APOLLO XI LA LUNE, MARS MÉTÉORITES Rares Météorites Martiennes Et Lunaires, Exceptionnelles Pallasites

Total Page:16

File Type:pdf, Size:1020Kb

APOLLO XI LA LUNE, MARS MÉTÉORITES Rares Météorites Martiennes Et Lunaires, Exceptionnelles Pallasites PARIS APOLLO XI LA LUNE, MARS MÉTÉORITES Rares météorites martiennes et lunaires, exceptionnelles pallasites Légendaire météorite de Mont-Dieu de la Collection Jean-Luc BILLARD Exceptionnel fragment de la météorite de Saint-Aubin d’une Collection privée française Collection du Loir-et-Cher, d’une Collection du Nord Et de diverses Collections parisiennes Memorabilia - Photographies VENTE AUX ENCHÈRES PUBLIQUES Lundi 21 octobre 2019 à 14h DROUOT, salle 4 9, rue Drouot 75009 PARIS EXPOSITIONS PUBLIQUES Samedi 19 octobre, 11h - 18h Dimanche 20 octobre, 11h - 18h Lundi 21 octobre, 11h - 12h Téléphone pendant les expositions et la vente + 33 (0)1 48 00 20 04 LUCIEN - PARIS SARL Christophe LUCIEN Bérangère JANIK Commissaires-priseurs Consultant Luc LABENNE 17, rue du Port - 94130 NOGENT SUR MARNE 23, rue de l'Espérance 5, rue des Lions Saint-Paul - 75004 PARIS 75013 PARIS + 33 (0)1 45 80 04 56 T. + 33 (0)1 48 72 07 33 - F. + 33 (0)1 48 72 64 71 [email protected] [email protected] www.lucienparis.com Agrément 2002-194 'IVXM½GEXMSR-73 PARTICIPEZ, ENCHÉRISSEZ EN DIRECT www.drouotlive.com Expertises / Ventes aux enchères Christophe LUCIEN Bérangère JANIK Abonnez-vous à notre newsletter + 33 (0)1 48 72 36 15 Adrien SIMON www.lucienparis.com + 33 (0)1 48 72 36 11 Jorick BRILLANT + 33 (0)1 48 72 36 13 Conditions de vente Service Juridique La vente est soumise aux conditions générales Sandrine CHANLIAU 59<>59§1?1:ŋ:01/-@-8;3A1 + 33 (0)1 48 72 36 14 Conditions of sale The sale is subject to the conditions of sale Comptabilité printed at the end of the catalogue Caroline ROUSSEAU + 33 (0)1 48 72 36 16 Frais acquéreurs 26,40 % TTC Transports Cyril HUBERTS Franck BAZIN Christophe LAGADEC Ahmed BOULANOUAR Thierry RIGAL Stéphane BOUDJADJA Réalisation Huit heures vingt Communication www.huitheuresvingt.com 2 LUNDI 21 OCTOBRE 2019 Lot 99, météorite achondrite - Page 57 atelier Robert Doisneau Lot 123, météorite lunaire complète - Page 68 4 LUNDI 21 OCTOBRE 2019 1 MÉTÉORITE COMPLÈTE DE TYPE IAB, BAYGORRIA, URUGUAY Forme esthétique avec regmaglypte prononcée. Belle patine. Météorite trouvée à Baygorria le 8 juillet 1994. Masse : 631,8 g. Dimension : 85 mm. € 300 / 400 6 LUNDI 21 OCTOBRE 2019 2 RÉUNION DE CINQ TRANCHES DE LA MÉTÉORITE GIBEON, NAMIBIE Cinq tranches de météorite de type sidérite, l’une présentant un nodule de graphite dans la tranche. Météorite trouvée à Gibeon en 1836. La tranche avec le nodule : Masse : 47,1 g. Dimension : 90 mm. Les quatre autres tranches : Masses : 65,1 g, 62,2 g, 30,7 g, 35 g. Dimensions : 75 mm, 75 mm, 45 mm, 10,8 mm. € 300 / 400 3 UN MORCEAU DE MÉTÉORITE DE TYPE SIDÉRITE, GIBEON, NAMIBIE Météorite avec trois faces coupées. Météorite trouvée à Gibeon en 1836. Traces d’oxydation. Masse : 624,3 g. Dimension : 70 mm. € 400 / 500 8 LUNDI 21 OCTOBRE 2019 3 2 4 RÉUNION DE PLUSIEURS TECTITES, DE TYPE INDOCHINITE Une boîte de trois tectites. Masses : 37 g, 24 g, et 67 g. Dimensions : 45 mm les deux, 65 mm l’autre. € 80 / 100 5 UNE BOÎTE DE QUATORZE TECTITES, DE TYPE