The Synthesis and Antioxidant Capacities of a Range of Resveratrol and Related Phenolic Glucosides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 4. Synthesis of Natural Oligomeric
CHAPTER 4. SYNTHESIS OF NATURAL OLIGOMERIC STILBENOIDS AND ANALOGUES As mentioned above, stilbene oxidation was carried out with two different techniques: electrochemical oxidation reported in Chapter 3 and via various chemical oxidants in different solvents. The objectives of using these two approaches are to be able to compare their respective merits and develop a biomimetic approach that would mimic what nature does as closely as possible. A comprehensive literature review will summaries published biomimetic oligostilbenoids syntheses based on the author’s approaches as well as non-biomimetic syntheses. This is followed by the results obtained in this study and discussions on establishing the mechanisms involved in the oxidative formation of oligostilbenoids. A comparison will be made with results obtained in the preceding chapter. The structures of prepared oligostilbenoids are confirmed by spectroscopic measurements and/or by comparing with reported spectroscopic data in the literature. Finally, this chapter is completed with an overall conclusion and experimental procedures for oligostilbenoids preparation. 4.1. Oligostilbenoid biomimetic syntheses The work presented below was initiated by the various chemists for different purposes. In some cases the objective was to obtain chemical correlations in order to support proposed structures for newly isolated oligostilbenes. In other instances, metabolic biotransformation of (oligo)stilbenoid alexins by pathogens and/or oxidases was the focus of the investigations. Finally, some groups attempted the biomimetic 76 synthesis of oligostilbenoids as an obvious preparative method. Notwithstanding their objectives, biomimetic syntheses will be presented below by the type of condensing agent, i.e. biological agents (cells or enzymes) or chemical reagents, including one electron oxidants and acid catalysts. -
Resveratrol and Its Oligomers: Modulation of Sphingolipid Metabolism and Signaling in Disease
Resveratrol and Its Oligomers: Modulation of Sphingolipid Metabolism and Signaling in Disease Keng Gat Lim‡/*, Alexander I. Gray‡, Nahoum G. Anthony‡, Simon P. Mackay‡, Susan Pyne‡ and Nigel J. Pyne‡ ‡Cell Biology and Drug Discovery & Design Groups, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom / Current address: Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Biopolis, Singapore 138672, Singapore * To whom correspondence should be addressed 1 Content 1. Introduction 1.1. Origin and activity of resveratrol oligomers 1.2. Resveratrol oligomerization 1.3. Pharmacokinetics and toxicity 2. Sphingolipids 2.1. Sphingolipid metabolism 2.2. Biological activity of sphingolipids 2.3. S1P signaling 3. Effects of resveratrol on sphingolipids in disease 3.1. Cancer and inflammation 3.2. Cardiovascular disease 3.3. Neurodegenerative disease 3.4. Metabolic disease 4. Summary and future directions 2 Abstract--Resveratrol, a natural compound endowed with multiple health-promoting effects has received much attention given its potential for the treatment of cardiovascular, inflammatory, neurodegenerative, metabolic and age-related diseases. However, the translational potential of resveratrol has been limited by its specificity, poor bioavailability and uncertain toxicity. In recent years, there has been an accumulation of evidence demonstrating that resveratrol modulates sphingolipid metabolism. Moreover, resveratrol forms higher order oligomers that exhibit better selectivity and potency in modulating sphingolipid metabolism. This review evaluates the evidence supporting the modulation of sphingolipid metabolism and signaling as a mechanism of action underlying the therapeutic efficacy of resveratrol and oligomers in diseases, such as cancer. 3 1. -
A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis Vinifera L.) Roots, Woods, Canes, Stems, and Leaves
