Plant Science Today (2019) 6(2): 170-182 170

Total Page:16

File Type:pdf, Size:1020Kb

Plant Science Today (2019) 6(2): 170-182 170 Plant Science Today (2019) 6(2): 170-182 170 https://doi.org/10.14719/pst.2019.6.2.511 ISSN: 2348-1900 Plant Science Today http://www.plantsciencetoday.online Review Article Review on the genus Tectaria Cav. from India Sachin M Patil*, Ronak N Kachhiyapatel & Kishore S Rajput Department of Botany, Faculty of Science, The M. S. University of Baroda, Vadoadara 390002, India Article history Abstract Received: 20 February 2019 The fern genus Tectaria Cav. (Tectariaceae) is one of the largest, morphologically Accepted: 04 April 2019 diverse and more complex genera having difficulties in identifying the species and Published: 27 April 2019 their groups. Since its description, a number of new genera had been separated from it or merged within it created considerable ambiguity. Thus, the main aim of the present review is to provide comprehensive information of the taxonomy, cytology, anatomy, palynology and molecular research carried out so far on the genus Tectaria. Present work is not merely compilation but includes personal observations and is presented here after critical evaluation. Keywords: Fern; diversity; cytology; taxonomy; Tectariaceae Publisher Horizon e-Publishing Group Citation: Patil SM, Kachhiyapatel RN, Rajput KS. Review on the genus Tectaria Cav. from India. Plant Science Today 2019;6(2):170-182. https://doi.org/10.14719/pst.2019.6.2.511 Copyright: © Patil et al (2019). This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited *Correspondence (https://creativecommons.org/licenses/by/4.0/). Sachin M. Patil [email protected] Indexing: Plant Science Today is covered by Scopus, CAS, AGRIS, CABI, Google Scholar, etc. Full list at http://www.plantsciencetoday.online Introduction types (semi-arid to evergreen forests) (48). Due to As an important group of ferns, different species of its remarkable diverse morphology, there is no Tectaria are known to occupy a variety of ecological unanimous opinion on the number of species in niches across different habitats in numerous forest this genus. According to Tryon and Tryon (3) and ecosystems of the country. The diversity, Kramer (4) there are nearly 150 species, while conservation status and state of knowledge of Holttum (5) and Ding et al. (2) considered about 230 Tectaria (Tectariaceae) are not uniform worldwide. species throughout the globe. However, according The genus Tectaria Cav., is popularly known as to PPG-I (6) there are ca. 200 species are accepted “halberd fern”, was described by Cavanilles (1). The internationally. genus is mostly distributed in tropical regions and Thus, the present review intends to compile maximum species are terrestrial in rain forests (2). various studies on this fern from worldwide and The word Tectaria was derived from Latin words critically evaluates the issues related to the “tectum” means “a covering” and the “adjectival taxonomy, anatomy, cytology, palynology and suffic-aria”, referring to the “indusium” (118). molecular research on this genus. Generally, Tectaria species are small to large sized herbs, having erect, suberect or creeping rhizome, Taxonomic history monomorphic or dimorphic, unipennate, bipinnate- tetrapinnate fronds, growing along the roadsides, The treatment of tectaroid ferns has un- edges of hills and hillocks, along the water channels orthodoxically undergone several changes in their from low to high altitude or in different forests names time to time. It was popularly known as Horizon e-Publishing Group ISSN: 2348-1900 Plant Science Today (2019) 6(2): 170-182 171 Aspidium Sw., whereas few species were treated (21) raised these tribe to subfamily rank but placed under the Dryopteris Adans., Nephrodium Marthe under the family Dennstaedtiaceae. For