Intro to AWS @UW Cloud

Total Page:16

File Type:pdf, Size:1020Kb

Intro to AWS @UW Cloud Introduction to AWS in Higher Ed Lori Clithero [email protected] | 206.227.5054 University of Washington Cloud Day © 2015, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Cloud democratizes compute and data access 2 AWS’ History of Innovation AWS has been continually expanding its services to support virtually any cloud workload, and it now has more than 40 services. Amazon Elastic Transcoder AWS OpsWorKs Amazon SES Amazon CloudHSM AWS Elastic BeanstalK Elastic Load Amazon AppStream AWS CloudFormation Balancing Amazon CloudTrail Amazon Elasticache Amazon EFS Auto Scaling Amazon WorKSpaces AWS Direct Connect Amazon WorKMail Amazon VPC Amazon Kinesis Amazon Simple DB Amazon RDS AWS GovCloud Amazon Machine Learning 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Amazon S3 Amazon EBS Amazon SNS AWS Storage Gateway Amazon ECS Amazon SQS Amazon Amazon IAM Amazon DynamoDB Amazon Lambda Amazon EC2 CloudFront Amazon Route 53 Amazon CloudSearch Amazon Config Amazon SWF AWS CodeDeploy Amazon Glacier Amazon RDS for Aurora Amazon Redshift AWS KMS AWS Data Pipeline Amazon Cognito In the last five years, AWS launched 1,203 new features and/or Amazon WorKDocs services for a total of over 1,340 since inception in 2006. AWS Directory Service Amazon Mobile Analytics April 30, 2015 AWS Import/Export Snowball How it worKs Global Footprint Everyday, AWS adds enough new server capacity to support Amazon.com when it was a $7 billion global enterprise. Over 1 million active customers across 190 countries 900+ government agencies 3,400+ educational institutions 11 regions 29 availability zones 53 edge locations Region Edge Location HYBRID TECHNICAL & MARKETPLACE BUSINESS ARCHITECTURE SUPPORT Business Business DevOps Security Networking Databases Storage Apps Intelligence Tools Integrated Support Networking ANALYTICS APP SERVICES MOBILE SERVICES DEVELOPMENT & OPERATIONS IoT ENTERPRISE APPS Data Queuing & API One-click App Rules Warehousing Notifications Gateway Deployment Engine Virtual Desktops Professional Business DevOps Resource Services Direct Intelligence Identity Connect Workflow Management Device Hadoop/ Shadows Sharing & Spark Application Lifecycle Sync Collaboration Streaming Data Search Management Partner Device Analysis Ecosystem Mobile SDKs Containers Identity Streaming Data Analytics Corporate Collection Email Federation Device Email Single Integrated Gateway Machine Console Triggers Training & Learning Certification Elastic Push Resource Transcoding Registry Backup Integrated Search Notifications Templates App Deployments Solutions SECURITY & COMPLIANCE Architects Key Identity Access Monitoring Configuration Web application Assessment Resource & Management Management Control & Logs Compliance firewall and reporting Usage Auditing & Storage Data Account Backups CORE SERVICES Management Storage Compute Databases Networking VMs , Auto-scaling, Object, Blocks, CDN Relational, NoSQL, VPC , D X, D N S & Load Balanc ing Ar c hiv al, Impor t/Ex por t Caching, Migration Security Integrated INFRASTRUCTURE & Pricing Resource Reports Management Availability Points of Regions Zones Presence Business of Education • Public & Departmental Websites • Development & Test Environments • ERP Systems • Data Analytics • Student Information System Software • Disaster Recovery • Data Center Migrations • Storage & Backup Supporting Business of Education (examples) University of Maryland University College (UMUC) needed to replace its “ legacy applications and decided to use AWS to run its new analytics We are confident in saying that platform as well as several administrative workloads. By using AWS, UMUC improved the performance of its analytics platform by twentyfold the AWS infrastructure has and enabled its engineers to focus on building new applications instead of performed exactly as intended. managing IT infrastructure. Sharif Nijim Enterprise Application Architect, University of Notre Dame Ivy Tech Community College of Indiana is the largest community college in the United States. About 170,000 students register for classes each year; • UND migrated website and global student and ” school maintains a student database with about 1.7 million records. School faculty authentication store to AWS with plans to needed to scale existing systems, including operational data store (ODS). By move 80% of its workloads in the next three years. leveraging AWS: Queries complete in as little as three seconds, down from 40 minutes; Licensing and monthly operational costs are about 60 • UND Reports 40% savings on IT operational costs percent less. annually. Teaching / Learning Solutions • Lecture Capture • Learning / Course Management Systems • Distance Learning • Massive Open Online Courses (MOOCs) • Student Lab Environments • Virtual Desktop / Virtual Application Delivery • 21st Century Learning & Collaboration Teaching / Learning use cases on AWS (examples) “ We could not scale our business as seamlessly without AWS – and we certainly couldn’t do it on a global basis. Tony Abate COO, Echo360 • Using AWS, the company can dynamically handle workload as two million students across 650 schools ”in 30 countries access the system • With more than 300 classes on its website, Coursera needed to track student data, store and • AWS allows Echo 360 to deliver a reliably solution deliver videos, and enable students and teachers globally at 30 percent less than what a customer would to interact with each other be able to do on its own. We Invite You to Join AWS Educate Accelerate Cloud Learning with AWS Credits, Cloud Training, Course Content and Collaboration Tools Grants for free Labs and training on Open course content by Communities that usage of AWS cloud topics and AWS leading professors and share best practices services products AWS virtually and in person Not a student or educator? Help extend AWS grants to more students by inviting your network to participate (#awseducate). Learn more at: www.awseducate.com.
