Genesis of the Ballynoe Barite Deposit,Ireland,And

Total Page:16

File Type:pdf, Size:1020Kb

Genesis of the Ballynoe Barite Deposit,Ireland,And GENESIS OF THE BALLYNOE BARITE DEPOSIT,IRELAND,AND OTHER BRITISH STRATABOUND BARI1E DEPOSITS. A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF THE UNIVERSITY OF LONDON By JOHN RUSSELL BARRETT Mining Geology Division, Department of Geology, Royal School of Mines, Imperiel College of Science and Technology, The University of London. February 1975 IA curious grey rock' A,B.Wynne 1861 -3- ABSTRACT This thesis describes the geology of a large,stratiform barite deposit located at Ballynoe (near Silvermines) Co.Tipperary,Ireland.The deposithas been investigated from the sedimentological,mineralogical and geochemical aspects in order to determine its probable genesis. The bedded barite is a conformable,mineralised-horizon of Upper Tournaisian age.The barite horizon is associated with a non-sequence at the top of the Muddy Reef Limestone and marks the transition from a quiet water environment to one of dynamic sedimentation.In the footwall succession (Upper Devonian - Lower Tournaisian) a major sedimentary cycle is evident,a cycle which terminates in a non-sequence and is overlain by the barite horizon.Mass extinction of the fauna is associated with the non-sequence. The geometry of the barite orebody correlates with the palaeo-topography of the footwall,the topography acting as an important control over the lateral extent,thickness and nature of the mineralisation.Sedimentary features within the barite horizon suggest that the barite was precipitated in the form of a cryptocrystalline mud.Lithification and diagenesis resulted in extensive stylolitisation,recrystal- lisation and remobilization of the barite. The wallrock geochemistry suggests that the dispersion of anomalous barium is strictly confined to a mineralised- horizon directly overlying the Muddy Reef Limestone.Iron and silicon were associated with the initial emplacement of the barite.Sulphur and oxygen isotope values suggest that contemporaneous slavvater so played a significant role in the precipitation of the barite. The barite was precipitated in a partially restricted marine lagoon (carbonate mudbanks controlling water circul- ation and the Eh and pH conditions),the ore forming solutions probably being chloride-brines debouching from fractures along the Silvermines Fault.The metals in the brines(migrating formation waters) were derived from the Lower Palaeozoic troughs to the north and south of Ballynoe.Some admixing with juvenile waters associated with contemporaneous volcanism probably occurred. ACKNOWLEDGEMENTS This research project was formulated through the insight of Professor G.R.Davis who regarded the Ballynoe barite deposit as a possible 'genetic key' to the mineralisation of the Irish Carboniferous Limestone.The work was also supervised and edited by Professor G.R.Davis whose suggestions and constructive criticism is gratefully acknowledged. The research was supported financially by the Natural Environmental Research Council,an award from the William Selkirk Scholarship fund and a grant from Dresser Minerals. I express my sincere gratitude to these bodies. The field investigations were facilitated through Mr. Ovid Johnson,Jr.,Exploration Manager of Dresser Minerals, whilst sustained assistance in and out of the field was given by Staff geologists,Dr.R.W.Stewart and Mr.R.D.Turner. I offer them my sincere thanks.I am also grateful to Mr.R.B. Harrison,Managing Director,Magcobar (Ireland) Ltd., and to his staff at the Ballynoe Mine. The co-operation received from Dr.W.W.Weber,Vice-Pres- ident of International Mogul Mines Ltd., and Mr.E.Grennan of Basin Exploration is gratefully acknowledged. I express my gratitude to the technical staff of the