separating ex Michx., Pleocnemia C. Presl., and Polystichum these subfamilies, different characters, viz., costae, Roth. The genus Tectaria was described by smaller rachises grooved, and groove with raised Cavanilles (1). Soon after discovery of Tectaria, edges for the Dryopteridoideae and costae raised, describe a new genera Aspidium by Swartz (7) for not grooved, presence of hairs for the Aspidieae the same and this name was widely accepted by were used. He accepted many new genera, viz., several pteridologists. Later on, many new genera, Amphiblestra C.Presl, Arcypteris Underw., Ctenitis viz., Arcypteris Underw., Pleocnemia C. Presl, and (C. Chr.) C. Chr., Cyclopeltis J. Sm., Dictyoxiphium Sagenia C. Presl, were described and accepted by Hook., Hemigramma Christ, Heterogonium C.Presl, many pteridologists (8-10). Beddome (11-12) Lastreopsis Ching, Pleocnemia C. Presl, reported different tectaroid ferns, viz., Aspidium Pleuroderris Maxon, Pteridrys C. Chr. & Ching, and Plecomenia, although these generic Quercifilix Copel., Stenosemia C. Presl and Tectaria delimitations were widely adopted at that time by Cav., in his classification system. At the same time pteridologists; it was ultimately recognized as Copland (22) recognized a large family illegitimate names. However, the concept of Aspidiaceae, including the genera, viz., Thelypteris Tectaria was progressively accepted by and its allies, Athyrium, Diplazium and pteridologists in the 20th century. Lomariopsis. Subsequently, Holttum (23) The first major work on tectaroid ferns in Arcypteris Underw., is maintained as different the 20th century was Christensen's “Index Filicum” from Tectaria and is very closely related to (13). Further, he realised that the species listed Pleocnemia rather than Tectaria. Pichi Sermolli under the genus Dryopteris were an unnatural (24) had proposed to conserve the family mixture which indeed needs further study. First Aspidiaceae but it failed because the family name time he pointed out the presence of ctenitoid type Aspidiaceae is illegitimate since it is based on an of hairs in the species aggregate under the genus illegitimate generic name Aspidium. Nayar (25) Dryopteris. He distinguished Ctenitis from didn’t follow the Ching’s classification and placed Dryopteris, pointing out the relationship of the tectarioid and Dryopteris group of ferns in former to Tectaria and also has anastomosing separate subfamilies of Dryopteridaceae. Mathew veins in thelypteroid ferns. At the same time, (26) studied diversity of pteridophytes of Copland (14) studied the Philippine species and Darjeeling district and reported Tectaria cicutaria recognized seven groups, viz., the Arcypteris and T. polymorpha from Darjeeling. Sledge (27) group, the Cicutariae group, the Crenatae group, studied the tectarioid ferns of Ceylon and reported the Decurrentes group, the Pleocnemia group, the five genera (Hypodematium, Ctenitis, Lastreopsis, Trifoliatae-Polymorphae group, and the Vastae Tectaria and Pteridrys) and sixteen species with group. Subsequently, Christensen (15) made an the rejection of the genus Quercifilix. In disparity, a effort to differentiate natural assemblies within number of unlike genera had been isolated from that mixture by exploring the species of tropical Tectaria, viz., Aenigmopteris Holttum, America. Later on, he published a monograph Amphiblestra, Aspidium, Camptodium, “Index Filicum” (16), subgenera, though he Cardiochlaena Fée, Chlamydogramme Holttum, observed them as very diverse and specified that Cionidium T. Moore, Ctenitopsis Ching ex Tardieu & some should eventually have generic rank. Blater C. Chr., Dictyoxiphium, Dictyopteris J.V. Lamour., and d'Almeida (17) studied the ferns of Bombay Dryomensis Fée, Fadyenia, Hemigramma, presidency and reported 06 species of Aspidium. Heterogonium, Luerssenia