Coleoptera: Cerambycidae), in Northeast Asia: Implications for Future Restoration in Korea

Total Page:16

File Type:pdf, Size:1020Kb

Coleoptera: Cerambycidae), in Northeast Asia: Implications for Future Restoration in Korea insects Article Phylogeographic Investigation of an Endangered Longhorn Beetle, Callipogon relictus (Coleoptera: Cerambycidae), in Northeast Asia: Implications for Future Restoration in Korea Ji Hyoun Kang 1,† , Dae-Am Yi 2,†, Alexander V. Kuprin 3 , Changdo Han 4 and Yeon Jae Bae 5,* 1 Korean Entomological Institute, Korea University, Seoul 02841, Korea; [email protected] 2 Research Center of Natural Monument Insects, Yeongwol Insect Museum, Yeongwol 26210, Korea; [email protected] 3 Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; [email protected] 4 Wildlife Research Center, Korea University, Ogawa-chô, Kodaira City, Tokyo 187-0032, Japan; [email protected] 5 Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea * Correspondence: [email protected]; Tel.: +82-0(2)-3290-3408 † These authors contributed equally to this work. Simple Summary: The critically endangered Callipogon relictus is one of the largest longhorn beetle species and also the only remnant species of the genus Callipogon found in the Palearctic region. Knowledge of the phylogeographic history and current conservational status is essential to un- derstand its unique distribution and to establish efficient conservation strategies. We studied the phylogeographical pattern and genetic diversity of C. relictus from almost its entire geographical range. The level of genetic diversity and divergence of C. relictus from the known distributions in four regions in Russia, China, North Korea, and South Korea using two mitochondrial markers (COI Citation: Kang, J.H.; Yi, D.-A.; and COII) revealed that genetic diversity lies within the range of intraspecific levels. Relatively Kuprin, A.V.; Han, C.; Bae, Y.J. Phylogeographic Investigation of an high genetic diversity with no distinct phylogeographic structures indicates that the wide range of Endangered Longhorn Beetle, current fragmented populations might be the remnant of genetically diverse populations in the past. Callipogon relictus (Coleoptera: The results of our phylogenetic and population genetic analyses suggest that C. relictus populations Cerambycidae), in Northeast Asia: surveyed in the present study can be used as a “source” for a future restoration and conservation Implications for Future Restoration in program. The findings of the genetic characteristics and phylogeographic history of C. relictus will Korea. Insects 2021, 12, 555. https:// help to establish effective conservation strategies for this endangered longhorn beetle species in doi.org/10.3390/insects12060555 Northeast Asia. Received: 12 April 2021 Abstract: The longhorn beetle, Callipogon (Eoxenus) relictus Semenov, is the only remnant species Accepted: 7 June 2021 found in the Palearctic region, while all other Callipogon species are distributed mainly in Central Published: 15 June 2021 America and partly in South America. This species has been placed in the first category (as ‘critically endangered’) of the Red Data Book in Russia and designated as one of the top-priority target species Publisher’s Note: MDPI stays neutral among all endangered invertebrate species for restoration in South Korea since 2006. Although with regard to jurisdictional claims in its restricted distribution in Northeast Asia with a high conservational value has been highlighted, published maps and institutional affil- iations. genetic features of C. relictus from different geographic regions remain unexplored. We first investi- gated the level of genetic diversity and phylogeographic patterns of C. relictus to evaluate the current conservational status and the feasibility of the implementation of a restoration program. The average genetic divergence of mitochondrial gene COI based on Kimura-2-parameter distance among the four regions in Russia, China, North Korea, and South Korea was 2.2%, which lies within the range Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. of intraspecific levels. However, two separate clades with 3.8% divergence were identified, despite This article is an open access article no geographical clustering of haplotypes. The linear pattern of the haplotype network with a high distributed under the terms and level of haplotype and nucleotide