antioxidants Review A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis vinifera L.) Roots, Woods, Canes, Stems, and Leaves Piebiep Goufo 1,* , Rupesh Kumar Singh 2 and Isabel Cortez 1 1 Centre for the Research and Technology of Agro-Environment and Biological Sciences, Departamento de Agronomia, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; [email protected] 2 Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; [email protected] * Correspondence: [email protected] Received: 15 April 2020; Accepted: 5 May 2020; Published: 8 May 2020 Abstract: Due to their biological activities, both in plants and in humans, there is a great interest in finding natural sources of phenolic compounds or ways to artificially manipulate their levels. During the last decade, a significant amount of these compounds has been reported in the vegetative organs of the vine plant. In the roots, woods, canes, stems, and leaves, at least 183 phenolic compounds have been identified, including 78 stilbenes (23 monomers, 30 dimers, 8 trimers, 16 tetramers, and 1 hexamer), 15 hydroxycinnamic acids, 9 hydroxybenzoic acids, 17 flavan-3-ols (of which 9 are proanthocyanidins), 14 anthocyanins, 8 flavanones, 35 flavonols, 2 flavones, and 5 coumarins. There is great variability in the distribution of these chemicals along the vine plant, with leaves and stems/canes having flavonols (83.43% of total phenolic levels) and flavan-3-ols (61.63%) as their main compounds, respectively. In light of the pattern described from the same organs, quercetin-3-O-glucuronide, quercetin-3-O-galactoside, quercetin-3-O-glucoside, and caftaric acid are the main flavonols and hydroxycinnamic acids in the leaves; the most commonly represented flavan-3-ols and flavonols in the stems and canes are catechin, epicatechin, procyanidin B1, and quercetin-3-O-galactoside. -
The Stilbene Profile in Edible Berries
Phytochem Rev https://doi.org/10.1007/s11101-018-9580-2 The stilbene profile in edible berries Alfred Błaszczyk . Sylwia Sady . Maria Sielicka Received: 6 November 2017 / Accepted: 7 June 2018 Ó The Author(s) 2018 Abstract Edible berries are becoming increasingly Introduction popular to consume in fresh, dried, frozen or processed forms due to their high content and wide diversity of In recent years, edible berries have attracted much bioactive compounds with considerable health bene- interest due to their high content and wide diversity of fits. Among the wide variety of phytochemicals found bioactive compounds with potential health benefits in berries are stilbenes, which demonstrate a broad (Zhao 2007; Seeram 2012; Jimenez-Garcia et al. 2013; range of biological and pharmacological activities. Nile and Park 2014). Berry fruits are widely consumed Their content depends on many factors, including the in fresh, dried, frozen forms or as processed products, cultivar, ripening stage, climatic conditions, agro- including canned fruits, beverages, jams and yogurts. nomic management, storage conditions and posthar- The most consumed berries are red raspberries (Rubus vest management. However, the application of various idaeus), strawberries (Fragaria x ananassa), black- abiotic and biotic external stimuli could be a strategy berries (Rubus spp.), blueberries (Vaccinium corym- for increasing the production of stilbenes in edible bosum), black currants (Ribes nigrum), red currants berries. To date, several different elicitors, as inducers (Ribes rubrum), chokeberries (Aronia melanocarpa), of plant secondary metabolite stilbenes, have been cranberries (Vaccinium macrocarpon), grapevines applied in different studies. This review focuses on the (Vitis vinifera L. and other Vitis species), bilberries isolation and identification of stilbenes from edible (Vaccinium myrtillus L.), deerberries (Vaccinium berries and presents the influence of different external stamineum L.), cowberries (Vaccinium vitis-idaea stimuli on their profile in grapes. -
Volume 13. Issue 11. Pages 1419-1568. 2018 ISSN 1934-578X (Printed); ISSN 1555-9475 (Online) NPC Natural Product Communications