Kuhn ex Luerssen, Ching (18) for the treatment of Tectaria from China Microbrochis C. Presl, Phlebiogonium Fée, and Sikkim-Himalaya, divided the genus into three Pleocnemia, Pleuroderris, Podopeltis Fée, sections, viz., T. sect. Arcypteris (Underw.) C. Chr., Psomiocarpa C. Presl, Pseudotectaria Tardieu-Blot, T. sect. Pleocnemia (C. Presl) Diels, and T. sect. Quercifilix, Sagenia, Stenosemia, and Trichiocarpa Eutectaria Ching (=T. sect. Tectaria). Christensen (Hook.) J. Sm., by various pteridologists (28). In (19) published the classification of extant ferns addition, some species of Ctenitis and Dryopteris retained a major family Polypodiaceae with two Adans., are often treated as members of Tectaria subfamilies, one is Dryopteridoideae which which has on occasion led to unstable includes the genus Dryopteris and second is delimitations of those genera (3,29). Holttum (30) Thelypteridaceae which includes the genus studied the genus Tectaria from Mascarene Tectaria with other related genera. Later on, Ching Islands. On the basis of venation patterns, he (20) divided Christensen's Polypodiaceae into divided the genus Tectaria of Mascarene Islands several families, amongst these Aspidiaceae is one into three groups i.e. Group I includes the species which is similar to Christensen's subfamily (T. picta and T. puberula) having elaborate Dryopteridoideae. This family Aspidiaceae is network of veins, with free veinlets, often divided into tribes, Aspidieae (includes Tectaria branched, which run in all direction in the areoles and its allies) and Dryopterideae (includes of the network including the areole of the main Dryopteris and related genera). Ching (20) also veins of the pinnae. Group II includes the species accepted the genera, viz., Arcypteris Underw., (T. gemmifera) had no free veinlets in the areoles Pleocnemia
Recommended publications
  • A Revision of the Fern Genus Oleandra (Oleandraceae) in Asia 1 Doi: 10.3897/Phytokeys.11.2955 Monograph Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal PhytoKeys 11: 1–37 (2012)A revision of the fern genus Oleandra (Oleandraceae) in Asia 1 doi: 10.3897/phytokeys.11.2955 MONOGRAPH www.phytokeys.com Launched to accelerate biodiversity research A revision of the fern genus Oleandra (Oleandraceae) in Asia Peter H. Hovenkamp1, Boon-Chuan Ho2 1 Netherlands Centre for Biodiversity Naturalis (section NHN), Leiden University, PO Box 9517, 2300 RA Leiden, The Netherlands 2 Nees-Institut für Biodiversität der Pflanzen, Rheinische Friedrich-Wilhelms- Universität Bonn, Meckenheimer Allee 170, D-53115 Bonn, Germany Corresponding author: Peter H. Hovenkamp ([email protected]) Academic editor: T. Ranker | Received 16 February 2011 | Accepted 29 March 2012 | Published 6 April 2012 Citation: Hovenkamp PH, Ho B-C (2012) A revision of the fern genus Oleandra (Oleandraceae) in Asia. PhytoKeys 11: 1–37. doi: 10.3897/phytokeys.11.2955 Abstract The Asiatic species of Oleandra (Oleandraceae) are revised. We reduce a large number of species to O. neriiformis and O. sibbaldii, we provide a revised circumscription of O. cumingii and O. undulata and we establish the identity of O. vulpina. In total, we recognize 9 species, with full synonymy, descriptions and distribution maps. A list of identifications is appended. Keywords Oleandra, systematics Introduction Virtually all authors who have dealt with the genus Oleandra Cav. have commented on its distinctness or naturalness. The shrubby growth form, particularly distinct in O. neriiformis Cav., prompted Cavanilles (1799; 1802) not only to derive the genus name, but also the species name from Nerium oleander L. (Apocynaceae). From this it should be clear that he saw the aerial stems of Oleandra neriiformis, of which the forms with distinctly whorled fronds are indeed strongly reminiscent of branches of Nerium olean- der.