diversities suggests that the wide range of currently fragmented conditions of the Creative Commons populations might be the remnant of genetically diverse populations in the past. This study will Attribution (CC BY) license (https:// provide crucial information on the genetic characteristics and phylogeographic history of C. relictus, creativecommons.org/licenses/by/ which will help to establish conservation strategies for this cherished insect species in Northeast Asia. 4.0/). Insects 2021, 12, 555. https://doi.org/10.3390/insects12060555 https://www.mdpi.com/journal/insects Insects 2021, 12, 555 2 of 15 Keywords: COI; COII; endangered species; longhorn beetle; restoration; saproxylic insect Insects 2021, 12, x 1. Introduction 2 of 17 The critically endangered Callipogon relictus is one of the largest, most charismatic longhorn beetle species and also the only remnant species of genus Callipogon Audinet- Serville,of C. relictus 1832,, which found will in thehelp Palearctic to establish entomo-fauna conservation(Figure strategies1). for Other this Callipogoncherished insectspecies species in are distributed mainly in Central America and partly in South America [1–4]. In Asia, Northeast Asia. C. relictus is found only in the Siberian part of the Palearctic realm comprising far-east Russia, northeast China, North Korea, and the northern part of South Korea [5–8]. The boundariesKeywords: ofCOI the; COII known; endangered habitats encompassspecies; longhorn a distance beetle; of approximatelyrestoration; saproxylic 1400 km insect north to south and (app.) 1800 km east to west, covering almost eleven degrees of latitude (from 48◦370 N to 37◦440 N) and twelve degrees of longitude (from 135◦070 E to 123◦270 E) (Figure2) . Among the four countries, in both Russia and South Korea, C. relictus was placed1. Introduction in the first category of the Red Data Book and it is protected by law [7,9,10]. In SouthThe Korea, critically it is not onlyendangered listed as anCallipogon endangered relictus species is butone is of also the regarded largest, as most a national charismatic natural monument (no. 218); even the dead body of C. relictus is required to be registered longhorn beetle species and also the only remnant species of genus Callipogon Audinet- under the regulation of Cultural Properties Protection Law. Serville,Callipogon 1832, relictus found, ain saproxylic the Palearctic longhorn entomo-fauna beetle, inhabits (Figure mixed 1). and Other deciduous Callipogon forests species butare notdistributed temperate mainly coniferous in Central forests; America the beetles and feedpartly on in the South rotten America logs of ancient[1–4]. In or Asia, C. veteranrelictus broadleafis found only trees in such the as SiberianUlmus davidiana part of thevar. Palearcticjaponica (Ulmaceae), realm comprisingQuercus mongolica far-east Russia, (Fagaceae),northeast China,Quercus North aliena, Korea, Quercus and serrata, the northern Carpinus laxiflorapart of (Betulaceae),South Korea etc.[5–8]. [7, 10The,12 –boundaries17]. Theof the wood-boring known habitats larva isencompass a polyphagous a distance internal of approximately feeder, which goes 1400 through km north a five- to south to and seven-year(app.) 1800 developmental km east to west, period covering inside rotten almost timber eleven [15]. degrees Until the of beginning latitude of (from the 1950s, 48°37′ N to there37°44 were′ N) and two twelve major populations degrees of oflongitudeC. relictus (fromin South 135°07 Korea;′ E to one 123°27 in the′ E) Gwangneung (Figure 2). Among Forestthe four in Gyeonggi-docountries, in both (province) Russia and and the South other Korea, in Chuncheon C. relictus in was Gangwon-do, placed in whichthe first cate- isgory located of the 100 Red km Data to the Book east and of theit is Gwangneungprotected by Forest,law [7,9,10]. almost In in South the same Korea, latitude it is not only (37◦ N) [14]. Unfortunately, the Chuncheon site was destroyed during the Korean War listed as an endangered species but is also regarded as a national natural monument (no. (1950–1953) and then submerged by the immense Soyang Dam built in 1967. Recently, distribution218); even the of C. dead relictus bodyin theof C. Gwangneung relictus is required forest and to a be new registered location inunder Yangyang the regulation have of beenCultural reported Properties in Korea Protection during four Law. consecutive years from 2007 to 2017 [18]. FigureFigure 1. 