Mars Orbiter Magnetometer of China's First Mars Mission Tianwen-1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Matematikken Viser Vej Til Mars
S •Matematikken The viser vej til Mars Kim Plauborg © The Terma Group 2016 THE BEGINNING Terma has been in Space since man walked on the Moon! © The Terma Group 2016 FROM ESRO TO EXOMARS Terma powered the first comet landing ever! BREAKING NEWS The mission ends today when the Rosetta satellite will set down on the surface In 2014 the Rosetta satellite deployed the small lander Philae, which landed on the cometof 67P morethe than 10 comet years after Rosetta was launched. © The Terma Group 2016 FROM ESRO TO EXOMARS Rosetta Mars Express Technology Venus Express evolution and Galileo enhancement Small GEO BepiColombo ExoMars © The Terma Group 2016 Why go Mars? Getting to and landing on Mars is difficult ! © The Terma Group 2016 THE EXOMARS PROGRAMME Two ESA missions to Mars in cooperation with Roscosmos with the main objective to search for evidence of life 2016 Mission Trace Gas Orbiter Schiaparelli 2020 Mission Rover Surface platform © The Terma Group 2016 EXOMARS 2016 14th March 2016 Launched from Baikonur cosmodrome, Kazakhstan © The Terma Group 2016 EXOMARS 2016 16th October 2016 Separation of Schiaparelli from the orbiter © The Terma Group 2016 SCHIAPARELLI Schiaparelli (EDM) - an entry, descent and landing demonstrator module © The Terma Group 2016 EXOMARS 2016 19th October 2016 Landing of Schiaparelli the surface of Mars © The Terma Group 2016 EXOMARS 2016 19th October 2016 Landing of Schiaparelli the surface of Mars © The Terma Group 2016 EXOMARS 2020 © The Terma Group 2016 TERMA AND EXOMARS Terma deliveries to the ExoMars 2016 mission • Remote Terminal Power Unit for Schiaparelli • Mission Control System • Spacecraft Simulator • Support for the Launch and Early Orbit Phase © The Terma Group 2016 ExoMars RTPU The RTPU is a central unit in the Schiaparelli lander. -
How a Cartoon Series Helped the Public Care About Rosetta and Philae 13 How a Cartoon Series Helped the Public Care About Rosetta and Philae
How a Cartoon Series Helped the Public Care about Best Practice Rosetta and Philae Claudia Mignone Anne-Mareike Homfeld Sebastian Marcu Vitrociset Belgium for European Space ATG Europe for European Space Design & Data GmbH Agency (ESA) Agency (ESA) [email protected] [email protected] [email protected] Carlo Palazzari Emily Baldwin Markus Bauer Design & Data GmbH EJR-Quartz for European Space Agency (ESA) European Space Agency (ESA) [email protected] [email protected] [email protected] Keywords Karen S. O’Flaherty Mark McCaughrean Outreach, space science, public engagement, EJR-Quartz for European Space Agency (ESA) European Space Agency (ESA) visual storytelling, fairy-tale, cartoon, animation, [email protected] [email protected] anthropomorphising Once upon a time... is a series of short cartoons1 that have been developed as part of the European Space Agency’s communication campaign to raise awareness about the Rosetta mission. The series features two anthropomorphic characters depicting the Rosetta orbiter and Philae lander, introducing the mission story, goals and milestones with a fairy- tale flair. This article explores the development of the cartoon series and the level of engagement it generated, as well as presenting various issues that were encountered using this approach. We also examine how different audiences responded to our decision to anthropomorphise the spacecraft. Introduction internet before the spacecraft came out of exciting highlights to come, using the fairy- hibernation (Bauer et al., 2016). The four tale narrative as a base. The hope was that In late 2013, the European Space Agency’s short videos were commissioned from the video would help to build a degree of (ESA) team of science communicators the cross-media company Design & Data human empathy between the public and devised a number of outreach activ- GmbH (D&D). -
Appendix 1: Venus Missions
Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M. -
DLR Developments and Application Ideas for Interplanetary Cubesats