    [Show full text]
  • Glenda Gabriela Cárdenas Ramírez
    ANNALES UNIVERSITATIS TURKUENSIS UNIVERSITATIS ANNALES A II 353 Glenda Gabriea Cárdenas Ramírez EVOLUTIONARY HISTORY OF FERNS AND THE USE OF FERNS AND LYCOPHYTES IN ECOLOGICAL STUDIES Glenda Gabriea Cárdenas Ramírez Painosaama Oy, Turku , Finand 2019 , Finand Turku Oy, Painosaama ISBN 978-951-29-7645-4 (PRINT) TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS ISBN 978-951-29-7646-1 (PDF) ISSN 0082-6979 (Print) ISSN 2343-3183 (Online) SARJA - SER. A II OSA - TOM. 353 | BIOLOGICA - GEOGRAPHICA - GEOLOGICA | TURKU 2019 EVOLUTIONARY HISTORY OF FERNS AND THE USE OF FERNS AND LYCOPHYTES IN ECOLOGICAL STUDIES Glenda Gabriela Cárdenas Ramírez TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS SARJA - SER. A II OSA – TOM. 353 | BIOLOGICA - GEOGRAPHICA - GEOLOGICA | TURKU 2019 University of Turku Faculty of Science and Engineering Doctoral Programme in Biology, Geography and Geology Department of Biology Supervised by Dr Hanna Tuomisto Dr Samuli Lehtonen Department of Biology Biodiversity Unit FI-20014 University of Turku FI-20014 University of Turku Finland Finland Reviewed by Dr Helena Korpelainen Dr Germinal Rouhan Department of Agricultural Sciences National Museum of Natural History P.O. Box 27 (Latokartanonkaari 5) 57 Rue Cuvier, 75005 Paris 00014 University of Helsinki France Finland Opponent Dr Eric Schuettpelz Smithsonian National Museum of Natural History 10th St. & Constitution Ave. NW, Washington, DC 20560 U.S.A. The originality of this publication has been checked in accordance with the University of Turku quality assurance system using the Turnitin OriginalityCheck service. ISBN 978-951-29-7645-4 (PRINT) ISBN 978-951-29-7646-1 (PDF) ISSN 0082-6979 (Print) ISSN 2343-3183 (Online) Painosalama Oy – Turku, Finland 2019 Para Clara y Ronaldo, En memoria de Pepe Barletti 5 TABLE OF CONTENTS ABSTRACT ...........................................................................................................................
    [Show full text]
  • Spores of Serpocaulon (Polypodiaceae): Morphometric and Phylogenetic Analyses
    Grana, 2016 http://dx.doi.org/10.1080/00173134.2016.1184307 Spores of Serpocaulon (Polypodiaceae): morphometric and phylogenetic analyses VALENTINA RAMÍREZ-VALENCIA1,2 & DAVID SANÍN 3 1Smithsonian Tropical Research Institute, Center of Tropical Paleocology and Arqueology, Grupo de Investigación en Agroecosistemas y Conservación de Bosques Amazonicos-GAIA, Ancón Panamá, Republic of Panama, 2Laboratorio de Palinología y Paleoecología Tropical, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia, 3Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia Caquetá, Colombia Abstract The morphometry and sculpture pattern of Serpocaulon spores was studied in a phylogenetic context. The species studied were those used in a published phylogenetic analysis based on chloroplast DNA regions. Four additional Polypodiaceae species were examined for comparative purposes. We used scanning electron microscopy to image 580 specimens of spores from 29 species of the 48 recognised taxa. Four discrete and ten continuous characters were scored for each species and optimised on to the previously published molecular tree. Canonical correspondence analysis (CCA) showed that verrucae width/verrucae length and verrucae width/spore length index and outline were the most important morphological characters. The first two axes explain, respectively, 56.3% and 20.5% of the total variance. Regular depressed and irregular prominent verrucae were present in derived species. However, the morphology does not support any molecular clades. According to our analyses, the evolutionary pathway of the ornamentation of the spores is represented by depressed irregularly verrucae to folded perispore to depressed regular verrucae to irregularly prominent verrucae. Keywords: character evolution, ferns, eupolypods I, canonical correspondence analysis useful in phylogenetic analyses of several other Serpocaulon is a fern genus restricted to the tropics groups of ferns (Wagner 1974; Pryer et al.