INDOCHINITE Masse : 215 g. Dimension moyenne de 30 mm. € 120 / 150 6 UNE TECTITE, DE TYPE INDOCHINITE Tectite, Guang Dong, Chine. Masse : 96 g. Dimension : 100 mm. € 50 / 60 7 RÉUNION DE MÉTÉORITES DE TYPE CHONDRITE INDÉTERMINÉE, SAHARA . Chondrite complète avec croûte de fusion. Traces d’oxydation, rouille. Masse : 168 g. Dimension : 50 mm. Chondrite complète avec croûte de fusion. Traces d’oxydation, rouille. Masse 145 g. Dimension : 60 mm. Chondrite complète avec croûte de fusion. Traces d’oxydation, rouille. Masse : 240 g. Dimension : 70 mm. Chondrite complète avec croûte de fusion. Traces d’oxydation, rouille. Masse : 298 g. Dimension : 90 mm. € 300 / 400 10 LUNDI 21 OCTOBRE 2019 7 8 CHONDRITE COMPLÈTE AVEC CROÛTE DE FUSION Masse : 1,8 kg. Dimension : 13 cm. Traces d’oxydation, rouille. € 500 / 600 12 LUNDI 21 OCTOBRE 2019 9 RÉUNION DE SEPT TECTITES, DE TYPE INDOCHINITE, DE DIVERSES LOCALITÉS . Une tectite en forme de goutte d’eau. Masse : 15 g. Dimension : 60 mm. Une tectite en forme de goutte plate. 13 Masse : 23 g. RÉUNION DE QUATRE MÉTÉORITES DE TYPE CHONDRITE Dimension : 65 mm. PROVENANT DES ÉTATS-UNIS D’AMÉRIQUE . Cinq tectites, provenant des Philippines, Thaïlande, etc. Deux morceaux de météorite de type chondrite H4, Dimmitt, Texas, États-Unis d’Amérique. Masse : 37 g. Météorite trouvée à Dimmitt en 1942. € 100 / 120 Masse : 27 g. Dimension : 30 mm. 10 . Une tranche d’une météorite de type chondrite L6, RÉUNION DE ONZE MOLDAVITES Owasco, Nebraska, États-Unis d’Amérique. Météorite trouvée à Owasco en 1984. Masse : 48 g. Dimension moyenne de 20 mm. Masse : 12 g. Dimension : 30 mm. € 300 / 350 . Une tranche d’une météorite de type chondrite H6, 11 Great Bend, Kansas, États-Unis d’Amérique. IMPACTITE IRGHIZITE Météorite trouvée à Great Bend en 1983. Impactite associée à un cratère d’impact, Masse : 12 g. provenant de la région de Zhamanshin, Kazakhstan. Dimension 40 mm. Masse : 3,5 g. Sur la tranche, un numéro de référence d’une collection. Dimension : 35 mm. € 200 / 300 € 150 / 180 14 12 RÉUNION DE TROIS TECTITES DE TYPE RHIZALITHE, MÉTÉORITE ALFIANELLO, ITALIE UNE TECTITE INDOCHINITE, ET UNE IMPACTITE Météorite de type chondrite L6. Une impactite du cratère météoritique d’Aouelloul, Mauritanie. 1qXqSVMXILMWXSVMUYIXSQFqIk%P½ERIPPSPIJqZVMIV Masse : 2,7 g. Masse : 5,94 g. Dimension : 15 mm. Dimension : 20 mm. Une tectite indochinite non localisée. € 500 / 600 Masse : 8 g. Dimension : 20 mm. Trois tectites de type rhizalithe. Masse : 11,5 g. Dimension : 15 mm. € 50 / 80 14 LUNDI 21 OCTOBRE 2019 12 13 15 PALLASITE SEYMCHAN, RUSSIE, TRANCHE COMPLÈTE Superbe travail de polissage miroir de la surface, parcourue par de larges structures de très spectaculaires Widmanstätten. Masse : 1 560 g. € 9 000 / 15 000 16 LUNDI 21 OCTOBRE 2019 16 PALLASITE SEYMCHAN, RUSSIE, TRANCHE PARTIELLE Masse : 22,50 g. € 400 / 500 17 PALLASITE SERICHO COMPLÈTE Pièce complète très décorative. Masse : 1 826 g. € 4 000 / 6 000 18 LUNDI 21 OCTOBRE 2019 18 RÉUNION DE PLUSIEURS FRAGMENTS ET TRANCHES DE MÉTÉORITES DE TYPE PALLASITE . Une tranche de météorite de type pallasite, . Un morceau de météorite de type pallasite, Springwater, Saskatchewan, Canada. Seymchan, Russie. Météorite trouvée à Springwater en 1931. Météorite trouvée à Seymchan en 