DLR developments and application ideas for interplanetary cubesats iCubeSat, Milano 2019 Jens Biele1, Michael Maibaum1, Caroline Lange2, Thimo Grundmann2, Stephan Ulamec1, Marcus Thomas Knopp3, Frank-Cyrus Roshani3 1DLR German Aerospace Center, RB-MUSC, Cologne, Germany 2DLR German Aerospace Center, Bremen, Germany 3DLR German Aerospace Center, GSOC, Munich, Germany www.DLR.de • Chart 3 > Lecture > Author • Document > Date SKAD-Study [FRANK, MARCUS] • Orbiter as relais station for Mars-Rover • ………. Designs flown or studied (DLR) Hopper(10-25 kg) MASCOT (30, 70 kg) Philae (100 kg) Leonard MASCOT (10 kg) Folie 4 > Vortrag > Autor Folie 5 > Vortrag > Autor Study Flow of MASCOT („how to shrink a lander..“) • December 2008 – September 2009: feasibility study, with CNES, in context of Marco Polo and Hayabusa-2, with common requirements: • 3 iterations of different mass (95kg, 35kg & 10kg) and P/L • Settled on 10 kg lander package including 3 kg of P/L • Ho, T.-M., et al. (2016). "MASCOT—The Mobile Asteroid Surface Scout Onboard the Hayabusa2 Mission." Space Science Reviews 208(1-4): 339– 374. • ➔ Design of MASCOT 10 kg: a nanosat (30x30*20 cm³) . Could be a 18 U cubesat! Large ~ 95 kg, Philae hertitage Middle ~ 35 kg, Xtra Small ~ 10 kg, No post-landing Up-righting + mobility mobility MASCOT Payload (25% of total mass!) Instrument Science Goals Heritage Institute; PI/IM Mass [kg] MAG magnetization of the NEA MAG of ROMAP on Rosetta TU Braunschweig Lander (Philae), ESA VEX, 0,15 → formation history Themis K.H. Glassmeier / U. Auster mineralogical composition ESA ExoMars, Russia and characterize grains Phobos GRUNT, ESA size and structure of Rosetta, ESA ExoMars IAS Paris µOmega surface soil samples at μ- rover 2018, Rosetta / Philae J.P. -
SWIFTS and SWIFTS-LA: Two Concepts for High Spectral Resolution Static Micro-Imaging Spectrometers
EPSC Abstracts Vol. 9, EPSC2014-439-1, 2014 European Planetary Science Congress 2014 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2014 SWIFTS and SWIFTS-LA: two concepts for high spectral resolution static micro-imaging spectrometers E. Le Coarer(1), B. Schmitt(1), N. Guerineau (2), G. Martin (1) S. Rommeluere (2), Y. Ferrec (2) F. Simon (1) F. Thomas (1) (1) Univ. UGA ,CNRS, Lab. IPAG, Grenoble, France. (2) ONERA/DOTA Palaiseau France ([email protected] grenoble.fr). Abstract All these instruments use either optical gratings, Fourier transform or AOTF spectrometers. The two SWIFTS (Stationary-Wave Integrated Fourier first types need moving mirrors to scan spectrally Transform Spectrometer) represents a family of very thus adding complexity and failure risk in space. The compact spectrometers based on detection of interesting solution of AOTF, without moving part standing waves for which detectors play itself a role (only piezo) is however limited in resolution to a few in the interferential detection mechanism. The aim of cm-1 due to limitation in monocrystal size (fragile). this paper is to illustrate how these spectrometers can Strong limitations of these instruments in terms of be used to build efficient imaging spectrometers for performances (spectral & spatial resolution and range, planetary exploration inside dm3 instrumental volume. S/N ratio) come from their already large mass, The first mode (SWIFTS) is devoted to high spectral volume, and power consumption. Further increasing resolving power imaging (R~10000-50000) for one of these characteristics will be at the cost of even 40x40 pixels field of view. The second mode bigger instruments. -
NUCLEAR SAFETY LAUNCH APPROVAL: MULTI-MISSION LESSONS LEARNED Yale Chang the Johns Hopkins University Applied Physics Laboratory
ANS NETS 2018 – Nuclear and Emerging Technologies for Space Las Vegas, NV, February 26 – March 1, 2018, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2018) NUCLEAR SAFETY LAUNCH APPROVAL: MULTI-MISSION LESSONS LEARNED Yale Chang The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, MD 20723 240-228-5724; [email protected] Launching a NASA radioisotope power system (RPS) trajectory to Saturn used a Venus-Venus-Earth-Jupiter mission requires compliance with two Federal mandates: Gravity Assist (VVEJGA) maneuver, where the Earth the National Environmental Policy Act of 1969 (NEPA) Gravity Assist (EGA) flyby was the primary nuclear