Recommended publications
  • Commvault on AWS Comprehensive Cloud Data Management for Hybrid IT Table of Contents
    Commvault on AWS Comprehensive Cloud Data Management for Hybrid IT Table of Contents The Data Management Challenge 3 Commvault and Amazon Web Services 4 Benefits 7 Case Study: Dow Jones 8 Getting Started 9 2 The Data Management Challenge Today, more data is being generated than ever before. Keeping up with the rapid pace of data growth presents a series of challenges. Enterprise organizations are collecting petabytes of customer and application data that must be backed up and accessible to meet compliance requirements. Increased regulation around data retention policies make it more difficult to manage backup and archive storage, as critical data may be required to be kept for years and maybe difficult to find. Further complicating matters, point solutions often overlap and leave gaps where data is unprotected and require additional staff to manage them. These issues lead to increased costs, yet many IT departments are facing budget cuts and cannot expand upon their capital to meet increased performance demands. Today’s hybrid IT organizations realize cloud can help solve many data storage issues. With cloud storage comes the need for a comprehensive data management platform to manage data both on-premises and in the cloud. Savvy organizations streamline IT operations and reduce cloud waste with flexible orchestration to automate resource provisioning, policies and routine tasks. This eBook will demonstrate how Commvault and Amazon Web Services (AWS) deliver a cost-effective data management solution that addresses all of these challenges with a single, scalable solution. 3 Commvault and Amazon Web Services Unlike most backup and recovery solutions, Commvault offers a single data platform solution for all backup and recovery needs; as opposed to having to several point solutions for each use case (i.e.
    [Show full text]
  • Amazon Dynamodb
    Dynamo Amazon DynamoDB Nicolas Travers Inspiré de Advait Deo Vertigo N. Travers ESILV : Dynamo Amazon DynamoDB – What is it ? • Fully managed nosql database service on AWS • Data model in the form of tables • Data stored in the form of items (name – value attributes) • Automatic scaling ▫ Provisioned throughput ▫ Storage scaling ▫ Distributed architecture • Easy Administration • Monitoring of tables using CloudWatch • Integration with EMR (Elastic MapReduce) ▫ Analyze data and store in S3 Vertigo N. Travers ESILV : Dynamo Amazon DynamoDB – What is it ? key=value key=value key=value key=value Table Item (64KB max) Attributes • Primary key (mandatory for every table) ▫ Hash or Hash + Range • Data model in the form of tables • Data stored in the form of items (name – value attributes) • Secondary Indexes for improved performance ▫ Local secondary index ▫ Global secondary index • Scalar data type (number, string etc) or multi-valued data type (sets) Vertigo N. Travers ESILV : Dynamo DynamoDB Architecture • True distributed architecture • Data is spread across hundreds of servers called storage nodes • Hundreds of servers form a cluster in the form of a “ring” • Client application can connect using one of the two approaches ▫ Routing using a load balancer ▫ Client-library that reflects Dynamo’s partitioning scheme and can determine the storage host to connect • Advantage of load balancer – no need for dynamo specific code in client application • Advantage of client-library – saves 1 network hop to load balancer • Synchronous replication is not achievable for high availability and scalability requirement at amazon • DynamoDB is designed to be “always writable” storage solution • Allows multiple versions of data on multiple storage nodes • Conflict resolution happens while reads and NOT during writes ▫ Syntactic conflict resolution ▫ Symantec conflict resolution Vertigo N.