1967. Masse : 27,3 g. Masse : 28,1 g. Dimension : 48 mm. Dimension : 45 mm. Une tranche de météorite de type pallasite, . Une petite météorite de type pallasite, Fukang, Chine. Huckitta, Australie. Météorite trouvée à Fukang en 2000. Météorite trouvée à Huckitta en 1924. Masse : 14,3 g. Masse : 26,7 g. Dimension : 38 mm. Dimension : 40 mm. Une petite météorite de type pallasite, . Une tranche de météorite de type pallasite, Seymchan, Russie. Brahin, Biélorussie. Météorite trouvée à Seymchan en 1967. Météorite trouvée à Brahin en 1810. Masse : 15,2 g. Masse : 155,2 g. Dimension : 30 mm. Dimension : 10 cm. Une tranche de météorite de type pallasite, . Trois tranches de météorite de type pallasite, Esquel, Argentine. Brahin, Biélorussie. Météorite trouvée à Esquel en 1951. Météorite trouvée à Brahin en 1810. Masse : 7,3 g. Masses : 7,2 g, 8,4 g, et 20,5 g. Dimension : 29 mm. Dimensions : 27 mm, 27 mm, et 70 mm. Un morceau de météorite de type pallasite, Imilac, Chili. Un morceau de météorite de type pallasite, Météorite trouvée à Imilac en 1822. Brenham, Kansas, Etats-Unis d’Amérique. Un cristal d’olivine. Masse : 23,7 g. Météorite trouvée à Brenham en 1882. Dimension : 31 mm. Masse : 0,5 g. Deux tranches de météorite de type pallasite, Dimension : 5 mm. Admire, Kansas, États-Unis d’Amérique. Météorite trouvée à Admire en 1881. Une tranche de météorite de type pallasite, Brenham, Kansas, États-Unis d’Amérique. Masses : 4,4 g pour l’une, et 12,1 g pour l’autre. Météorite trouvée à Brenham en 1882. Dimensions : 30 mm pour l’une, et 50 mm pour l’autre. Tranche très altérée. Rouille sous le verni. Masse : 253 g. Dimension : 140 mm. € 700 / 800 20 LUNDI 21 OCTOBRE 2019 19 23 UNE PALLASITE, SEYMCHAN RÉUNION DE DEUX GRAINS DE MÉTÉORITE PROVENANT D’ORGUEIL 4PEUYI8VrWNSPMIW½KYVIWHI;MHQERWXmXXIRWYVPIWHIY\JEGIW sans olivine. Météorite carbonée CI d’origine cométaire. Pallasite découverte en Russie en 1967. Météorite tombée à Orgueil en 1864. Masse : 29,4 g. Dimensions : L’un 2 x 1,5 mm, l’autre 3 x 2 mm. Dimensions : ronde de 5 cm de diamètre, et d’une épaisseur de 1,5 mm. € 50 / 100 € 150 / 200 24 RÉUNION DE QUATRE MÉTÉORITES 20 DE TYPE CHONDRITE RÉUNION DE MÉTÉORITES DE TYPE CHONDRITE LL5 PROVENANT DES ÉTATS-UNIS D’AMÉRIQUE PROVENANT DE TCHÉLIABINSK . Une tranche d’une météorite de type chondrite L4. Six météorites entières de type chondrite LL5. Forestburg, Texas, États-Unis d’Amérique. 9RITIXMXIFMPPIHIQQHERWYRITIXMXI½SPIIRZIVVI Météorite trouvée à Forestburg en 1957. Masse : Poids total de 28,2 g. Masse : 10,8 g. Dimension : 40 mm. € 200 / 250 . Une tranche de météorite de type chondrite H4. 20 bis Dimmitt, Texas, États-Unis d’Amérique. UNE MÉTÉORITE DE TYPE CHONDRITE H4 Météorite trouvée à Dimmitt en 1942. Météorite brute, la pointe coupée. PROVENANCE. Plusieurs tranches de cette météorite ont été remises aux lauréats Collection d’Harvey H. Nininger. HYJIWXMZEPHY½PQH´I\TPSVEXMSRWGMIRXM½UYIIXIRZMVSRRIQIRXEPI "Lumexplore", ainsi qu’aux membres du jury, Masse : 23,4 g. dont le spationaute français Thomas Pesquet. Dimension : 50 mm. Masse : 3 966 g. Une tranche de météorite de type chondrite LL3. Dimensions : 14 x 13 x 11 cm. 6MGL½IPH/ERWEWfXEXW9RMWH´%QqVMUYI 1qXqSVMXIXVSYZqIk6MGL½IPHIR € 2 000 / 2 200 Masse : 12 g. Dimension : 30 mm.