    [Show full text]
  • Phylogenetic Diversity of Ferns Reveals Different Patterns of Niche Conservatism and Habitat Filtering Between Epiphytic and Terrestrial Assemblages†
    a Frontiers of Biogeography 2021, 13.3, e50023 Frontiers of Biogeography RESEARCH ARTICLE the scientific journal of the International Biogeography Society Phylogenetic diversity of ferns reveals different patterns of niche conservatism and habitat filtering between epiphytic and terrestrial assemblages† Adriana C. Hernández-Rojas1* , Jürgen Kluge1 , Sarah Noben2 , Johan D. Reyes Chávez3 , Thorsten Krömer4 , César I. Carvajal-Hernández5 , Laura Salazar6 and Michael Kessler2 1 Faculty of Geography, Philipps University Marburg, Germany; 2 Systematic and Evolutionary Botany, University of Zurich, Switzerland; 3 Escuela Agrícola Panamericana Zamorano, Centro Zamorano de Biodiversidad, Carrera de Ambiente y Desarrollo, Valle de Yeguare, Francisco Morazán, Honduras; 4 Centro de Investigaciones Tropicales (CITRO), Universidad Veracruzana, México; 5 Instituto de Investigaciones Biológicas, Universidad Veracruzana, México;6 Centro de Investigación de la Biodiversidad y Cambio Climático e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias del Medio Ambiente, Universidad Tecnológica Indoamérica, Machala y Sabanilla, Quito, Ecuador. *Corresponding author: Adriana C. Hernández-Rojas, [email protected], [email protected] This paper is part of an Elevational Gradients and Mountain Biodiversity Special Issue. Abstract Highlights Much attention has been directed to understanding • Epiphytic and terrestrial fern assemblages across species richness patterns, but adding an evolutionary elevational and latitudinal
    [Show full text]
  • Pdf/A (670.91
    Phytotaxa 164 (1): 001–016 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.164.1.1 On the monophyly of subfamily Tectarioideae (Polypodiaceae) and the phylogenetic placement of some associated fern genera FA-GUO WANG1, SAM BARRATT2, WILFREDO FALCÓN3, MICHAEL F. FAY4, SAMULI LEHTONEN5, HANNA TUOMISTO5, FU-WU XING1 & MAARTEN J. M. CHRISTENHUSZ4 1Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China. E-mail: [email protected] 2School of Biological and Biomedical Science, Durham University, Stockton Road, Durham, DH1 3LE, United Kingdom. 3Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8075 Zurich, Switzerland. 4Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 4DS, United Kingdom. E-mail: [email protected] (author for correspondence) 5Department of Biology, University of Turku, FI-20014 Turku, Finland. Abstract The fern genus Tectaria has generally been placed in the family Tectariaceae or in subfamily Tectarioideae (placed in Dennstaedtiaceae, Dryopteridaceae or Polypodiaceae), both of which have been variously circumscribed in the past. Here we study for the first time the phylogenetic relationships of the associated genera Hypoderris (endemic to the Caribbean), Cionidium (endemic to New Caledonia) and Pseudotectaria (endemic to Madagascar and Comoros) using DNA sequence data. Based on a broad sampling of 72 species of eupolypods I (= Polypodiaceae sensu lato) and three plastid DNA regions (atpA, rbcL and the trnL-F intergenic spacer) we were able to place the three previously unsampled genera.