1.Habitus Habitus of ofCallipogon Callipogon relictus relictus, male, male (left )(left and) femaleand female (right ()right (scale) 10(scale mm). 10 mm). Insects 2021, 12, 555 3 of 15 Figure 2. Sampling sites of C. relictus in the present study [11]. While a single adult female was found every year from 2014 to 2017 [18], no female C. relictus was found for almost 20 years in Gwangneung Forest during the period of 1986–2006 [14], and it was not until 2015 that another female was observed [18]. These observations might indicate that the population size in the remaining habitat in South Korea is extremely small. Although the population in Gwangneung Forest is not extinct and its new location is continuously reported, the risk of local extinction
Recommended publications
  • Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E
    Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E. Carlton Louisiana State Arthropod Museum Coleoptera Families Everyone Should Know (Checklist) Suborder Adephaga Suborder Polyphaga, cont. •Carabidae Superfamily Scarabaeoidea •Dytiscidae •Lucanidae •Gyrinidae •Passalidae Suborder Polyphaga •Scarabaeidae Superfamily Staphylinoidea Superfamily Buprestoidea •Ptiliidae •Buprestidae •Silphidae Superfamily Byrroidea •Staphylinidae •Heteroceridae Superfamily Hydrophiloidea •Dryopidae •Hydrophilidae •Elmidae •Histeridae Superfamily Elateroidea •Elateridae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Suborder Polyphaga, cont. Superfamily Cantharoidea Superfamily Cucujoidea •Lycidae •Nitidulidae •Cantharidae •Silvanidae •Lampyridae •Cucujidae Superfamily Bostrichoidea •Erotylidae •Dermestidae •Coccinellidae Bostrichidae Superfamily Tenebrionoidea •Anobiidae •Tenebrionidae Superfamily Cleroidea •Mordellidae •Cleridae •Meloidae •Anthicidae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Superfamily Chrysomeloidea •Chrysomelidae •Cerambycidae Superfamily Curculionoidea •Brentidae •Curculionidae Total: 35 families of 131 in the U.S. Suborder Adephaga Family Carabidae “Ground and Tiger Beetles” Terrestrial predators or herbivores (few). 2600 N. A. spp. Suborder Adephaga Family Dytiscidae “Predacious diving beetles” Adults and larvae aquatic predators. 500 N. A. spp. Suborder Adephaga Family Gyrindae “Whirligig beetles” Aquatic, on water
    [Show full text]
  • Elytra Reduction May Affect the Evolution of Beetle Hind Wings
    Zoomorphology https://doi.org/10.1007/s00435-017-0388-1 ORIGINAL PAPER Elytra reduction may affect the evolution of beetle hind wings Jakub Goczał1 · Robert Rossa1 · Adam Tofilski2 Received: 21 July 2017 / Revised: 31 October 2017 / Accepted: 14 November 2017 © The Author(s) 2017. This article is an open access publication Abstract Beetles are one of the largest and most diverse groups of animals in the world. Conversion of forewings into hardened shields is perceived as a key adaptation that has greatly supported the evolutionary success of this taxa. Beetle elytra play an essential role: they minimize the influence of unfavorable external factors and protect insects against predators. Therefore, it is particularly interesting why some beetles have reduced their shields. This rare phenomenon is called brachelytry and its evolution and implications remain largely unexplored. In this paper, we focused on rare group of brachelytrous beetles with exposed hind wings. We have investigated whether the elytra loss in different beetle taxa is accompanied with the hind wing shape modification, and whether these changes are similar among unrelated beetle taxa. We found that hind wings shape differ markedly between related brachelytrous and macroelytrous beetles. Moreover, we revealed that modifications of hind wings have followed similar patterns and resulted in homoplasy in this trait among some unrelated groups of wing-exposed brachelytrous beetles. Our results suggest that elytra reduction may affect the evolution of beetle hind wings. Keywords Beetle · Elytra · Evolution · Wings · Homoplasy · Brachelytry Introduction same mechanism determines wing modification in all other insects, including beetles. However, recent studies have The Coleoptera order encompasses almost the quarter of all provided evidence that formation of elytra in beetles is less currently known animal species (Grimaldi and Engel 2005; affected by Hox gene than previously expected (Tomoyasu Hunt et al.