Recommended publications
  • Tubular Symplectic Inclusions in Olivine from the Fukang Pallasite
    Meteoritics & Planetary Science 45, Nr 5, 899–910 (2010) doi: 10.1111/j.1945-5100.2010.01054.x Tubular symplectic inclusions in olivine from the Fukang pallasite Michael R. STEVENS1, David R. BELL1,2, and Peter R. BUSECK1,2* 1School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, USA 2Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA *Corresponding author. E-mail: [email protected] (Received 11 June 2009; revision accepted 27 March 2010) Abstract–Olivine from the Fukang meteorite, like that from many other pallasites, contains distinctive arrays of parallel, straight, tubular inclusions. They differ in their extension and linearity from those in terrestrial olivines. They comprise approximately 1% of the total volume. Most have lens-shaped cross-sections, but some are rounded. The major axis of the lens-shaped inclusions is rigorously oriented along olivine [001], and the rounded ones lie along olivine [010] and a few along [100]. The linear nature and orientations of the inclusions suggest that they nucleated on screw dislocations, perhaps formed through shock triggering. High-resolution transmission electron microscopy (TEM) and energy-dispersive x-ray spectroscopy show that the inclusions consist of symplectic intergrowths of chromite, diopside, and silica that appear to have formed by exsolution from the host olivine. The symplectites consist of chromite lamellae with approximately 35-nm spacings that grew outward from a central plane, with interstitial diopside and silica. Contrast modulations having an average spacing of 4.4 nm occur within the chromite lamellae. Using a reaction- front model, we estimate that exsolution occurred over a period of 30 to 100 min, suggesting rapid cooling at high temperature.
    [Show full text]
  • Disequilibrium Melting and Melt Migration Driven by Impacts: Implications for Rapid Planetesimal Core Formation
    Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 100 (2013) 41–59 www.elsevier.com/locate/gca Disequilibrium melting and melt migration driven by impacts: Implications for rapid planetesimal core formation Andrew G. Tomkins ⇑, Roberto F. Weinberg, Bruce F. Schaefer 1, Andrew Langendam School of Geosciences, P.O. Box 28E, Monash University, Melbourne, Victoria 3800, Australia Received 20 January 2012; accepted in revised form 24 September 2012; available online 12 October 2012 Abstract The e182W ages of magmatic iron meteorites are largely within error of the oldest solar system particles, apparently requir- ing a mechanism for segregation of metals to the cores of planetesimals within 1.5 million years of initial condensation. Cur- rently favoured models involve equilibrium melting and gravitational segregation in a static, quiescent environment, which requires very high early heat production in small bodies via decay of short-lived radionuclides. However, the rapid accretion needed to do this implies a violent early accretionary history, raising the question of whether attainment of equilibrium is a valid assumption. Since our use of the Hf–W isotopic system is predicated on achievement of chemical equilibrium during core formation, our understanding of the timing of this key early solar system process is dependent on our knowledge of the seg- regation mechanism. Here, we investigate impact-related textures and microstructures in chondritic meteorites, and show that impact-generated deformation promoted separation of liquid FeNi into enlarged sulfide-depleted accumulations, and that this happened under conditions of thermochemical disequilibrium. These observations imply that similar enlarged metal accumu- lations developed as the earliest planetesimals grew by rapid collisional accretion.