Department of Geology at Imperial College for their consid- erable assistance,notably to Mr.Tony Thompson of the Applied Geochemistry Research Group and to Mr.B.Foster,Mr.R.Curtis, Miss T.Leslie,Mrs.K.Irving,Mr.N.Wilkinson,Mrs H.Richardson and to the late Mr.Jimmy Gee. I record stimulating discussion with Dr.C.Halls,Dr.P. Garrard,Mr.J.McMoore and with my fellow research students, especially Mr.D.Pearson - many thanks to all. Finally,I should like=to thank my parents for their long continued encouragement and assistance. -6- Note : Units of measurement All units in this work (with minor exception) are in Imperial units.These units are used by Magcobar and Mogul Mines and have been retained to avoid confusion. -7- CONTENTS is Page ABSTRACT 3 ACKNOWLEDGEMENTS 5 CONlhNTS 7 LIST OF FIGURES 12 LIST OF TABLES 15 LIST OF PLATES 16 CHAPTER ONE INTRODUCTION 1-1. Foreward 19 1-2. Location of the barite deposit 19 1-3. Geography 20 1-4. Historical background 21 1-5. The Magcobar operation 23 1-6. The role of barite in drilling fluids 24 1-7. Previous geological work at Ballynoe 26 1-8. The present investigation 30 CHAPTER TWO THE GEOLOGICAL SETTING OF BALLNOE 2-1. Introduction 32 2-2. Regional stratigraphical setting 32 2-3. Regional structural setting 39 2-4. Stratigraphy of the Ballynoc Mine 41 Silurian L .1 Devonian (Old Red Sandstone) 44 Basal Fragmental L7 Lower Dolomite L.7 Muddy Limestone 49 Muddy Reef Limestone 49 Green Argillite 50 Upper Reef Limestone & Dolomite Breccia 55 Chert Horizon 57 Calp Limestone 59 2-5. Structural setting of the Ballynoe barite 59 -8- Page 2-5a. Faulting 59 2-5b, Jointing 63 2-5c. Folding 63 2-5d. Structure of the footwall rocks 66 2-6. Summary 70 CHAPTER THREE THE BARITE HORIZON 3-1. Introduction 72 3-2. Form of the Ballynoe barite orebody 72 3-3. Stratification of the barite horizon 76 3-3a. The basal zone 80 Barite breccia 83 Bedded hematite formation 86 Replacement of the footwall by barite 94 3-3b. The siliceous barite zone 94 3-3c. The stylolitic and spherulitic barite 97 3-3d. Massive grey-black microcrystalline barite 103 3-3e. Massive sulphide 'cap' to ',-„he orebody 109 3-31. Macrocrystalline barite 'cap' to the orebody 111 3-4. Other barite occurrences within the mineralised- 117 horizon 3-5. Summary 119 CHAPTER FOUR THE MINERALOGY OF THE BARITE HORIZON 4-1. Introduction 121 472. Minerals associated with the barite horizon 122 4-3. Descriptive mineralogy 123 4-3a. -Pyrite and marcasite 123 4-3b. Partial trace element content of the pyrite 137 4-3c. Copper mineralisation_ 139 4-3d. Sphalerite and galena 142 4-4. Diagenetic and supergene modification of the 148 barite deposit Page 4-4a. Diagenesis 148 4-4b. Supergene alteration 149 4-4c. Mineral formation as a result of contemporary 151 weathering 4-5. Paragenesis of the barite deposit 154 CHAPTER FIVE GEOCHEMISTRY OF THE BARITE HORIZON 5-1. Introduction 159 5-2. Geochemistry of the wallrocks 159 5-2a. Wallrock dispersion in sub-economic areas of 160 the 'mineralised-horizon' 5-2b, Wallrock dispersion adjacent to the barite ore- 165 1 body 5-3. Element dispersion within the barite orebody 170 5-3a. Silicon 171 5-3b. Strontium 173 5-3c. Aluminium 175 5-3d. Magnesium 175 5-3e. Calcium 177 5-3f. Iron 178 5-3g. Copper 178 5-3h. Lead and zinc 178 5-3i. Other elements 180 5-33. Element dispersion between primary and secondary 180 barite 5-4. Barium content of rocks in the Silvermines region 181 5-5. Sulphur and oxygen isotope geochemistry 183 5-5a. Isotopic data for the Ballynoe barite 185 5-5b. Discussion of results 185 5-6. Summary 188 -10- CHAPTER SIX Eage STRATABOUND BARITE IN THE BRITISH ISLES 6-1 . Introduction 190 6-2. Barite in a sedimentary environment 190 6-2a. Reported occurrences of sedimentary barite 191 Cambrian 191 Devonian 191 Carboniferous 193 Permian 1 96 Triassic 197 Jurassic 198 Cretaceous 198 Eocene 201 6-3. Distribution of Ba in English and Welsh stream 201 sediments Related to mining activity 201 Related to lithologies carrying a high .Ba. background 203 Related to diagenetic barite 204 6-4. The barium anomaly to the NE of Leeds,Yorks. 