Volume 13. Issue 11. Pages 1419-1568. 2018 ISSN 1934-578X (printed); ISSN 1555-9475 (online) www.naturalproduct.us NPC Natural Product Communications EDITOR-IN-CHIEF HONORARY EDITOR DR. PAWAN K AGRAWAL PROFESSOR GERALD BLUNDEN Natural Product Inc. The School of Pharmacy & Biomedical Sciences, 7963, Anderson Park Lane, University of Portsmouth, Westerville, Ohio 43081, USA Portsmouth, PO1 2DT U.K. [email protected] [email protected] EDITORS ADVISORY BOARD PROFESSOR MAURIZIO BRUNO Department STEBICEF, Prof. Giovanni Appendino Prof. Niel A. Koorbanally University of Palermo, Viale delle Scienze, Novara, Italy Durban, South Africa Parco d’Orleans II - 90128 Palermo, Italy Prof. Chiaki Kuroda [email protected] Prof. Norbert Arnold Halle, Germany Tokyo, Japan PROFESSOR CARMEN MARTIN-CORDERO Department of Pharmacology, Faculty of Pharmacy, Prof. Yoshinori Asakawa Prof. Hartmut Laatsch Tokushima, Japan Gottingen, Germany University of Seville, Seville, Spain [email protected] Prof. Vassaya Bankova Prof. Marie Lacaille-Dubois PROFESSOR VLADIMIR I. KALININ Sofia, Bulgaria Dijon, France G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Prof. Roberto G. S. Berlinck Prof. Shoei-Sheng Lee Far Eastern Branch, Russian Academy of Sciences, São Carlos, Brazil Taipei, Taiwan Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation Prof. Anna R. Bilia Prof. M. Soledade C. Pedras [email protected] Florence, Italy Saskatoon, Canada PROFESSOR YOSHIHIRO MIMAKI Prof. Geoffrey Cordell Prof. Luc Pieters School of Pharmacy, Chicago, IL, USA Antwerp, Belgium Tokyo University of Pharmacy and Life Sciences, Prof. Fatih Demirci Prof. Peter Proksch Horinouchi 1432-1, Hachioji, Tokyo 192-0392, Japan Eskişehir, Turkey Düsseldorf, Germany [email protected] Prof. -
Antitumoral Actions of Natural Stilbenes Derived from Vitis Vinifera Iris Aja Perez
Antitumoral actions of natural stilbenes derived from Vitis vinifera Iris Aja Perez To cite this version: Iris Aja Perez. Antitumoral actions of natural stilbenes derived from Vitis vinifera. Cellular Biology. Université de Bordeaux; Universidad del País Vasco. Facultad de ciencias, 2020. English. NNT : 2020BORD0115. tel-03117766 HAL Id: tel-03117766 https://tel.archives-ouvertes.fr/tel-03117766 Submitted on 21 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE EN COTUTELLE PRÉSENTÉE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE BORDEAUX ET DE L’UNIVERSITÉ DU PAYS BASQUE ÉCOLE DOCTORALE SCIENCES DE LA VIE ET DE LA SANTÉ SPÉCIALITÉ: BIOCHIMIE ÉCOLE DE MASTER ET DE DOCTORAT (MDe) SPÉCIALITÉ: RECHERCHE BIOMÉDICALE Par Iris AJA PÉREZ Antitumoral actions of natural stilbenes derived from Vitis vinifera Sous la direction de Tristan RICHARD et de José Ignacio RUIZ SANZ Soutenue le 25 Septembre 2020 Membres du jury : M. PALMA MARTÍNEZ, José Manuel CSIC Président Mme. MARTINEZ SAN PELAYO, María José Université du Pays Basque Examinateur Mme. GARCÍA CONESA, María Teresa CSIC Examinateur Mme. GARCÍA PARRILLA, María Carmen Université de Séville Examinateur Mme. GAUDIN, Karen Université de Bordeaux Examinateur M. -
The Synthesis and Antioxidant Capacities of a Range of Resveratrol and Related Phenolic Glucosides
The Synthesis and Antioxidant Capacities of a range of Resveratrol and Related Phenolic Glucosides. A thesis presented in fulfilment of the requirements for the degree of Doctor of Philosophy Qinyong Mao BSc (2004) Zhejiang Normal University MSc (2007) Wollongong University The University of Adelaide School of Agriculture, Food and Wine September 2015 Table of Contents Abstract........................................................................................................................... iv List of publication........................................................................................................... vi Declaration...................................................................................................................... vii Acknowledgements......................................................................................................... viii Abbreviations.................................................................................................................. ix Figures, Schemes and Tables......................................................................................... xi CHAPTER 1: INTRODUCTION................................................................................. 1 1.1 Polyphenolics as Antioxidants.................................................................................... 1 1.2 Resveratrol.................................................................................................................. 5 1.2.1 Natural Sources of Resveratrol...............................................................................