    [Show full text]
  • 18Th EANA Conference European Astrobiology Network Association
    18th EANA Conference European Astrobiology Network Association Abstract book 24-28 September 2018 Freie Universität Berlin, Germany Sponsors: Detectability of biosignatures in martian sedimentary systems A. H. Stevens1, A. McDonald2, and C. S. Cockell1 (1) UK Centre for Astrobiology, University of Edinburgh, UK ([email protected]) (2) Bioimaging Facility, School of Engineering, University of Edinburgh, UK Presentation: Tuesday 12:45-13:00 Session: Traces of life, biosignatures, life detection Abstract: Some of the most promising potential sampling sites for astrobiology are the numerous sedimentary areas on Mars such as those explored by MSL. As sedimentary systems have a high relative likelihood to have been habitable in the past and are known on Earth to preserve biosignatures well, the remains of martian sedimentary systems are an attractive target for exploration, for example by sample return caching rovers [1]. To learn how best to look for evidence of life in these environments, we must carefully understand their context. While recent measurements have raised the upper limit for organic carbon measured in martian sediments [2], our exploration to date shows no evidence for a terrestrial-like biosphere on Mars. We used an analogue of a martian mudstone (Y-Mars[3]) to investigate how best to look for biosignatures in martian sedimentary environments. The mudstone was inoculated with a relevant microbial community and cultured over several months under martian conditions to select for the most Mars-relevant microbes. We sequenced the microbial community over a number of transfers to try and understand what types microbes might be expected to exist in these environments and assess whether they might leave behind any specific biosignatures.
    [Show full text]
  • Calcium Isotopes in Natural and Experimental Carbonated Silicate Melts
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 2-27-2018 2:30 PM Calcium Isotopes in Natural and Experimental Carbonated Silicate Melts Matthew Maloney The University of Western Ontario Supervisor Bouvier, Audrey The University of Western Ontario Co-Supervisor Withers, Tony The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Matthew Maloney 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geochemistry Commons Recommended Citation Maloney, Matthew, "Calcium Isotopes in Natural and Experimental Carbonated Silicate Melts" (2018). Electronic Thesis and Dissertation Repository. 5256. https://ir.lib.uwo.ca/etd/5256 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract The calcium stable isotopic compositions of mantle-sourced rocks and minerals were investigated to better understand the carbon cycle in the Earth’s mantle. Bulk carbonatites and kimberlites were analyzed to identify a geochemical signature of carbonatite magmatism, while inter-mineral fractionation was measured in co-existing Ca-bearing carbonate and silicate minerals. Bulk samples show a range of composition deviating from the bulk silicate Earth δ44/40Ca composition indicating signatures of magmatic processes or marine carbonate addition 44/40 to source materials. Δ Cacarbonate-silicate values range from -0.55‰ to +1.82‰ and positively correlate with Ca/Mg ratios in pyroxenes.
    [Show full text]
  • Faculty Publications and Creative Works 2003 Office of Theice V President for Research
    University of New Mexico UNM Digital Repository Office of the Vice President for Research Archives & University Administrative Records 2003 Faculty Publications and Creative Works 2003 Office of theice V President for Research Follow this and additional works at: https://digitalrepository.unm.edu/ovp_research_publications Recommended Citation Office of the Vice President for Research. "Faculty Publications and Creative Works 2003." (2003). https://digitalrepository.unm.edu/ ovp_research_publications/21 This Report is brought to you for free and open access by the Archives & University Administrative Records at UNM Digital Repository. It has been accepted for inclusion in Office of the Vice President for Research by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. ANDERSON SCHOOLS OF MANAGEMENT: SCHOOL OF PUBLIC ADMINISTRATION Rivera, Mario A. “Planeación e Integración Estratégica: Un Modelo con Estudio de Caso del Sector Judicial,” Estado, Gobierno, Gestión Pública 2 (4) 2003-2004, published June 2003. Coauthor Bruce Perlman. Applied Strategic Performance Management, P4 Management Solutions, 2003. Coauthor: Ted Vecchio. 197 pages. Varma, Roli Guest Editor, “Special Issue on Women and Minorities in Information Technology,” IEEE Technology and Society Magazine, 22(3). “E. F. Schumacher: Changing the Paradigm of Bigger Is Better.” Bulletin of Science, Technology and Society, 23(2), pp. 114-124. “Asians in the U.S. Public Service: Diversity, Achievements, and Glass Ceiling,” in Sumathi Reddy (ed.) Workforce Diversity: Concepts and Cases, pp. 26-42. Hyderabad: ICFAI University Press. 13 SCHOOL OF ARCHITECTURE AND PLANNING Adams, Geoffrey C. Exhibition: The HOME House Project, Southeast Center for Contemporary Art, Winston-Salem, North Carolina. May 10-July 6, 2003, David J.