204 6-4a. Distribution of Ba in stream sediments 206 6-4b. Follow up investigation 206 6-4c. The stratigraphical range of barite mineralisation 213 6-5. Barite 'flatting' deposits 213 6-6. Discussion and conclusions 215 CHAPTER SEVEN DISCUSSION - GENESIS OF THE BALLYNOE BARITE DEPOSIT 7-1. Introduction 21 9 7-2. Geologic environment 220 7-2a. Sedimentary setting 220 7-2b. Fossil topography of the Muddy Reef Limestone 223 7-2e. Sedimentary characteristics of the barite orebody 224 7-2d. Sedimentary characteristics of the sulphide 'cap' 227 7-2e. Summary of the sedimentary features 228 7-3. Deposition of the barite 229 7-4. Nature and source of ore-forming fluid 232 7-5. Genetic model for the Ballynoe barite 236 -11- CHAPTER EIGHT SUMMARY OF CONCLUSIONS Lam 8-1. - Conclusions 239 REFERENCES 242 APPENDIX 253 : Drill Coverage in the Silvermines Area 253 II : The Conolly Contour Method 254 III : The Direct Reading Spectrograph 255 IV The Optical Emission Spectrograph 259 -12- LIST OF FIGURES Page 1.1 Irish production of mined barite 1870 - 1973 25 2.1 Geological map of Ireland 34 2.2 Upper Tournaisian (Waulsortian) facies in Ireland 36 2.3 Stratigraphical column,Silvermines area 43 2,3A Regional geology around Silvermines 43 2,L1. Local geological map of Ballynoe 45 2.5 Devonian - Lower Tournaisian transition sequence 48 2.6 Plot of the diameter of crinoid ossicles in DDH 60-31 2.7 Brecciated zones in the hangingwall rocks 56 2.8 Development of breccia as observed in DDH 88 56 2.9 First and second faulting at Ballynoe 61 2.10 North - south faulting at Ballynoe 62 2.11 The southern limb of the Kilrnastulla valley 64 syncline (Ballynoe section) 2.12 Structure contour plot of the top of the Muddy 67 Reef Limestone 2.13 The footwall 'highs' and 'lows' 69 3.1 The extent of the Silvermines
Recommended publications
  • Mineralization at Le Pulec, Jersey, Channel Islands; No. 1 Lode
    134 SHORT COMMUNICATIONS REFERENCES McKay, W. J. (1975) Woodlawn copper-lead-zinc orebody. Ibid. 701-10. Davis, L. W. (1975) Captains Flat lead-zinc orebody. In Knight, C. L. (ed.). Economic Geology of Australia and Papua New Guinea I. Metals. Melbourne, Australasian [Revised manuscript received 2 June 1981] Institute of Mining and Metallurgy, 691-700. Malone, E. J., Olgers, F., Cucchi, F. G., Nicholas, T., and t~) Copyright the Mineralogical Society Dept. of Geology, University of Wollonoong, New South Wales, Australia F. IVOR ROBERTS [Present address: School of Applied Geology, University of New South Wales, PO Box 1, Kensinoton , NSW 2033, Australia] MINERALOGICAL MAGAZINE, MARCH 1982, VOL. 46, PP. 134-6 Mineralization at Le Pulec, Jersey, Channel Islands; No. 1 Lode THE No. 1 Lode is the westernmost and most Mineralization within the Brioverian sediments extensive of three lead-zinc veins cutting Brioverian sediments at Le Pulec. It was described by Williams Anatase is common within the sediments as 2-10 (1871) as being between 1.5 and 1.8 m in width and pm anhedral grains associated with silicates or 183 m in length, with a trend of 340 ~ and the as 10 x 2 #m laths, parallel to the basal cleavage galena was reported to have a high silver content. of the altered phyllosilicates, particularly musco- Since the investigation of the No. 3 Lode (Ixer and vite. Anatase is also found with hematite laths Stanley, 1980) it has been possible to examine (20x 2 /~m) included in early pyrite grains. A several specimens, collected from the recently re- coarse-grained (600 x 20 pm) generation of anatase discovered No.