    [Show full text]
  • Assessment of Diversity of Pteridophytes Along Some Hill Roads in a Biodiversity Hot Spot Region of India – a Case Study of Mizoram
    ISSN: 2350-0328 International Journal of AdvancedResearch in Science, Engineering and Technology Vol. 5, Issue 9 , September 2018 Assessment of Diversity of Pteridophytes along Some Hill Roads in a Biodiversity Hot Spot Region of India – A Case Study of Mizoram Samar. Kr.Banerjee,MousumiBanerjee , Anjani.Kr. Srivastava Department of Botany, Ranchi University, Ranchi and Principal Consultant (Environment) STUP India1 Department of Botany,Faculty of Post Graduate Studies, Scottish Church College, Kolkata 2 Department of Botany, Ranchi University, Ranchi 3 ABSTRACT: Mizoram state of India isone of the biodiversity hotspots of the world, the Eastern Himalayan biodiversity hotspot of South Asia. Panoramic view of its roadside flora reveals that it is replete with rich diversity of Pteridophytes.This is due to unique location of Mizoram, its topography with hills and valleys, and also its geology which provide immense ranges of microclimatic conditions which facilitates its growth. These pteridophytes are one of the source of carbon sink along the road. Some work related to pteridophytes have been reported by some researchers in some protected areas like sanctuaries and some forests in Mizoram. Till date no work has been reported on the diversity, ecology and IUCN red list status of pteridophytes growing along the Hill Roads in Mizoram. The paper enlists he current diversity, habitat and ecology of such pteridophytes. Effort has been made to ascertain their status in the IUCN red list and in Catalogue of Life (COL).The study is likely to help in further capacity augmentation/widening of these roads without harming the current diversity of the pteridophytes growing there .The study also provides a protocol to be followedfor monitoring and management of biodiversity along other roads of this hotspot.
    [Show full text]
  • An Illustrated Key to the Ferns of Oregon
    AN ABSTRACT OF THE THESIS OF Helen Patricia O'Donahue Pembrook for the Master of Arts (Name) (Degree) Systematic Botany (Major) Date thesis is presented March 8, 1963 Title AN ILLUSTRATED KEY TO THE FERNS OF OREGON Abstract approved IIIII (Major professor) The purpose of the work is to enable students of botany to identify accurately Oregon ferns, both as living plants and as dried speci- mens. Therefore, it provides vegetative keys to the families, genera and species of the ferns (Class FILICINAE) found in Oregon. Correct names have been determined using the latest available information and in accordance with 1961 edition of the International Code of Botan- ical Nomenclature. The synonomy, a description, and original draw- ings of each species and subspecific taxon are included. An illustrated glossary and a technical glossary have been prepared to explain and clarify the descriptive terms used. There is also a bibliography of the literature used in the preparation of the paper. The class FILICINAE is represented in Oregon by 4 families, 20 genera, 45 or 46 species, 4 of which are represented by more than one subspecies or variety. One species, Botrychium pumicola Coville, is endemic. The taxa are distributed as follows: OPHIO- GLOSSACEAE, 2 genera: Botrychium, 7 species, 1 represented by 2 subspecies, 1 by 2 varieties; Ophioglossum, 1 species. POLYPODI- ACEAE, 15 genera: Woodsia., 2 species; Cystopteris, 1 species; Dryopteris, 6 species; Polystichum, 5 species, 1 represented by 2 distinct varieties; Athyrium, 2 species; Asplenium, 2 species; Stru- thiopteris, 1 species; Woodwardia, 1 species; Pitrogramma, 1 spe- cies; Pellaea, 4 species; Cheilanthes, 3 or 4 species; Cryptogramma, 1 species; Adiantum, 2 species; Pteridium, 1 species; Polypodium, 2 species, 1 represented by 2 varieties.
    [Show full text]
  • NATIONAL RECOVERY PLAN for Tectaria Devexa
    NATIONAL RECOVERY PLAN FOR Tectaria devexa Mark Butz Federal Register of Legislative Instruments F2005L01296 Prepared by Mark Butz, Futures by Design, for the Australian Government Department of the Environment and Heritage Published by the Department of the Environment and Heritage. Made under the Environment Protection and Biodiversity Conservation Act 1999: April 2005 ISBN 0 642 55077 8 © Commonwealth of Australia This publication is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and inquiries regarding reproduction should be addressed to: Assistant Secretary Natural Resource Management Policy Branch Department of the Environment and Heritage GPO Box 787 CANBERRA ACT 2601 This plan should be cited as follows: Butz M. 2004. National Recovery Plan for Tectaria devexa. Department of the Environment and Heritage, Canberra. Cover photo © John Augusteyn; used by permission of Capricorn Caves Disclaimer: The Australian Government, in partnership with the Queensland Parks and Wildlife Service, facilitates the publication of recovery plans to detail the actions needed for the conservation of threatened native wildlife. The attainment of objectives and the provision of funds may be subject to budgetary and other constraints affecting the parties involved, and may also be constrained by the need to address other conservation priorities. Approved recovery actions may be subject to modifications due to changes in knowledge and changes in conservation status. Federal Register of Legislative Instruments F2005L01296 PART A: SPECIES INFORMATION AND GENERAL REQUIREMENTS A.1 Species This recovery plan addresses the management requirements for conservation of Tectaria devexa, a terrestrial fern that is known from two varieties: var.