    [Show full text]
  • First Detection of Pine Wood Nematode Vector, Monochamus Sutor Sutor (Linnaeus, 1758) in Lebanon (Coleoptera, Cerambycidae, Lamiinae)
    Bulletin de la Société entomologique de France, 121 (4), 2016 : 455-460. First detection of Pine Wood Nematode Vector, Monochamus sutor sutor (Linnaeus, 1758) in Lebanon (Coleoptera, Cerambycidae, Lamiinae) by Zinette MOUSSA1, Christian COCQUEMPOT2 & Dany YAMMOUNI1 1 Laboratory of Entomology − Lebanese Agricultural Research Institute, Fanar, Lebanon <[email protected]> <[email protected]> 2 INRA, UMR CBGP, Campus International de Baillarguet, F − 34988 Montferrier-sur-Lez cedex, France <[email protected]> Abstract. − An adult of Monochamus (Monochamus) sutor sutor (Linnaeus, 1758) has been found alive in Lebanon in 2014. This potential vector of the phytoparasitic pine nematodes Bursaphelenchus spp., the causal agents of pine wilt disease, is a serious threat to Lebanese forest. The circumstances of the discovery are given, followed by information about the genera Monochamus and Bursaphelenchus applied to Lebanon. An evaluation of the risk for forests of Lebanon is specified. Résumé. − Premier signalement du vecteur du Nématode du Pin, Monochamus sutor sutor (Linnaeus, 1758) au Liban (Coleoptera, Cerambycidae, Lamiinae). Un adulte de Monochamus (Monochamus) sutor sutor (Linnaeus, 1758) vivant a été découvert au Liban en 2014. Ce vecteur potentiel des Nématodes phytoparasites Bursaphe lenchus spp., agents du dépérissement des Conifères, représente une menace sérieuse pour la forêt libanaise. Les circonstances de la découverte sont données et suivies des informations sur les genres Monochamus et Bursaphelenchus appliquées au Liban. Une évaluation du risque encouru par les forêts du Liban est précisée. Keywords. − Bursaphelenchus spp., Pine wilt disease, Lebanon, interception, risks. _________________ Monochamus Dejean, 1821 (Coleoptera, Cerambycidae, Lamiinae) is a large genus of wood-boring beetles comprising approximately 150 species reported in Asia, Europe, Africa and North America (VILLIERS, 1978; USDA-APHIS, 2011).
    [Show full text]
  • Envenomations in Humans Caused by The
    linica f C l To o x l ic a o n r l o u g o y J Amaral et al., J Clin Toxicol 2018, 8:4 Journal of Clinical Toxicology DOI: 10.4172/2161-0495.1000392 ISSN: 2161-0495 Case Report Open Access Envenomations in Humans Caused by the Venomous Beetle Onychocerus albitarsis: Observation of Two Cases in São Paulo State, Brazil Amaral ALS1*, Castilho AL1, Borges de Sá AL2 and Haddad V Jr3 1Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista – UNESP, CEP 18618-000, Botucatu, São Paulo State, Brazil 2Private Clinic, Botucatu, São Paulo State, Brazil 3Departamento de Dermatologia e Radioterapia, Faculdade de Medicina, Universidade Estadual Paulista – UNESP, CP 557, CEP 18618-000, Botucatu, São Paulo State, Brazil *Corresponding author: Antonio L. Sforcin Amaral, Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista – UNESP, CEP 18618-000, Botucatu, São Paulo State, Brazil, Email: [email protected] Received date: July 23, 2018; Accepted date: August 21, 2018; Published date: August 24, 2018 Copyright: ©2018 Amaral ALS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Beetles (Coleoptera) are the most diverse group of animals in the world and occur in many environments. In Atlantic and Amazon rainforests, the scorpion-beetle Onychocerus albitarsis (Cerambycidae), can be found. It has venom glandules and inoculators organs in the antenna extremities. Two injuries in humans are reported, showing different patterns of skin reaction after the stings.
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • (Coleoptera) of Peru Miguel A
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2-29-2012 Preliminary checklist of the Cerambycidae, Disteniidae, and Vesperidae (Coleoptera) of Peru Miguel A. Monné Universidade Federal do Rio de Janeiro, [email protected] Eugenio H. Nearns University of New Mexico, [email protected] Sarah C. Carbonel Carril Universidad Nacional Mayor de San Marcos, Peru, [email protected] Ian P. Swift California State Collection of Arthropods, [email protected] Marcela L. Monné Universidade Federal do Rio de Janeiro, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Monné, Miguel A.; Nearns, Eugenio H.; Carbonel Carril, Sarah C.; Swift, Ian P.; and Monné, Marcela L., "Preliminary checklist of the Cerambycidae, Disteniidae, and Vesperidae (Coleoptera) of Peru" (2012). Insecta Mundi. Paper 717. http://digitalcommons.unl.edu/insectamundi/717 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0213 Preliminary checklist of the Cerambycidae, Disteniidae, and Vesperidae (Coleoptera) of Peru Miguel A. Monné Museu Nacional Universidade Federal do Rio de Janeiro Quinta da Boa Vista São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil Eugenio H. Nearns Department of Biology Museum of Southwestern Biology University of New Mexico Albuquerque, NM 87131-0001, USA Sarah C. Carbonel Carril Departamento de Entomología Museo de Historia Natural Universidad Nacional Mayor de San Marcos Avenida Arenales 1256, Lima, Peru Ian P.