    [Show full text]
  • The Nature of Waste Associated with Closed Mines in England and Wales
    The nature of waste associated with closed mines in England and Wales Minerals & Waste Programme Open Report OR/10/14 BRITISH GEOLOGICAL SURVEY MINERALS & WASTE PROGRAMME OPEN REPORT OR/10/14 The National Grid and other Ordnance Survey data are used with the permission of the The nature of waste associated Controller of Her Majesty’s Stationery Office. OS Topography © Crown with closed mines in England and Copyright. All rights reserved. BGS 100017897/2010 Wales Keywords Abandoned mine waste facilities; Palumbo-Roe, B and Colman, T England and Wales; mineral deposits; environmental impact; Contributor/editor European Mine Waste Directive. Cameron, D G, Linley, K and Gunn, A G Front cover Graiggoch Mine (SN 7040 7410), Ceredigion, Wales. Bibliographical reference Palumbo-Roe, B and Colman, T with contributions from Cameron, D G, Linley, K and Gunn, A G. 2010. The nature of waste associated with closed mines in England and Wales. British Geological Survey Open Report, OR/10/14. 98pp. Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and the Environment Agency that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. The views and statements expressed in this report are those of the authors alone and do not necessarily represent the views of the Environment Agency.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,514,290 Swiatkowski Et Al
    United States Patent (19) 11 Patent Number: 4,514,290 Swiatkowski et al. 45 Date of Patent: Apr. 30, 1985 54 FLOTATION COLLECTOR COMPOSITION 4,206,045 6/1980 Wang et al.......................... 209/166 AND ITS USE 4,358,368 1/1982 Helsten et al........................ 252/61 4,425,229 1/1984 Baronet al. .......................... 252/61 (75) Inventors: Piotr Swiatkowski, Huddinge; Thomas Wiklund, Nacka, both of FOREIGN PATENT DOCUMENTS Sweden 1 155072 10/1963 Fed. Rep. of Germany ...... 209/167 73) Assignee: KenoGard AB, Stockholm, Sweden Primary Examiner-Bernard Nozick 21 Appl. No.: 471,006 Attorney, Agent, or Firm-Fred Philpitt 22 Filed: Mar. 1, 1983 57 ABSTRACT 30 Foreign Application Priority Data A flotation collector composition comprises a combina tion of fatty acids, amidocarboxylic acids or amidosul Mar. 5, 1982 SE Sweden ................................ 8201363 fonic acids and partial esters of phosphoric acid and 51 Int. Cl. ............................................... BO3D 1/14 alkoxylated alcohols. The collector composition is used 52 U.S. C. ....................................... 209/166; 252/61 for upgrading nonsulfide minerals containing alkaline 58) Field of Search ................... 252/61; 209/166, 167 earth metals by froth flotation. Minerals such as apatite, calcite, scheelite, fluorspar, magnesite and baryte can be 56) References Cited separated from the gangues using the collector compo U.S. PATENT DOCUMENTS sition. 2,297,664 9/1942 Tartaron ............................. 209/167 4,139,481 2/1979 Wang et al. ........................... 252A61 13 Claims, No Drawings 4,514,290 1. 2 The amidocarboxylic acids and the amidosulfonic FLOTATION COLLECTOR COMPOSITION AND acids which are used in the present collector combina ITS USE tions can be characterized by the general formula The present invention relates to a flotation collector R-X-(CH2)n-A, wherein x is the group composition comprising fatty acids, amido carboxylic acids or amidosulfonic acids and certain phosphate es R ters.