    [Show full text]
  • Flora of New Zealand Ferns and Lycophytes Davalliaceae Pj
    FLORA OF NEW ZEALAND FERNS AND LYCOPHYTES DAVALLIACEAE P.J. BROWNSEY & L.R. PERRIE Fascicle 22 – OCTOBER 2018 © Landcare Research New Zealand Limited 2018. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 4.0 International licence Attribution if redistributing to the public without adaptation: “Source: Manaaki Whenua – Landcare Research” Attribution if making an adaptation or derivative work: “Sourced from Manaaki Whenua – Landcare Research” See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Brownsey, P. J. (Patrick John), 1948– Flora of New Zealand : ferns and lycophytes. Fascicle 22, Davalliaceae / P.J. Brownsey and L.R. Perrie. -- Lincoln, N.Z.: Manaaki Whenua Press, 2018. 1 online resource ISBN 978-0-9 47525-44-6 (pdf) ISBN 978-0-478-34761-6 (set) 1.Ferns -- New Zealand – Identification. I. Perrie, L. R. (Leon Richard). II. Title. III. Manaaki Whenua – Landcare Research New Zealand Ltd. UDC 582.394.742(931) DC 587.30993 DOI: 10.7931/B15W42 This work should be cited as: Brownsey, P.J. & Perrie, L.R. 2018: Davalliaceae. In: Breitwieser, I.; Wilton, A.D. Flora of New Zealand – Ferns and Lycophytes. Fascicle 22. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/B15W42 Cover image: Davallia griffithiana. Habit of plant, spreading by means of long-creeping rhizomes. Contents Introduction..............................................................................................................................................1
    [Show full text]
  • Microsorum 3 Tohieaense (Polypodiaceae)
    Systematic Botany (2018), 43(2): pp. 397–413 © Copyright 2018 by the American Society of Plant Taxonomists DOI 10.1600/036364418X697166 Date of publication June 21, 2018 Microsorum 3 tohieaense (Polypodiaceae), a New Hybrid Fern from French Polynesia, with Implications for the Taxonomy of Microsorum Joel H. Nitta,1,2,3 Saad Amer,1 and Charles C. Davis1 1Department of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, Massachusetts 02138, USA 2Current address: Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Japan, 305-0005 3Author for correspondence ([email protected]) Communicating Editor: Alejandra Vasco Abstract—A new hybrid microsoroid fern, Microsorum 3 tohieaense (Microsorum commutatum 3 Microsorum membranifolium) from Moorea, French Polynesia is described based on morphology and molecular phylogenetic analysis. Microsorum 3 tohieaense can be distinguished from other French Polynesian Microsorum by the combination of sori that are distributed more or less in a single line between the costae and margins, apical pinna wider than lateral pinnae, and round rhizome scales with entire margins. Genetic evidence is also presented for the first time supporting the hybrid origin of Microsorum 3 maximum (Microsorum grossum 3 Microsorum punctatum), and possibly indicating a hybrid origin for the Hawaiian endemic Microsorum spectrum. The implications of hybridization for the taxonomy of microsoroid ferns are discussed, and a key to the microsoroid ferns of the Society Islands is provided. Keywords—gapCp, Moorea, rbcL, Society Islands, Tahiti, trnL–F. Hybridization, or interbreeding between species, plays an et al. 2008). However, many species formerly placed in the important role in evolutionary diversification (Anderson 1949; genus Microsorum on the basis of morphology (Bosman 1991; Stebbins 1959).