    [Show full text]
  • Chrysomela 43.10-8-04
    CHRYSOMELA newsletter Dedicated to information about the Chrysomelidae Report No. 43.2 July 2004 INSIDE THIS ISSUE Fabreries in Fabreland 2- Editor’s Page St. Leon, France 2- In Memoriam—RP 3- In Memoriam—JAW 5- Remembering John Wilcox Statue of 6- Defensive Strategies of two J. H. Fabre Cassidine Larvae. in the garden 7- New Zealand Chrysomelidae of the Fabre 9- Collecting in Sholas Forests Museum, St. 10- Fun With Flea Beetle Feces Leons, France 11- Whither South African Cassidinae Research? 12- Indian Cassidinae Revisited 14- Neochlamisus—Cryptic Speciation? 16- In Memoriam—JGE 16- 17- Fabreries in Fabreland 18- The Duckett Update 18- Chrysomelidists at ESA: 2003 & 2004 Meetings 19- Recent Chrysomelid Literature 21- Email Address List 23- ICE—Phytophaga Symposium 23- Chrysomela Questionnaire See Story page 17 Research Activities and Interests Johan Stenberg (Umeå Univer- Duane McKenna (Harvard Univer- Eduard Petitpierre (Palma de sity, Sweden) Currently working on sity, USA) Currently studying phyloge- Mallorca, Spain) Interested in the cy- coevolutionary interactions between ny, ecological specialization, population togenetics, cytotaxonomy and chromo- the monophagous leaf beetles, Altica structure, and speciation in the genus somal evolution of Palearctic leaf beetles engstroemi and Galerucella tenella, and Cephaloleia. Needs Arescini and especially of chrysomelines. Would like their common host plant Filipendula Cephaloleini in ethanol, especially from to borrow or exchange specimens from ulmaria (meadow sweet) in a Swedish N. Central America and S. America. Western Palearctic areas. Archipelago. Amanda Evans (Harvard University, Maria Lourdes Chamorro-Lacayo Stefano Zoia (Milan, Italy) Inter- USA) Currently working on a phylogeny (University of Minnesota, USA) Cur- ested in Old World Eumolpinae and of Leptinotarsa to study host use evolu- rently a graduate student working on Mediterranean Chrysomelidae (except tion.
    [Show full text]
  • Longhorn Beetles (Coleoptera, Cerambycidae) Christian Cocquempot, Ake Lindelöw
    Longhorn beetles (Coleoptera, Cerambycidae) Christian Cocquempot, Ake Lindelöw To cite this version: Christian Cocquempot, Ake Lindelöw. Longhorn beetles (Coleoptera, Cerambycidae). Alien terrestrial arthropods of Europe, 4 (1), Pensoft Publishers, 2010, BioRisk, 978-954-642-554-6. 10.3897/biorisk.4.56. hal-02823535 HAL Id: hal-02823535 https://hal.inrae.fr/hal-02823535 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A peer-reviewed open-access journal BioRisk 4(1): 193–218 (2010)Longhorn beetles (Coleoptera, Cerambycidae). Chapter 8.1 193 doi: 10.3897/biorisk.4.56 RESEARCH ARTICLE BioRisk www.pensoftonline.net/biorisk Longhorn beetles (Coleoptera, Cerambycidae) Chapter 8.1 Christian Cocquempot1, Åke Lindelöw2 1 INRA UMR Centre de Biologie et de Gestion des Populations, CBGP, (INRA/IRD/CIRAD/Montpellier SupAgro), Campus international de Baillarguet, CS 30016, 34988 Montférrier-sur-Lez, France 2 Swedish university of agricultural sciences, Department of ecology. P.O. Box 7044, S-750 07 Uppsala, Sweden Corresponding authors: Christian Cocquempot ([email protected]), Åke Lindelöw (Ake.Linde- [email protected]) Academic editor: David Roy | Received 28 December 2009 | Accepted 21 May 2010 | Published 6 July 2010 Citation: Cocquempot C, Lindelöw Å (2010) Longhorn beetles (Coleoptera, Cerambycidae).