    [Show full text]
  • Download the Scanned
    MTNERALOGTCALSOCIETY (LONDON) A meeting of the Society was held on Thursday, January 11th, 1951,in the apartments of the Geological Society of London, Burlington House, Piccadilly, W. 1 (by kind permis- sion). Exnrsrrs (1) Crystals of analcime and baryte from the trachyte of Traprain Law, East Lothian: by Dr. S. I. Tomkeiefi. (2) The use of a Laspeyres ocular lens in preference to the Berek compensator: by Dr. A. F. Hallimond. (3) Sections and colour photographs of (a) artificial corundum, (b) kyanite-staurolite intergrowth, (c) garnet: by Dr. Francis Jones. Papnns The following papers were read: (1) 'RnrcrmNlecn' AND 'BREZTNA'Leltrr,rln rN METEoRrrrc IRoNS. By Dr. L. J. Spencer Reichenbach lamellae, seen as bands on etched sections, were originally described as enclosed plates of troilite parallel to cube pianes in the kamacite-taenite structure, and Brczina lamellae as schreibersite parallel to the rhombic-dodecahedron. These minerals, and also cohenite, have since been observed in both of these and in other orientations. It has sometimes been assumed that bands at right angles indicate orientation on cube planes, but they may also be due to other orientations. On a section parallel to an octahedral plane it is possible only with lamellae parailel to the rhombic dodecahedron' (2) SnorrunNraRy INSLUSTSNSrN tnn IIvpnnsTHENE-GABBRo, ARDNAItrUR6HAN,ARGYLL- SIIIRE. By Mr. M. K. Wells The hypersthene-gabbro contains an abundance of granular basic hornfels inclusions which have all been interpreted in the past as recrystallized basic igneous rocks. Some of these inclusions, particularly banded ones, are now believed to be sedimentary rocks which have sufiered considerable metasomatism.
    [Show full text]
  • New Mineral Names*,†
    American Mineralogist, Volume 100, pages 1649–1654, 2015 New Mineral Names*,† DMITRIY I. BELAKOVSKIY1 AND OLIVIER C. GAGNE2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada IN THIS ISSUE This New Mineral Names has entries for 10 new minerals, including debattistiite, evdokimovite, ferdowsiite, karpovite, kolskyite, markhininite, protochabournéite, raberite, shulamitite, and vendidaite. DEBATTISTIITE* for 795 unique I > 2σ(I) reflections] corner-sharing As(S,Te)3 A. Guastoni, L. Bindi, and F. Nestola (2012) Debattistiite, pyramids form three-membered distorted rings linked by Ag atoms in triangular or distorted tetrahedral coordination. Certain Ag9Hg0.5As6S12Te2, a new Te-bearing sulfosalt from Len- genbach quarry, Binn valley, Switzerland: description and features of that linkage are similar to those in the structures of crystal structure. Mineralogical Magazine, 76(3), 743–750. trechmannite and minerals of pearceite–polybasite group. Of the seven anion positions, one is almost fully occupied by Te (Te0.93S0.07). The Hg atom is in a nearly perfect linear coordination Debattistiite (IMA 2011-098), ideally Ag9Hg0.5As6S12Te2, is a new mineral discovered in the famous for Pb-Cu-Ag-As-Tl with two Te/S atoms. One of five Ag sites and Hg site, which are bearing sulfosalts Lengenbach quarry in the Binn Valley, Valais, very close (separation 1.137 Å), are partially occupied (50%). Switzerland. Debattistiite has been identified in two specimens Thus there is a statistical distribution (50:50) between Hg(Te,S)2 from zone 1 of the quarry in cavities in dolomitic marble with and AgS2(Te,S)2 polyhedra in the structure.