safety and launch approval (LA), as directed by Presidential focus of NASA, the U.S. Department of Energy (DOE), the Directive/National Security Council Memorandum 25. Cassini Interagency Nuclear Safety Review Panel Nuclear safety launch approval lessons learned from (INSRP), and the public alike. A solid propellant fire test multiple NASA RPS missions, one Russian RPS mission, campaign addressed the MPF finding and led in part to two non-RPS launch accidents, and several solid the retrofit solid propellant breakup systems (BUSs) propellant fire test campaigns since 1996 are shown to designed and carried by MER-A and MER-B spacecraft have contributed to an ever-growing body of knowledge. and the deployment of plutonium detectors in the launch The launch accidents can be viewed as “unplanned area for PNH. The PNH mission decreased the calendar experiments” that provided real-world data. Lessons length of the NEPA/LA processes to less than 4 years by learned from the nuclear safety launch approval effort of incorporating lessons learned from previous missions and each mission or launch accident, and how they were tests in its spacecraft and mission designs and their applied to improve the NEPA/LA processes and nuclear NEPA/LA processes. -
Navigation Challenges During Exomars Trace Gas Orbiter Aerobraking Campaign
NON-PEER REVIEW Please select category below: Normal Paper Student Paper Young Engineer Paper Navigation Challenges during ExoMars Trace Gas Orbiter Aerobraking Campaign Gabriele Bellei 1, Francesco Castellini 2, Frank Budnik 3 and Robert Guilanyà Jané 4 1 DEIMOS Space located at ESA/ESOC, Robert-Bosch-Str. 5, Darmstadt, 64293, Germany 2 Telespazio VEGA located at ESA/ESOC, Robert-Bosch-Str. 5, Darmstadt, 64293, Germany 3 ESA/ESOC, Robert-Bosch-Str. 5, Darmstadt, 64293, Germany 4 GMV INSYEN located at ESA/ESOC, Robert-Bosch-Str. 5, Darmstadt, 64293, Germany Abstract The ExoMars Trace Gas Orbiter satellite spent one year in aerobraking operations at Mars, lowering its orbit period from one sol to about two hours. This delicate phase challenged the operations team and in particular the navigation system due to the highly unpredictable Mars atmosphere, which imposed almost continuous monitoring, navigation and re-planning activities. An aerobraking navigation concept was, for the first time at ESA, designed, implemented and validated on-ground and in-flight, based on radiometric tracking data and complemented by information extracted from spacecraft telemetry. The aerobraking operations were successfully completed, on time and without major difficulties, thanks to the simplicity and robustness of the selected approach. This paper describes the navigation concept, presents a recollection of the main in-flight results and gives a retrospective of the main lessons learnt during this activity. Keywords: ExoMars, Trace Gas Orbiter, aerobraking, navigation, orbit determination, Mars atmosphere, accelerometer Introduction The ExoMars program is a cooperation between the European Space Agency (ESA) and Roscosmos for the robotic exploration of the red planet. -
The Space Race Continues
The Space Race Continues The Evolution of Space Tourism from Novelty to Opportunity Matthew D. Melville, Vice President Shira Amrany, Consulting and Valuation Analyst HVS GLOBAL HOSPITALITY SERVICES 369 Willis Avenue Mineola, NY 11501 USA Tel: +1 516 248-8828 Fax: +1 516 742-3059 June 2009 NORTH AMERICA - Atlanta | Boston | Boulder | Chicago | Dallas | Denver | Mexico City | Miami | New York | Newport, RI | San Francisco | Toronto | Vancouver | Washington, D.C. | EUROPE - Athens | London | Madrid | Moscow | ASIA - 1 Beijing | Hong Kong | Mumbai | New Delhi | Shanghai | Singapore | SOUTH AMERICA - Buenos Aires | São Paulo | MIDDLE EAST - Dubai HVS Global Hospitality Services The Space Race Continues At a space business forum in June 2008, Dr. George C. Nield, Associate Administrator for Commercial Space Transportation at the Federal Aviation Administration (FAA), addressed the future of commercial space travel: “There is tangible work underway by a number of companies aiming for space, partly because of their dreams, but primarily because they are confident it can be done by the private sector and it can be done at a profit.” Indeed, private companies and entrepreneurs are currently aiming to make this dream a reality. While the current economic downturn will likely slow industry progress, space tourism, currently in its infancy, is poised to become a significant part of the hospitality industry. Unlike the space race of the 1950s and 1960s between the United States and the former Soviet Union, the current rivalry is not defined on a national level, but by a collection of first-mover entrepreneurs that are working to define the industry and position it for long- term profitability. -