    [Show full text]
  • Screening Aid Mountain Oak Longhorned Beetle Massicus Raddei (Blessig)
    Screening Aid Mountain Oak Longhorned Beetle Massicus raddei (Blessig) Joseph Benzel 1) Identification Technology Program (ITP) / Colorado State University, USDA-APHIS-PPQ-Science & Technology (S&T), 2301 Research Boulevard, Suite 108, Fort Collins, Colorado 80526 U.S.A. (Email: [email protected]) This CAPS (Cooperative Agricultural Pest Survey) screening aid produced for and distributed by: Version 3 USDA-APHIS-PPQ National Identification Services (NIS) 6 July 2015 This and other identification resources are available at: http://caps.ceris.purdue.edu/taxonomic_services The mountain oak longhorned beetle (Massicus raddei) (Figs. 1-2) is a serious pest of oaks in China and has recently received widespread attention as a potentially invasive pest in other parts of the world. The beetle feeds primarily on oaks (Quercus) and chestnuts (Castanea) but has also been associated with a variety of other trees. Larvae of Massicus are wood borers which feed on the phloem of the tree, and the adults feed on the sap bleeding from wounds they inflict on branches. While feeding causes heavy crown dieback, no actual tree mortality has been reported. This species is not associated with any phytoparasites. Massicus belongs to the family Cerambycidae which is comprised of the longhorned beetles. Members of this family are recognized by their highly elongate antennae, sometimes reaching several times the length of the body. This beetle belongs to the subfamily Cerambycinae, typified by a large, undivided, stridulatory plate on the mesonotum. Massicus is a member of the tribe Cerambycini: a group of 30 genera mostly confined to the tropics and distinguished by a rounded pronotum.
    [Show full text]
  • Ethnoentomological and Distributional Notes on Cerambycidae and Other Coleoptera of Guerrero and Puebla,Mexico
    The Coleopterists Bulletin, 71(2): 301–314. 2017. ETHNOENTOMOLOGICAL AND DISTRIBUTIONAL NOTES ON CERAMBYCIDAE AND OTHER COLEOPTERA OF GUERRERO AND PUEBLA,MEXICO JONATHAN D. AMITH Research Affiliate, Department of Anthropology, Gettysburg College, Campus Box 2895, Gettysburg, PA 17325, U.S.A. and Research Associate, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, U.S.A. AND STEVEN W. LINGAFELTER Systematic Entomology Laboratory, Agriculture Research Service, United States Department of Agriculture, National Museum of Natural History, Smithsonian Institution,Washington, DC 20013-7012, U.S.A. Current address: 8920 South Bryerly Ct., Hereford, AZ 85615, U.S.A. ABSTRACT This article presents both ethnoentomological notes on Nahuatl and Mixtec language terms as they are applied to Cerambycidae (Coleoptera) and distributional records for species collected during three projects carried out in the states of Guerrero and Puebla, Mexico. Some comparative data from other Mesoamerican and Native American languages are discussed. Indigenous common names are mapped onto current taxonomic nomenclature, and an analysis is offered of the logical basis for Indigenous classification: the exclusion of some cerambycids and the inclusion of other beetles in the nominal native “cerambycid” category. New state distributional records for the Cerambycidae collected in this study are offered for Guerrero: Bebelis picta Pascoe, Callipogon senex Dupont, Neocompsa macrotricha Martins, Olenosus ser- rimanus Bates, Ornithia mexicana zapotensis Tippmann, Stenygra histrio Audinet-Serville, Strongylaspis championi Bates, Lissonotus flavocinctus puncticollis Bates, and Nothopleurus lobigenis Bates; and Puebla: Juiaparus mexicanus (Thomson), Ptychodes guttulatus Dillon and Dillon, and Steirastoma senex White. Key Words: linguistics, etymology, Nahuatl, Mixtec, longhorned beetle, wood-borer DOI.org/10.1649/0010-065X-71.2.301 The present article emerges from two language shapes.