    [Show full text]
  • Taxonomic Novelties in the Fern Genus Tectaria (Tectariaceae)
    Phytotaxa 122 (1): 61–64 (2013) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2013 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.122.1.3 Taxonomic novelties in the fern genus Tectaria (Tectariaceae) HUI-HUI DING1,2, YI-SHAN CHAO3 & SHI-YONG DONG1* 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China. 2 Graduate University of the Chinese Academy of Sciences, Beijing 100093, China. 3 Division of Botanical Garden, Taiwan Forestry Research Institute, Taipei 10066, Taiwan. * Corresponding author: [email protected] Abstract The misapplication of the name Tectaria griffithii is corrected, which results in the revival of T. multicaudata and the proposal of a new combination (T. multicaudata var. amplissima) and two new synonyms (T. yunnanensis and T. multicaudata var. singaporeana). For the reduction of Psomiocarpa and Tectaridium (previously monotypic genera) into Tectaria, T. macleanii (new combination) and T. psomiocarpa (new name) are proposed as new combinations. In addition, the new name Tectaria subvariolosa is put forward to replace a later homonym (T. stenosemioides). Key words: nomenclature, Psomiocarpa, taxonomy, Tectaridium Introduction Tectaria Cavanilles (1799) (Tectariaceae) is a fern genus frequent in tropical regions, with most species growing terrestrially in rain forests. This group is remarkable for its extremely diverse morphology, and the estimated number of species ranges from 150 (Tryon & Tryon 1982; Kramer 1990) to 210 (Holttum 1991a). Holttum (1991a) recognized 105 species in Tectaria from Malesia and presumed that SE Asia is its center of origin.
    [Show full text]
  • Polypodiaceae (PDF)
    This PDF version does not have an ISBN or ISSN and is not therefore effectively published (Melbourne Code, Art. 29.1). The printed version, however, was effectively published on 6 June 2013. Zhang, X. C., S. G. Lu, Y. X. Lin, X. P. Qi, S. Moore, F. W. Xing, F. G. Wang, P. H. Hovenkamp, M. G. Gilbert, H. P. Nooteboom, B. S. Parris, C. Haufler, M. Kato & A. R. Smith. 2013. Polypodiaceae. Pp. 758–850 in Z. Y. Wu, P. H. Raven & D. Y. Hong, eds., Flora of China, Vol. 2–3 (Pteridophytes). Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. POLYPODIACEAE 水龙骨科 shui long gu ke Zhang Xianchun (张宪春)1, Lu Shugang (陆树刚)2, Lin Youxing (林尤兴)3, Qi Xinping (齐新萍)4, Shannjye Moore (牟善杰)5, Xing Fuwu (邢福武)6, Wang Faguo (王发国)6; Peter H. Hovenkamp7, Michael G. Gilbert8, Hans P. Nooteboom7, Barbara S. Parris9, Christopher Haufler10, Masahiro Kato11, Alan R. Smith12 Plants mostly epiphytic and epilithic, a few terrestrial. Rhizomes shortly to long creeping, dictyostelic, bearing scales. Fronds monomorphic or dimorphic, mostly simple to pinnatifid or 1-pinnate (uncommonly more divided); stipes cleanly abscising near their bases or not (most grammitids), leaving short phyllopodia; veins often anastomosing or reticulate, sometimes with included veinlets, or veins free (most grammitids); indument various, of scales, hairs, or glands. Sori abaxial (rarely marginal), orbicular to oblong or elliptic, occasionally elongate, or sporangia acrostichoid, sometimes deeply embedded, sori exindusiate, sometimes covered by cadu- cous scales (soral paraphyses) when young; sporangia with 1–3-rowed, usually long stalks, frequently with paraphyses on sporangia or on receptacle; spores hyaline to yellowish, reniform, and monolete (non-grammitids), or greenish and globose-tetrahedral, trilete (most grammitids); perine various, usually thin, not strongly winged or cristate.
    [Show full text]