7'Tie;T;E ~;&H ~ T,#T1tmftllsieotog
7'tie;T;e ~;&H ~ t,#t1tMftllSieotOg, UCLA VOLUME 3 1986 EDITORIAL BOARD Mark E. Forry Anne Rasmussen Daniel Atesh Sonneborn Jane Sugarman Elizabeth Tolbert The Pacific Review of Ethnomusicology is an annual publication of the UCLA Ethnomusicology Students Association and is funded in part by the UCLA Graduate Student Association. Single issues are available for $6.00 (individuals) or $8.00 (institutions). Please address correspondence to: Pacific Review of Ethnomusicology Department of Music Schoenberg Hall University of California Los Angeles, CA 90024 USA Standing orders and agencies receive a 20% discount. Subscribers residing outside the U.S.A., Canada, and Mexico, please add $2.00 per order. Orders are payable in US dollars. Copyright © 1986 by the Regents of the University of California VOLUME 3 1986 CONTENTS Articles Ethnomusicologists Vis-a-Vis the Fallacies of Contemporary Musical Life ........................................ Stephen Blum 1 Responses to Blum................. ....................................... 20 The Construction, Technique, and Image of the Central Javanese Rebab in Relation to its Role in the Gamelan ... ................... Colin Quigley 42 Research Models in Ethnomusicology Applied to the RadifPhenomenon in Iranian Classical Music........................ Hafez Modir 63 New Theory for Traditional Music in Banyumas, West Central Java ......... R. Anderson Sutton 79 An Ethnomusicological Index to The New Grove Dictionary of Music and Musicians, Part Two ............ Kenneth Culley 102 Review Irene V. Jackson. More Than Drumming: Essays on African and Afro-Latin American Music and Musicians ....................... Norman Weinstein 126 Briefly Noted Echology ..................................................................... 129 Contributors to this Issue From the Editors The third issue of the Pacific Review of Ethnomusicology continues the tradition of representing the diversity inherent in our field. -
Investigating Mars' Atmosphere Using the NOMAD Instrument on The
Investigating Mars’ atmosphere using the NOMAD instrument on the ExoMars Trace Gas Orbiter Supervision team: Dr Manish Patel, Dr Stephen Lewis, Dr Jonathon Mason External supervisor: N/A Lead contact: [email protected] Description: This project provides the opportunity to be directly involved in an active space mission and play a key role in the preparation and exploitation of results from a spaceflight instrument on the ESA ExoMars Trace Gas Orbiter mission, which is currently in orbit around Mars. The project will involve supporting work on: - Continued development of a radiative transfer model of the martian atmosphere in preparation for ExoMars - Characterisation of Flight Spare instrumentation and data interpretation from mid-cruise checkouts - Preparation of new techniques for retrieval of atmospheric species - Exploitation of data returned from the NOMAD-UVIS instrument This mission is aimed at furthering our understanding of the composition and dynamics of the martian environment, through the measurement of trace gases such as ozone and methane in the martian atmosphere from orbit. The project relates to the UVIS channel of the NOMAD instrument; UVIS is an optical spectrometer led by the Open University to measure solar radiation travelling through the martian atmosphere at UV and visible wavelengths, in order to detect and map the presence of ozone, dust and ice clouds in the atmosphere of Mars in unprecedented detail. This project will involve scope for a wide range of potential research from instrument testing through to exploitation of real spaceflight instrument data. The focus of the project is on the retrieval of ozone and aerosol abundance and properties from spectra that will be returned from the UVIS instrument. -