    [Show full text]
  • SEG Bratislava, Field Trip Report Location: Mitrovica, Trepca Mining Region, Kosovo in Cooperation with Assoc
    SEG Bratislava, Field trip report Location: Mitrovica, Trepca mining region, Kosovo In cooperation with Assoc. Prof. Jaroslav Prseek PhD. (University of Science and Technologyk Kraeow) we have sucessfully organized 4-day field trip dedicated to important deposits in Kosovo. Eight SEG members were involved in this trip led by Tomás Klučiar and Peter Varga. During these four days we have visited Pb-Zn deposits (Stan Tergk Artana and Drazhnje)k and Ni-laterite deposits in Glavica. First day our group travelled 12 hours through Hungaryk Sloveniak Serbia to Kosovok where we have accomodated. On second day our group visited the mine in Trepča region – Stan Tergk located near Stari Trg village in the Trepča valleyk about 8 em east of Kosovsea Mitrovica. This is the central mine of the Trepča complex. Mining at Trepca region is documented since the late Middle Ages. In the 20th centuryk the mine was closed during the Kosovo war of 1998-99. The two smelters were destroyed and the mine completely floodedk after Kosovo war the mine was reopened in 2005. Main deposits of mine is Pb-Zn-Ag searn hosted by recrystallized limestone of Upper Triassic age. The deposit was formed during two distinct mineralization stages: an early prograde closed-system and a later retrograde open-system stage. The prograde mineralisation consists mainly of clinopyroxenesk the retrograde mineralisation comprises ilvaitek magnetitek arsenopyritek pyrrhotitek marcasitek pyritek quartz and various carbonates. The open-system character is related to phreatomagmatic explosion and formation of a breccia. The principal ore minerals were deposited from a moderately saline Ca-Na chloride fluid at around 350°C.
    [Show full text]
  • Barite (Barium)
    Barite (Barium) Chapter D of Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply Professional Paper 1802–D U.S. Department of the Interior U.S. Geological Survey Periodic Table of Elements 1A 8A 1 2 hydrogen helium 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 lithium beryllium boron carbon nitrogen oxygen fluorine neon 6.94 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 13 14 15 16 17 18 sodium magnesium aluminum silicon phosphorus sulfur chlorine argon 22.99 24.31 3B 4B 5B 6B 7B 8B 11B 12B 26.98 28.09 30.97 32.06 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 potassium calcium scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.64 74.92 78.96 79.90 83.79 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine xenon 85.47 87.62 88.91 91.22 92.91 95.96 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 cesium barium hafnium tantalum tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine radon 132.9 137.3 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.5 204.4 207.2 209.0 (209) (210)(222) 87 88 104 105 106 107 108 109 110 111 112 113 114 115 116
    [Show full text]
  • Silver Enrichment in the San Juan Mountains, Colorado
    SILVER ENRICHMENT IN THE SAN JUAN MOUNTAINS, COLORADO. By EDSON S. BASTIN. INTRODUCTION. The following report forms part of a topical study of the enrich­ ment of silver ores begun by the writer under the auspices of the United States Geological Survey in 1913. Two reports embodying the results obtained at Tonopah, Nev.,1 and at the Comstock lode, Virginia City, Nev.,2 have previously been published. It was recognized in advance that a topical study carried on by a single investigator in many districts must of necessity be less com­ prehensive than the results gleaned more slowly by many investi­ gators in the course of regional surveys of the usual types; on the other hand the advances made in the study of a particular topic in one district would aid in the study of the same topic in the next. In particular it was desired to apply methods of microscopic study of polished specimens to the ores of many camps that had been rich silver producers but had not been studied geologically since such methods of study were perfected. If the results here reported appear to be fragmentary and to lack completeness according to the standards of a regional report, it must be remembered that for each district only such information could be used as was readily obtainable in the course of a very brief field visit. The results in so far as they show a primary origin for the silver minerals in many ores appear amply to justify the work in the encouragement which they offer to deep mining, irrespective of more purely scientific results.
