illustrated, and com- foliis scapisque glabrissimis, calyce tantum ad tertiam partem in lobos ovatos ®sso differt; ab altera etiam ¯oribus pared with putatively related species. Both new heterogeneis differt. species belong to section Petiolares subsect. Davi- dii (Balfour f.) Craib, which is characterized by the Perennial herbs, efarinose, with a short compar- capsule crumbling irregularly at maturity, the basal atively stout rhizome, basally with brown palea- buds always having a covering of paleaceous scales, ceous bud-scales at ¯owering time. Leaves forming and the leaves being more or less coriaceous, per- a spreading rosette, to 30 cm diam.; leaf blade ob- sisting into the following spring, with veins often long-elliptic to elliptic-obovate, 12±20 3 6±9 cm, prominently raised and alveolate abaxially and im- apex rounded, tapering from the middle into a very pressed adaxially. In this subsection there are about short or almost obsolete winged petiole, irregularly 18 species all distributed in Sichuan or Yunnan, crenate-dentate, papery when dry, 6 bullate on the with only one species extending to Guizhou, Hubei, margin and covered with minute glandular hairs Hunan, and Jiangxi. when just unfolded from the resting buds, soon gla- Key words: China, Primula, Primulaceae.
    [Show full text]
  • Barrowhill, Otterpool and East Stour River)
    Folkestone and Hythe Birds Tetrad Guide: TR13 D (Barrowhill, Otterpool and East Stour River) The tetrad TR13 D is an area of mostly farmland with several small waterways, of which the East Stour River is the most significant, and there are four small lakes (though none are publically-accessible), the most northerly of which is mostly covered with Phragmites. Other features of interest include a belt of trees running across the northern limit of Lympne Old Airfield (in the extreme south edge of the tetrad), part of Harringe Brooks Wood (which has no public access), the disused (Otterpool) quarry workings and the westernmost extent of Folkestone Racecourse and. The northern half of the tetrad is crossed by the major transport links of the M20 and the railway, whilst the old Ashford Road (A20), runs more or less diagonally across. Looking south-west towards Burnbrae from the railway Whilst there are no sites of particular ornithological significance within the area it is not without interest. A variety of farmland birds breed, including Kestrel, Stock Dove, Sky Lark, Chiffchaff, Blackcap, Lesser Whitethroat, Yellowhammer, and possibly Buzzard, Yellow Wagtail and Meadow Pipit. Two rapidly declining species, Turtle Dove and Spotted Flycatcher, also probably bred during the 2007-11 Bird Atlas. The Phragmites at the most northerly lake support breeding Reed Warbler and Reed Bunting. In winter Fieldfare and Redwing may be found in the fields, whilst the streams have attracted Little Egret, Snipe and, Grey Wagtail, with Siskin and occasionally Lesser Redpoll in the alders along the East Stour River. Corn Bunting may be present if winter stubble is left and Red Kite, Peregrine, Merlin and Waxwing have also occurred.
    [Show full text]
  • 2017 SC Gaura, a Low Maintenance Perennial
    Gaura, a Low-Maintenance Perennial By Susan Camp It isn’t easy to grow flowers when you spend a lot of time traveling. When Jim and I decided last summer to take a month-long tour of Eastern Europe in April and May, we knew we would face some problems, including missing the bloom-time of some of our favorites and not knowing which plants had survived the winter. We arrived home two weeks ago after a glorious journey through some of the most beautiful cities on earth to discover far less damage than we had anticipated. The peonies and irises bloomed while we were away, although one lovely pink peony waited for us to return. The four Old Garden Roses survived their first coastal Virginia winter, having grown to three times their size at planting. They are still blooming, and the foliage is green and healthy. We lost some verbena ‘Homestead Purple’ and many of our lavender ‘Munstead’ and ‘Hidcote.’ Last weekend we moved some of the remaining verbena to fill empty spaces in another bed and we replaced the lavender plants. We wanted to add some color, and since we have several shorter trips planned for the summer and fall, low-maintenance, drought-resistant plants that bloom all season were a must. We decided on gaura (Oenothera lindheimeri, previously Gaura lindheimeri), a North American native wildflower that now is found over most of the country. Common names include beeblossom, wandflower, and whirling butterflies because of the appearance of the flowers in a breeze. Native gaura grows to a height of 3 to 5 feet with a spread of 1 to 2 feet.
    [Show full text]
  • Common Evening-Primrose (Oenothera Biennis
    Weed Technology Common evening-primrose (Oenothera www.cambridge.org/wet biennis L.) Lawrence E. Steckel1, Lynn M. Sosnoskie2 and Sandra J. Steckel3 1 2 Intriguing World of Weeds Professor, University of Tennessee, Jackson, TN, USA; Agronomy and Weed Science Advisor, Merced, CA, USA and 3Extension Assistant, University of Tennessee, Jackson, TN, USA Cite this article: Steckel LE, Sosnoskie LM, Steckel SJ (2019) Common evening-primrose Primroses, The spring may love them; Summer knows but little of them. (Oenothera biennis L.). Weed Technol. 33: Foresight. William Wordsworth, 1819 757–760. doi: 10.1017/wet.2019.53 Ring-ting! I wish I were a Primrose Received: 8 March 2019 Revised: 8 May 2019 A bright yellow Primrose, blowing in the Spring! Accepted: 31 May 2019 Wishing. William Allingham First published online: 12 July 2019 “The snowdrop and primrose our woodlands adorn, and violets bathe in the wet o’ the morn.” Associate Editor: Robert Burns Scott McElroy, Auburn University Author for correspondence: Introduction Lawrence E. Steckel, University of Tennessee, 605 Airways Boulevard, Jackson, TN 38301. Common evening-primrose (Oenothera biennis L.) is a member of the Onagraceae, which is (Email: [email protected]) oftenreferredtoasthewillowherborevening-primrose plant family. Modern classification schemes include the Onagraceae in the order Myrtales, with such families as the Myrtaceae, Melastomataceae, and Lythraceae, because they share some characteristics, such as a distinctive hypanthium (i.e., floral cup) and internal phloem (i.e., located to the inside of the primary xylem) (Dahlgren and Thorne 1984). The members of this family are characterized as annual, biennial, or perennial herbs or sometimes shrubs or trees; members are terrestrial or, rarely, aquatic plants (Dahlgren and Thorne 1984;Zomlefer1994).
    [Show full text]