The Esa Exploration Programme – Exomars and Beyond
Lunar and Planetary Science XXXVI (2005) 2408.pdf THE ESA EXPLORATION PROGRAMME – EXOMARS AND BEYOND. G. Kminek1 and the Exploration Team, 1European Space Agency, D/HME, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands, [email protected]. Management and Organization: The countries Technology Development for Exploration: Two participating in the European Exploration Programme categories for exploration technology developments Aurora have recently confirmed and increased their have been identified: contribution. The ESA Council has later approved the Generic Exploration Technology: They have a Agency’s budgets for 2005, including the budget for long-term strategic value, both for robotic and human Aurora. These developments enable major industrial exploration missions. Planetary protection, habitable activities to continue in line with original plans. These systems, risk assessment for human missions to planets, include work on the ExoMars mission and the Mars grey and black water recycling as well as psychological Sample Return mission, in-orbit assembly, rendezvous support for the Concordia Antarctic Station, Facility and docking, habitation and life support systems plus a for Integrated Planetary Exploration Simulations are broad range of technology development work. examples of selected generic exploration technologies. The Aurora Exploration Programme has been inte- Mission Specific Technologies: Specifically devel- grated into the Human Spaceflight and Microgravity oped for the programme’s missions, and will eventually Directorate , which now forms the Human Spaceflight, be implemented after reaching a minimum technology Microgravity, and Exploration Directorate of ESA. readiness level. EVD, sealing and sealing monitoring Early Robotic Missions: Robotic mission have technology, containment technology, specific instru- been identified as necessary prerequisite before send- ment developments, sample handling and distribution ing human to Mars. -
Initial Maven Observations of Ion Cyclotron Waves and Pickup Protons: a Measurement of Hydrogen Loss in the Upper Martian Exosphere F
46th Lunar and Planetary Science Conference (2015) 2628.pdf INITIAL MAVEN OBSERVATIONS OF ION CYCLOTRON WAVES AND PICKUP PROTONS: A MEASUREMENT OF HYDROGEN LOSS IN THE UPPER MARTIAN EXOSPHERE F. J. Crary1, J. E. P. Connerney2, J. R. Espley3 and J. P. McFadden4, 1Laboratory for Space and Atmospheric Physics, University of Col- orado, Boulder, 1234 Innovation Dr., Boulder, CO, 80303, [email protected] 2Goddard Space Flight Center, Mail Code 695, Greenbelt, MD, 20771, [email protected] 3Goddard Space Flight Center, Mail Code 695, Greenbelt, MD, 20771, [email protected], 4Space Science Laboratory, University of California, Berkeley, 7 Gauss Way, Berkeley, CA 94720-7450, [email protected]. Introduction: Observations by the Mars Global Surveyor, Mars Express and Phobos 2 spacecraft [1],[2],[3] have shown that Mars has a hydrogen exo- sphere which extends as much as ten Martian radii from the planet. These hydrogen atoms ionize and are “picked up” in the solar wind flow. Neither the associ- ated hydrogen loss rate nor the structure of this extend- ed exosphere, have previously been well determined. The resulting pickup protons have a distinctive veloci- ty distribution and generate low frequency electromag- netic waves near the ion cyclotron frequency. Proton pickup ions have been observed by Mars Express [4] and proton cyclotron waves have been observed by Mars Global Surveyor [2]. The MAVEN spacecraft is the first Mars orbiter able to simultane- ously measure both ion cyclotron waves. Data from the spacecraft’s magnetometer [5], providing the vector magnetic field at a rate of 32 samples per second, is Fourier transformed to produce dynamic spectra of right-circularly polarized (whistler mode) and left- circularly polarized (ion cyclotron mode) ultralow fre- quency electromagnetic waves.