    [Show full text]
  • AWS Managed Services (AMS)
    AWS Managed Services (AMS) Application Developer's Guide AMS Advanced Operations Plan Version September 16, 2020 AWS Managed Services (AMS) Application Developer's Guide AMS Advanced Operations Plan AWS Managed Services (AMS) Application Developer's Guide: AMS Advanced Operations Plan Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. AWS Managed Services (AMS) Application Developer's Guide AMS Advanced Operations Plan Table of Contents Application Onboarding to AMS Introduction ........................................................................................ 1 What is Application Onboarding? ................................................................................................. 1 What we do, what we do not do .................................................................................................. 1 AMS Amazon Machine Images (AMIs) ............................................................................................ 2 Security enhanced AMIs ...................................................................................................... 4 Key terms .................................................................................................................................
    [Show full text]
  • [XIAY]⋙ Big Data Science & Analytics: a Hands-On Approach By
    Big Data Science & Analytics: A Hands-On Approach Arshdeep Bahga, Vijay Madisetti Click here if your download doesn"t start automatically Big Data Science & Analytics: A Hands-On Approach Arshdeep Bahga, Vijay Madisetti Big Data Science & Analytics: A Hands-On Approach Arshdeep Bahga, Vijay Madisetti We are living in the dawn of what has been termed as the "Fourth Industrial Revolution", which is marked through the emergence of "cyber-physical systems" where software interfaces seamlessly over networks with physical systems, such as sensors, smartphones, vehicles, power grids or buildings, to create a new world of Internet of Things (IoT). Data and information are fuel of this new age where powerful analytics algorithms burn this fuel to generate decisions that are expected to create a smarter and more efficient world for all of us to live in. This new area of technology has been defined as Big Data Science and Analytics, and the industrial and academic communities are realizing this as a competitive technology that can generate significant new wealth and opportunity. Big data is defined as collections of datasets whose volume, velocity or variety is so large that it is difficult to store, manage, process and analyze the data using traditional databases and data processing tools. Big data science and analytics deals with collection, storage, processing and analysis of massive-scale data. Industry surveys, by Gartner and e-Skills, for instance, predict that there will be over 2 million job openings for engineers and scientists trained in the area of data science and analytics alone, and that the job market is in this area is growing at a 150 percent year-over-year growth rate.
    [Show full text]
  • Data Warehousing on AWS
    Data Warehousing on AWS March 2016 Amazon Web Services – Data Warehousing on AWS March 2016 © 2016, Amazon Web Services, Inc. or its affiliates. All rights reserved. Notices This document is provided for informational purposes only. It represents AWS’s current product offerings and practices as of the date of issue of this document, which are subject to change without notice. Customers are responsible for making their own independent assessment of the information in this document and any use of AWS’s products or services, each of which is provided “as is” without warranty of any kind, whether express or implied. This document does not create any warranties, representations, contractual commitments, conditions or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements, and this document is not part of, nor does it modify, any agreement between AWS and its customers. Page 2 of 26 Amazon Web Services – Data Warehousing on AWS March 2016 Contents Abstract 4 Introduction 4 Modern Analytics and Data Warehousing Architecture 6 Analytics Architecture 6 Data Warehouse Technology Options 12 Row-Oriented Databases 12 Column-Oriented Databases 13 Massively Parallel Processing Architectures 15 Amazon Redshift Deep Dive 15 Performance 15 Durability and Availability 16 Scalability and Elasticity 16 Interfaces 17 Security 17 Cost Model 18 Ideal Usage Patterns 18 Anti-Patterns 19 Migrating to Amazon Redshift 20 One-Step Migration 20 Two-Step Migration 20 Tools for Database Migration 21 Designing Data Warehousing Workflows 21 Conclusion 24 Further Reading 25 Page 3 of 26 Amazon Web Services – Data Warehousing on AWS March 2016 Abstract Data engineers, data analysts, and developers in enterprises across the globe are looking to migrate data warehousing to the cloud to increase performance and lower costs.
    [Show full text]
  • Performance at Scale with Amazon Elasticache
    Performance at Scale with Amazon ElastiCache July 2019 Notices Customers are responsible for making their own independent assessment of the information in this document. This document: (a) is for informational purposes only, (b) represents current AWS product offerings and practices, which are subject to change without notice, and (c) does not create any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or services are provided “as is” without warranties, representations, or conditions of any kind, whether express or implied. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements, and this document is not part of, nor does it modify, any agreement between AWS and its customers. © 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved. Contents Introduction .......................................................................................................................... 1 ElastiCache Overview ......................................................................................................... 2 Alternatives to ElastiCache ................................................................................................. 2 Memcached vs. Redis ......................................................................................................... 3 ElastiCache for Memcached ............................................................................................... 5 Architecture with ElastiCache for Memcached ...............................................................