    [Show full text]
  • Solution Deposition of a Bournonite Cupbsbs3 Semiconductor Thin Film from the Dissolution of Bulk Materials with a Thiol-Amine Sol- Vent Mixture Kristopher M
    Solution Deposition of a Bournonite CuPbSbS3 Semiconductor Thin Film from the Dissolution of Bulk Materials with a Thiol-Amine Sol- vent Mixture Kristopher M. Koskela, Brent C. Melot, and Richard L. Brutchey* Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States ABSTRACT: There is considerable interest in the exploration of new solar absorbers that are environmentally stable, absorb through the visible, and possess a polar crystal structure. Bournonite CuPbSbS3 is a naturally occurring sulfosalt mineral that crys- tallizes in the non-centrosymmetric Pmn21 space group and possesses an optimal band gap for single junction solar cells; however, the synthetic literature on this quaternary semiconductor is sparse and it has yet to be deposited and studied as a thin film. Here we describe the ability of a binary thiol-amine solvent mixture to dissolve the bulk bournonite mineral as well as inexpensive bulk CuO, PbO, and Sb2S3 precursors at room temperature and ambient pressure to generate an ink. The synthetic compound ink derived from the dissolution of the bulk binary precursors in the right stoichiometric ratios yields phase-pure thin films of CuPbSbS3 upon solution deposition and annealing. The resulting semiconductor thin films possess a direct optical band gap of 1.24 eV, an absorp- tion coefficient ~105 cm–1 through the visible, mobilities of 0.01-2.4 cm2 (V•s)–1, and carrier concentrations of 1018 – 1020 cm–3. These favorable optoelectronic properties suggest CuPbSbS3 thin films are excellent
    [Show full text]
  • Barite Baso4 C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Orthorhombic
    Barite BaSO4 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. Commonly in well-formed crystals, to 85 cm, with over 70 forms noted. Thin to thick tabular {001}, {210}, {101}, {011}; also prismatic along [001], [100], or [010], equant. As crested to rosettelike aggregates of tabular individuals, concretionary, fibrous, nodular, stalactitic, may be banded; granular, earthy, massive. Physical Properties: Cleavage: {001}, perfect; {210}, less perfect; {010}, imperfect. Fracture: Uneven. Tenacity: Brittle. Hardness = 3–3.5 D(meas.) = 4.50 D(calc.) = 4.47 May be thermoluminescent, may fluoresce and phosphoresce cream to spectral colors under UV. Optical Properties: Transparent to translucent. Color: Colorless, white, yellow, brown, gray, pale shades of red, green, blue, may be zoned, or change color on exposure to light; colorless or faintly tinted in transmitted light. Streak: White. Luster: Vitreous to resinous, may be pearly. Optical Class: Biaxial (+). Pleochroism: Weak. Orientation: X = c; Y = b; Z = a. Dispersion: r> v,weak. Absorption: Z > Y > X. α = 1.636 β = 1.637 γ = 1.648 2V(meas.) = 36◦–40◦ Cell Data: Space Group: P nma. a = 8.884(2) b = 5.457(3) c = 7.157(2) Z = 4 X-ray Powder Pattern: Synthetic. 3.445 (100), 3.103 (95), 2.121 (80), 2.106 (75), 3.319 (70), 3.899 (50), 2.836 (50) Chemistry: (1) (2) SO3 34.21 34.30 CaO 0.05 BaO 65.35 65.70 Total 99.61 100.00 (1) Sv´arov, Czech Republic. (2) BaSO4. Polymorphism & Series: Forms a series with celestine.