    [Show full text]
  • Family Cerambycidae Longhorn Beetles
    Family Cerambycidae Longhorn Beetles Diagram adapted from Unwin (1984) References Duffy (1952), Handbooks for the Identification of British Insects Volume 5 Part 12. Reitter (1908) Fauna Germanica. Die Käfer des Deutschen Reiches Wallin, Nylander & Kvamme, (2009) Zootaxa 2010:31–45 (2009) Image Credits Unless otherwise indicated the illustrations in this key are reproduced from the Iconographia Coleopterorum Poloniae, with permission kindly granted by Lech Borowiec. Checklist On the next page is a checklist of the 68 species of established Cerambycidae from the Checklist of Beetles of the British Isles, 2012 edition, edited by A. G. Duff. (available from www.coleopterist.org.uk/checklist.htm). Creative Commons From Duffy (1952), Handbooks for the Identification of British Insects Volume 5 Part 12. Updated and adapted by Mike Hackston © 2014. Subfamily PRIONINAE Latreille, 1802 Subfamily CERAMBYCINAE Latreille, 1802 Genus PRIONUS Geoffroy, 1762 Genus TRINOPHYLUM Bates, 1878 coriarius (Linnaeus, 1758) cribratum Bates, 1878 Genus CERAMBYX Linnaeus, 1758 cerdo Linnaeus, 1758 Subfamily LEPTURINAE Latreille, 1802 scopolii Fuessly, 1775 Genus RHAGIUM Fabricius, 1775 Genus GRACILIA Audinet-Serville, 1834 inquisitor (Linnaeus, 1758) minuta (Fabricius, 1781) bifasciatum Fabricius, 1775 Genus OBRIUM Dejean, 1821 mordax (De Geer, 1775) brunneum (Fabricius, 1793) Genus STENOCORUS Geoffroy, 1762 cantharinum (Linnaeus, 1767) meridianus (Linnaeus, 1758) Genus NATHRIUS Brèthes, 1916 Genus DINOPTERA Mulsant, 1863 brevipennis (Mulsant, 1839) collaris (Linnaeus,
    [Show full text]
  • Schütt, Kärnten) Von Sandra Aurenhammer, Christian Komposch, Erwin Holzer, Carolus Holzschuh & Werner E
    Carinthia II n 205./125. Jahrgang n Seiten 439–502 n Klagenfurt 2015 439 Xylobionte Käfergemeinschaften (Insecta: Coleoptera) im Bergsturzgebiet des Dobratsch (Schütt, Kärnten) Von Sandra AURENHAMMER, Christian KOMPOscH, Erwin HOLZER, Carolus HOLZscHUH & Werner E. HOLZINGER Zusammenfassung Schlüsselwörter Die Schütt an der Südflanke des Dobratsch (Villacher Alpe, Gailtaler Alpen, Villacher Alpe, Kärnten, Österreich) stellt mit einer Ausdehnung von 24 km² eines der größten dealpi­ Totholzkäfer, nen Bergsturzgebiete der Ostalpen dar und ist österreichweit ein Zentrum der Biodi­ Arteninventar, versität. Auf Basis umfassender aktueller Freilanderhebungen und unter Einbeziehung Biodiversität, diverser historischer Datenquellen wurde ein Arteninventar xylobionter Käfer erstellt. Collection Herrmann, Die aktuellen Kartierungen erfolgten schwerpunktmäßig in der Vegetations­ Buprestis splendens, periode 2012 in den Natura­2000­gebieten AT2112000 „Villacher Alpe (Dobratsch)“ Gnathotrichus und AT2120000 „Schütt­graschelitzen“ mit 15 Kroneneklektoren (Kreuzfensterfallen), materiarius, Besammeln durch Handfang, Klopfschirm, Kescher und Bodensieb sowie durch das Acanthocinus Eintragen von Totholz. henschi, In Summe wurden in der Schütt 536 Käferspezies – darunter 320 xylobionte – Kiefernblockwald, aus 65 Familien nachgewiesen. Das entspricht knapp einem Fünftel des heimischen Urwaldreliktarten, Artenspektrums an Totholzkäfern. Im Zuge der aktuellen Freilanderhebungen wurden submediterrane 216 xylobionte Arten erfasst. Durch Berechnung einer Artenakkumulationskurve
    [Show full text]