    [Show full text]
  • N Arieuican%Mllsellm
    n ARieuican%Mllsellm PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2I63 DECEMBER I9, I963 The Pallasites BY BRIAN MASON' INTRODUCTION The pallasites are a comparatively rare type of meteorite, but are remarkable in several respects. Historically, it was a pallasite for which an extraterrestrial origin was first postulated because of its unique compositional and structural features. The Krasnoyarsk pallasite was discovered in 1749 about 150 miles south of Krasnoyarsk, and seen by P. S. Pallas in 1772, who recognized these unique features and arranged for its removal to the Academy of Sciences in St. Petersburg. Chladni (1794) examined it and concluded it must have come from beyond the earth, at a time when the scientific community did not accept the reality of stones falling from the sky. Compositionally, the combination of olivine and nickel-iron in subequal amounts clearly distinguishes the pallasites from all other groups of meteorites, and the remarkable juxtaposition of a comparatively light silicate mineral and heavy metal poses a nice problem of origin. Several theories of the internal structure of the earth have postulated the presence of a pallasitic layer to account for the geophysical data. No apology is therefore required for an attempt to provide a comprehensive account of this remarkable group of meteorites. Some 40 pallasites are known, of which only two, Marjalahti and Zaisho, were seen to fall (table 1). Of these, some may be portions of a single meteorite. It has been suggested that the pallasite found in Indian mounds at Anderson, Ohio, may be fragments of the Brenham meteorite, I Chairman, Department of Mineralogy, the American Museum of Natural History.
    [Show full text]
  • Handbook of Iron Meteorites, Volume 3
    1350 Yenberrie - York (Iron) Specimens in the U.S. National Museum in Washington: 3.54 kg on three slices (no. 607) 290 g part slice (no. 1626) York (Iron), Nebraska, U.S.A. Approximately 40°52'N, 97°35'W; 500 m Medium octahedrite, Om. Bandwidth 1.00±0.15 mm. E-structure. HV 305 ±15 . Probably group III A. About 7.7% Ni and 0.12% P. HISTORY A mass of 835 g was found in 1878 on the farm of ~ - . Robert M. Lytle, near York in York County. The mass was Figure 2007. Yenberric (U.S.N.M. no. 607). Taenite with cloudy plowed up from a edges and martensitic interior in which cloudy patches occasionally depth of 20 em in virgin, black loamy occur. Part of the explanation may be sought in the taenite lamella prairie soil. It was in the fmder's possession until 1895 being parallel to the plane of section. Etched. Scale bar 200 J.L. See when it was acquired by Barbour (1898) who described it also Figures 109 and 119. and gave figures of the exterior and of etched slices. COLLECfiONS \ New York (701 g), Washington (30 g). \ ANALYSES Kunz reported (in Barbour 1898) 7.38% Ni and 0 .74% Co. The sum appears correct, but the present author would expect that some of the nickel has been included with the cobalt. The meteorite is estimated to have the following composition: 7 .7±0.2% Ni, 0.50% Co, 0.12±0.02% P, with trace elements placing it in the chemical group IliA.
    [Show full text]
  • Geology, Published Online on 5 January 2011 As Doi:10.1130/G31624.1
    Geology, published online on 5 January 2011 as doi:10.1130/G31624.1 Geology Kamil Crater (Egypt): Ground truth for small-scale meteorite impacts on Earth L. Folco, M. Di Martino, A. El Barkooky, M. D'Orazio, A. Lethy, S. Urbini, I. Nicolosi, M. Hafez, C. Cordier, M. van Ginneken, A. Zeoli, A.M. Radwan, S. El Khrepy, M. El Gabry, M. Gomaa, A.A. Barakat, R. Serra and M. El Sharkawi Geology published online 5 January 2011; doi: 10.1130/G31624.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geology Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint.