    [Show full text]
  • Moles & Chapman SGA2019 Abstract
    Neoproterozoic microbial processes in chemical sediment diagenesis: evidence from the Aberfeldy barite deposits Moles, Norman R. School of Environment and Technology, University of Brighton, UK. Email: [email protected] Boyce, Adrian J. Scottish Universities Environmental Research Centre (SUERC), University of Glasgow, UK Abstract. Microbial- and diffusion-controlled diagenetic 2.1 Barite deposition and diagenetic alteration processes were significant in the formation of sulfide-, sulfate- and carbonate-rich stratiform mineralization In modern ocean sediments, barite is not prone to hosted by Neoproterozoic graphitic metasediments near diagenetic alteration after burial where oxic conditions Aberfeldy in Perthshire, Scotland. In 1-10m thick beds of prevail, but is soluble under reducing conditions barite rock, barite δ34S of +36 ±1.5 ‰ represents the especially in the presence of sulfate-reducing microbes isotopic composition of contemporaneous seawater and organic matter (e.g. Clark et al., 2004). Porewater sulfate. Pronounced vertical variations in δ34S (+30 to +41 sulfate reduction is ubiquitous in organic-rich sediments ‰) and δ18O (+8 to +21 ‰) occur on a decimetre-scale at containing barite (e.g. Torres et al., 1996). bed margins. These excursions are attributed to early Some studies of sedimentary exhalative (sedex) barite diagenetic alteration, while the barite sediment was fine- deposits have proposed that barite precipitation occurred grained and porous, due to pulsed infiltration of in the water column with finely crystalline barite deposited isotopically diverse porefluids into the marginal barite. on the seabed (e.g. Lyons et al., 2006). However, in a Fluid-mediated transfer of barium and sulfate into study of non-hydrothermal sediment-hosted stratiform adjacent sediments contributed to barium enrichment and barite deposits worldwide, Johnson et al.
    [Show full text]
  • The Hydrothermal Alteration of Carbonatite in the Fen Complex, Norway: Mineralogy, Geochemistry, and Implications for Rare-Earth Element Resource Formation
    Mineralogical Magazine, May 2018, Vol. 82(S1), pp. S115–S131 The hydrothermal alteration of carbonatite in the Fen Complex, Norway: mineralogy, geochemistry, and implications for rare-earth element resource formation * C. MARIEN ,A.H.DIJKSTRA AND C. WILKINS School of Geography, Earth and Environmental Sciences, Plymouth University, Fitzroy Building, Drake Circus, Plymouth PL4 8AA, UK [Received 3 March 2017; Accepted 5 September 2017; Associate Editor: Nigel Cook] ABSTRACT The Fen Complex in Norway consists of a ∼583 Ma composite carbonatite-ijolite-pyroxenite diatreme intrusion. Locally, high grades (up to 1.6 wt.% total REE) of rare-earth elements (REE) are found in a hydrothermally altered, hematite-rich carbonatite known as rødbergite. The progressive transformation of primary igneous carbonatite to rødbergite was studied here using scanning electron microscopy and inductively coupled plasma-mass spectrometry trace-element analysis of 23 bulk samples taken along a key geological transect. A primary mineral assemblage of calcite, dolomite, apatite, pyrite, magnetite and columbite with accessory quartz, baryte, pyrochlore, fluorite and REE fluorocarbonates was found to have transformed progressively into a secondary assemblage of dolomite, Fe-dolomite, baryte, Ba-bearing phlogopite, hematite with accessory apatite, calcite, monazite-(Ce) and quartz. Textural evidence is presented for REE fluorocarbonates and apatite breaking down in igneous carbonatite, and monazite-(Ce) precipitating in rødbergite. The importance of micro-veins, interpreted as feeder fractures, containing secondary monazite and allanite, is highlighted. Textural evidence for included relics of primary apatite-rich carbonatite are also presented. These acted as a trap for monazite-(Ce) precipitation, a mechanism predicted by physical-chemical experiments. The transformation of carbonatite to rødbergite is accompanied by a 10- fold increase in REE concentrations.
    [Show full text]