    [Show full text]
  • Performance Efficiency Pillar
    Performance Efficiency Pillar AWS Well-Architected Framework Performance Efficiency Pillar AWS Well-Architected Framework Performance Efficiency Pillar: AWS Well-Architected Framework Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. Performance Efficiency Pillar AWS Well-Architected Framework Table of Contents Abstract and Introduction ................................................................................................................... 1 Abstract .................................................................................................................................... 1 Introduction .............................................................................................................................. 1 Performance Efficiency ....................................................................................................................... 2 Design Principles ........................................................................................................................ 2 Definition .................................................................................................................................
    [Show full text]
  • Amazon Documentdb Deep Dive
    DAT326 Amazon DocumentDB deep dive Joseph Idziorek Antra Grover Principal Product Manager Software Development Engineer Amazon Web Services Fulfillment By Amazon © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Agenda What is the purpose of a document database? What customer problems does Amazon DocumentDB (with MongoDB compatibility) solve and how? Customer use case and learnings: Fulfillment by Amazon What did we deliver for customers this year? What’s next? © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Purpose-built databases Relational Key value Document In-memory Graph Search Time series Ledger Why document databases? Denormalized data Normalized data model model { 'name': 'Bat City Gelato', 'price': '$', 'rating': 5.0, 'review_count': 46, 'categories': ['gelato', 'ice cream'], 'location': { 'address': '6301 W Parmer Ln', 'city': 'Austin', 'country': 'US', 'state': 'TX', 'zip_code': '78729'} } Why document databases? GET https://api.yelp.com/v3/businesses/{id} { 'name': 'Bat City Gelato', 'price': '$', 'rating': 5.0, 'review_count': 46, 'categories': ['gelato', 'ice cream'], 'location': { 'address': '6301 W Parmer Ln', 'city': 'Austin', 'country': 'US', 'state': 'TX', 'zip_code': '78729'} } Why document databases? response = yelp_api.search_query(term='ice cream', location='austin, tx', sort_by='rating', limit=5) Why document databases? for i in response['businesses']: col.insert_one(i) db.businesses.aggregate([ { $group: { _id: "$price", ratingAvg: { $avg: "$rating"}} } ]) db.businesses.find({
    [Show full text]
  • A Motion Is Requested to Authorize the Execution of a Contract for Amazon Business Procurement Services Through the U.S. Communities Government Purchasing Alliance
    MOT 2019-8118 Page 1 of 98 VILLAGE OF DOWNERS GROVE Report for the Village Council Meeting 3/19/2019 SUBJECT: SUBMITTED BY: Authorization of a contract for Amazon Business procurement Judy Buttny services Finance Director SYNOPSIS A motion is requested to authorize the execution of a contract for Amazon Business procurement services through the U.S. Communities Government Purchasing Alliance. STRATEGIC PLAN ALIGNMENT The goals for 2017-2019 includes Steward of Financial Sustainability, and Exceptional, Continual Innovation. FISCAL IMPACT There is no cost to utilize Amazon Business procurement services through the U.S. Communities Government Purchasing Alliance. RECOMMENDATION Approval on the March 19, 2019 Consent Agenda. BACKGROUND U.S. Communities Government Purchasing Alliance is the largest public sector cooperative purchasing organization in the nation. All contracts are awarded by a governmental entity utilizing industry best practices, processes and procedures. The Village of Downers Grove has been a member of the U.S. Communities Government Purchasing Alliance since 2008. Through cooperative purchasing, the Village is able to take advantage of economy of scale and reduce the cost of goods and services. U.S. Communities has partnered with Amazon Services to offer local government agencies the ability to utilize Amazon Business for procurement services at no cost to U.S. Communities members. Amazon Business offers business-only prices on millions of products in a competitive digital market place and a multi-level approval workflow. Staff can efficiently find quotes and purchase products for the best possible price, and the multi-level approval workflow ensures this service is compliant with the Village’s competitive process for purchases under $7,000.