    [Show full text]
  • Bartoschewitz - Catalogue of Meteorites
    BARTOSCHEWITZ - CATALOGUE OF METEORITES *FALL TOTAL BC- BC - NAME COUNTRY FIND WEIGHT TYPE No. SPECIMEN WEIGHT (kg) (gms) 1.1 CHONDRITES - ORDINARY OLIVINE BRONZITE CHONDRITES ACFER 005 Algeria March 1989 0,115 H 3.9/4 613.1 cut endpiece 32,70 ACFER 006 Algeria March 1989 0,561 H 3.9/4 614.1 slice 1,30 ACFER 011 Algeria 1989 3,8 H 5 399.1 cut fragm. 3,00 ACFER 020 Algeria 1989 0,708 H 5 401.1 cut fragm. 2,50 ACFER 028 Algeria 1989 3,13 H 3.8 844.1 part slice 1,70 ACFER 050 Algeria 1989 1,394 H 5-6 443.1 complete slice 105,00 ACFER 084 Algeria Apr. 16, 1990 6,3 H 5 618.1 cut corner piece 12,60 ACFER 089 Algeria 1990 0,682 H 5 437.1 complete slice 62,00 ACFER 098 Algeria 1990 5,5 H 5 615.1 cut fragment 29,20 ACFER 222 Algeria 1991 0,334 H 5-6 536.1 cut fragm. with crust 2,50 ACFER 284 Algeria 1991 0,12 H 5 474.1 slice 11,00 ACHILLES USA, Kansas 1924 recogn. 1950 16 H 5 314.1 slice 3,40 ACME USA, New Mexico 1947 75 H 5 303.1 slice 10,80 AGEN France *Sept. 5, 1815 30 H 5 208.1 fragm. with crust 54,40 ALAMOGORDO USA, New Mexico 1938 13,6 H 5 2.1 fragment 0,80 ALLEGAN USA *July 10, 1899 35 H 5 276.0 5 small fragments 1,52 ALLEGAN USA *July 10, 1899 35 H 5 276.1 5 small fragments 1,50 ALLEGAN USA *July 10, 1899 35 H 5 276.2 chondrules 0,02 ALLEN USA, Texas 1923 recogn.
    [Show full text]
  • Elastic Properties of Iron Meteorites. Nikolay Dyaur1, Robert R. Stewart1, and Martin Cassidy1, 1University of Houston, Science
    51st Lunar and Planetary Science Conference (2020) 3063.pdf Elastic properties of iron meteorites. Nikolay Dyaur1, Robert R. Stewart1, and Martin Cassidy1, 1University of Houston, Science and Research Building 1, 3507 Cullen Boulevard, room 312, Houston, TX 77204, [email protected] Introduction: We investigate the elastic properties of a ture, in the iron meteorites indicates directionality in variety of iron meteorites using ultrasonic (0.5 MHz to 5 physical properties. So, we explored the possibility of MHz) laboratory measurements. Our meteorite samples elastic anisotropy. First, we estimated Vp- and Vs- include Campo de Cielo, Canyon Diablo, Gibeon, and anisotropy from the measured maximum and minimum Nantan. The densities of the meteorites range from 7.15 velocity for each sample. g/cc to 7.85 g/cc. P-wave velocities are from 5.58 km/s to 7.85 km/s, and S-wave velocities are from 2.61 km/s to 3.37 km/s. There is a direct relationship between P-wave velocity and density (approximately quadratic). We find evidence of anisotropy and S-wave splitting in the Gibe- on sample. These measurements may help inform studies related to planetary core properties, asteroid mining, and Earth protection. Iron meteorites are composed of Fe-Ni mixes with Fe content around 90%. The principal minerals are kamacite and taenite with some inclusions mainly repre- sented by troilite, graphite, diamond, gold, quartz, and some others. Iron meteorites are divided into groups based on their structure linked to Ni content: Hexahe- drites (4-6% of Ni), Octahedrites (6-14% of Ni) and Nickel-rich ataxites (>12% of Ni) [1].
    [Show full text]
  • Fersman Mineralogical Museum of the Russian Academy of Sciences (FMM)
    Table 1. The list of meteorites in the collections of the Fersman Mineralogical Museum of the Russian Academy of Sciences (FMM). Leninskiy prospect 18 korpus 2, Moscow, Russia, 119071. Pieces Year Mass in Indication Meteorite Country Type in found FMM in MB FMM Seymchan Russia 1967 Pallasite, PMG 500 kg 9 43 Kunya-Urgench Turkmenistan 1998 H5 402 g 2 83 Sikhote-Alin Russia 1947 Iron, IIAB 1370 g 2 Sayh Al Uhaymir 067 Oman 2000 L5-6 S1-2,W2 63 g 1 85 Ozernoe Russia 1983 L6 75 g 1 66 Gujba Nigeria 1984 Cba 2..8 g 1 85 Dar al Gani 400 Libya 1998 Lunar (anorth) 0.37 g 1 82 Dhofar 935 Oman 2002 H5S3W3 96 g 1 88 Dhofar 007 Oman 1999 Eucrite-cm 31.5 g 1 84 Muonionalusta Sweden 1906 Iron, IVA 561 g 3 Omolon Russia 1967 Pallasite, PMG 1,2 g 1 72 Peekskill USA 1992 H6 1,1 g 1 75 Gibeon Namibia 1836 Iron, IVA 120 g 2 36 Potter USA 1941 L6 103.8g 1 Jiddat Al Harrasis 020 Oman 2000 L6 598 gr 2 85 Canyon Diablo USA 1891 Iron, IAB-MG 329 gr 1 33 Gold Basin USA 1995 LA 101 g 1 82 Campo del Cielo Argentina 1576 Iron, IAB-MG 2550 g 4 36 Dronino Russia 2000 Iron, ungrouped 22 g 1 88 Morasko Poland 1914 Iron, IAB-MG 164 g 1 Jiddat al Harasis 055 Oman 2004 L4-5 132 g 1 88 Tamdakht Morocco 2008 H5 18 gr 1 Holbrook USA 1912 L/LL5 2,9g 1 El Hammami Mauritani 1997 H5 19,8g 1 82 Gao-Guenie Burkina Faso 1960 H5 18.7 g 1 83 Sulagiri India 2008 LL6 2.9g 1 96 Gebel Kamil Egypt 2009 Iron ungrouped 95 g 2 98 Uruacu Brazil 1992 Iron, IAB-MG 330g 1 86 NWA 859 (Taza) NWA 2001 Iron ungrouped 18,9g 1 86 Dhofar 224 Oman 2001 H4 33g 1 86 Kharabali Russia 2001 H5 85g 2 102 Chelyabinsk
    [Show full text]
  • Revisiting the Campo Del Cielo, Argentina Crater Field: a New Data Point from a Natural Laboratory of Multiple Low Velocity, Oblique Impacts S.P
    Lunar and Planetary Science XXXVII (2006) 1102.pdf Revisiting the Campo del Cielo, Argentina crater field: A new data point from a natural laboratory of multiple low velocity, oblique impacts S.P. Wright1, M.A. Vesconi2, A. Gustin2, K.K. Williams3, A.C. Ocampo4, and W.A. Cassidy5, 1Department of Geological Sciences, Arizona State University, Box 6305, Tempe, AZ 85287-6305, [email protected]; 2Servicios Informaticos Integrales, Resistencia, Chaco Prov- ince, Argentina; 3Center for Earth and Planetary Studies, Smithsonian Institute, Washington, D.C. 20013-7012; 4NASA HQ, Science Mission Directorate, 300 E St. SW, 3C66, Washington, D.C. 20546; 5Department of Geology and Planetary Sciences, University of Pittsburgh, Pittsburgh, PA 15260-3332, [email protected] Introduction: The energy of formation of very Foerster magnetic gradiometer. Gradients over a ver- low angle impact craters in loess targets is not well- tical interval of 60 cm were measured at ground level. known. The Campo del Cielo, Argentina crater field Negative lobes appear deeper than positive ones. There (CdCcf) represents a natural laboratory of at least 22 is a positive/negative pair over the point where the low-angle impact craters formed in loess ~4000 years meteorite was discovered, but the negative lobe is ago. Because of the uniformity of the loess and com- much closer to the location of the meteorite than is the position of the projectiles, as well as a limited range of positive one. This effect may be dictated by the rela- impact velocities, calculation of energies of crater for- tive strength of the negative lobe. Positive/negative mation are simplified.
    [Show full text]