    [Show full text]
  • Amazon Elasticache Deep Dive Powering Modern Applications with Low Latency and High Throughput
    Amazon ElastiCache Deep Dive Powering modern applications with low latency and high throughput Michael Labib Sr. Manager, Non-Relational Databases © 2020, Amazon Web Services, Inc. or its Affiliates. Agenda • Introduction to Amazon ElastiCache • Redis Topologies & Features • ElastiCache Use Cases • Monitoring, Sizing & Best Practices © 2020, Amazon Web Services, Inc. or its Affiliates. Introduction to Amazon ElastiCache © 2020, Amazon Web Services, Inc. or its Affiliates. Purpose-built databases © 2020, Amazon Web Services, Inc. or its Affiliates. Purpose-built databases © 2020, Amazon Web Services, Inc. or its Affiliates. Modern real-time applications require Performance, Scale & Availability Users 1M+ Data volume Terabytes—petabytes Locality Global Performance Microsecond latency Request rate Millions per second Access Mobile, IoT, devices Scale Up-out-in E-Commerce Media Social Online Shared economy Economics Pay-as-you-go streaming media gaming Developer access Open API © 2020, Amazon Web Services, Inc. or its Affiliates. Amazon ElastiCache – Fully Managed Service Redis & Extreme Secure Easily scales to Memcached compatible performance and reliable massive workloads Fully compatible with In-memory data store Network isolation, encryption Scale writes and open source Redis and cache for microsecond at rest/transit, HIPAA, PCI, reads with sharding and Memcached response times FedRAMP, multi AZ, and and replicas automatic failover © 2020, Amazon Web Services, Inc. or its Affiliates. What is Redis? Initially released in 2009, Redis provides: • Complex data structures: Strings, Lists, Sets, Sorted Sets, Hash Maps, HyperLogLog, Geospatial, and Streams • High-availability through replication • Scalability through online sharding • Persistence via snapshot / restore • Multi-key atomic operations A high-speed, in-memory, non-Relational data store. • LUA scripting Customers love that Redis is easy to use.
    [Show full text]
  • Migrating to Google Cloud Storage Nearline from Amazon Glacier
    Migrating to Google Cloud PAUL NEWSON | 07/23/15 Storage Nearline ​ Migrating to Google Cloud Storage Nearline From Amazon Glacier Page 1 Migrating to Google Cloud PAUL NEWSON | 07/23/15 Storage Nearline ​ Migrating to Google Cloud Storage Nearline From Amazon Glacier Table of contents: Summary Overview Prerequisites Create a Workspace and Staging Area Create a Bucket Using the Nearline Storage Class Choose a Naming Convention Begin Storing New Data in Cloud Storage Nearline Migrating Data Stored Directly in Amazon Glacier Get an Inventory of Archives Make an Archive Available for Download Download the Archive to a Staging Area Upload Data to Cloud Storage Nearline Migrating in Batches Migrating Data Stored in Amazon Glacier via Amazon S3 Get an Inventory of Archives Make an Archive Available for Download Upload Data to Cloud Storage Nearline Migrating in Batches Understanding the Cost of Retrieving Data from Amazon Glacier Recommendations Appendix A: Creating a Workspace and Staging Area Create or Select a Cloud Platform Project Install and Configure the Cloud SDK Create and Configure a Compute Engine Instance References Page 2 Migrating to Google Cloud PAUL NEWSON | 07/23/15 Storage Nearline ​ Page 3 Migrating to Google Cloud PAUL NEWSON | 07/23/15 Storage Nearline ​ Summary Google Cloud Storage Nearline is a low cost storage class available in Google Cloud Storage which is attractive for archival workloads, such as cold storage and disaster recovery. Amazon Glacier also provides a storage service suitable for archival workloads, but retrieval latency in Amazon Glacier is measured in hours whereas Google Cloud Storage Nearline provides retrieval latency measured in seconds.
    [Show full text]
  • Amazon Mechanical Turk Developer Guide API Version 2017-01-17 Amazon Mechanical Turk Developer Guide
    Amazon Mechanical Turk Developer Guide API Version 2017-01-17 Amazon Mechanical Turk Developer Guide Amazon Mechanical Turk: Developer Guide Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. Amazon Mechanical Turk Developer Guide Table of Contents What is Amazon Mechanical Turk? ........................................................................................................ 1 Mechanical Turk marketplace ....................................................................................................... 1 Marketplace rules ............................................................................................................... 2 The sandbox marketplace .................................................................................................... 2 Tasks that work well on Mechanical Turk ...................................................................................... 3 Tasks can be completed within a web browser ....................................................................... 3 Work can be broken into distinct, bite-sized tasks .................................................................
    [Show full text]