Are Differences in the Available Aromatase Inhibitors and Inactivators Significant?

Total Page:16

File Type:pdf, Size:1020Kb

Are Differences in the Available Aromatase Inhibitors and Inactivators Significant? 4360s Vol. 7, 4360s-4368s, December 2001 (Suppl.) Clinical Cancer Research Are Differences in the Available Aromatase Inhibitors and Inactivators Significant? Paige E. Johnson and Aman Buzdar 2 extend the treatment options for breast cancer patients with Department of Breast Medical Oncology, The University of Texas hormone-sensitive disease. M. D. Anderson Cancer Center, Houston, Texas 77030 Aromatase inhibitors are endocrine agents that have a different mode of action than tamoxifen against breast tumors in postmenopausal women. Several aromatase inhibitors with a Abstract high degree of selectivity for aromatase and improved tolera- Aromatase inhibitors are endocrine agents with a differ- bility have become clinically available for the treatment of ent mode of action than tamoxifen against breast tumors. In postmenopausal women with advanced breast cancer (2-6). postmenopausal women, estrogen concentrations are main- tained primarily via aromatase, a cytochrome P-450 enzyme Pharmacology of Aromatase Inhibitors that acts at the final step in the estrogen synthesis pathway. The In postmenopausal women, ovarian estrogen production first clinically available aromatase inhibitor, aminoglutethim- diminishes with age. In these women, estrogen concentra- ide, was introduced for the second-line treatment of advanced tions are maintained primarily via aromatase, a cytochrome breast cancer in the late 1970s. Despite proven efficacy in this P-450 enzyme complex that acts at the final step in the setting, its widespread use was limited by its overall toxicity estrogen synthesis pathway and catalyzes the production of and its lack of selectivity for the aromatase enzyme. This led to estrogens estrone and estradiol by extraglandular conversion the search for novel, more effective, and less toxic aromatase from androgens androstenedione and testosterone, respec- inhibitors. As a result, several aromatase inhibitors with a high tively. These drugs act by suppression of aromatase activity degree of selectivity for aromatase and improved tolerability in fat, liver, and muscle cells and in breast tumor tissue itself. have become clinically available for the treatment of postm- They can be divided into two classes: (a) steroidal drugs; and enopausal women with advanced breast cancer: (a) anastro- (b) nonsteroidal drugs (Ref. 7; see Table 1). The steroidal zole; (b) letrozole; (c) fadrozole; (d) formestane; and (e) ex- class (type I) comprises primarily formestane and exemes- emestane. Of these, formestane and exemestane are steroidal tane, and the nonsteroidal class (type II) comprises primarily nonreversible aromatase inhibitors, also known as aromatase the imide aminoglutethimide, the imidazole fadrozole, and inactivators, whereas fadrozole, anastrozole, and letrozole are the triazoles anastrozole and letrozole. A third nonsteroidal nonsteroidal reversible aromatase inhibitors. These agents dif- triazole, vorozole, has recently been withdrawn from clinical fer in pharmacokinetics, selectivity, and potency, although all development. are more selective than aminoglutethimide. Some differences in adverse effect profile are also noticeable between and within these two classes of agents. The clinical significance of these Method of Administration differences is not yet evident but may well prove to be relevant Anastrozole and letrozole are well absorbed following oral in the long-term adjunctive setting. dosing, with long terminal half-lives, allowing for once-daily dosing [anastrozole, 1 mg; letrozole, 2.5 mg (3, 4)]. In contrast, formestane is subject to high first-pass metabolism when given Introduction p.o., has a relatively short terminal half-life (approximately 2 h), It has long been established that estrogen is the major and has to be administered by i.m. injection (250 mg) every 2 hormone involved in the biology of breast cancer (1). Endo- weeks (8). Exemestane is p.o. bioavailable and has a terminal crine agents have therefore been designed to affect the supply half-life of about 24 h during chronic treatment, allowing once- of estrogens to the breast tumor, primarily by blockade of daily therapy (25 mg) (9). estrogen activity at the receptor level or by inhibition of estrogen production. However, drug resistance remains a Mechanism of Action significant problem in breast cancer treatment, and this has Steroidal and nonsteroidal aromatase inhibitors differ in led to the development of a variety of endocrine agents to their modes of interaction with and inhibition of the aromatase enzyme. Steroidal inhibitors compete with the endogenous sub- strates androstenedione and testosterone for the active site of the enzyme, where they act as false substrates and are processed to 1 Presented at the First International Conference on Recent Advances intermediates that bind irreversibly to the active site, causing and Future Directions in Endocrine Therapy for Breast Cancer, June irreversible enzyme inhibition. Hence, they are sometimes 21-23, 2001, Cambridge, MA. termed aromatase inactivators. Nonsteroidal inhibitors also 2 To whom requests for reprints should be addressed, at Department of compete with the endogenous substrates for access to the active Breast Medical Oncology, The University of Texas M. D. Anderson site, where they then form a coordinate bond to the heine iron Cancer Center, 1515 Holcombe Boulevard, Box 424, Houston, TX 77030. Phone: (713) 792-2817; Fax: (713) 794-4385; E-mail: abuzdar@ atom. They effectively exclude, therefore, both the natural sub- notes.mdacc.tmc.edu. strate and oxygen from the enzyme. The coordinate bonding is Downloaded from clincancerres.aacrjournals.org on September 30, 2021. © 2001 American Association for Cancer Research. Clinical Cancer Research 4361s Table 1. Structure of aromatase inhibitors, pharmacology, and the selectivity data Chemistry Arimidex Letrozole Exemestane Nonsteroidal Nonsteroidal Steroidal Structure o (,,~N 7 cH~ NC~ CN H3C~~ CH 3 NC-dfCH~ v CH~! CN Regulatory Approved Use Second line Yes Yes Yes First line Yes No No ~ Adjuvant use No (Data ahead of No No other AIs) Pharmacology Daily clinical dose 1 m8 qd 2.5 mg qd 25 m~ qd Monthly dose 30 m~53 75 mg 750 mg Time to steady state plasma 7 days 14-42 days 54 4 days 55 levels Half-life 48-50 hours ~5 2-4 days 54 27 hours 55'57 Inter-patient variability in ND 35% (1.65-fold ND steady state blood levels variation) 54 Time to maximal E2 3-4 days 12 2-3 days 56 7 days 63 suppression lntratumoral activity Yes 58 Yes 59 ND demonstrated Drug-Drug Interactions Interactions with Inhibits in vitro Metabolized by Metabolized by cytochrome P450 (CYP) CYP 1A2, 2C8/9 CYP3A4 and CYP CYP3A4 and and 3A4 but only 2A6. In vitro aldoketoreductase at relatively high letrozole strongly s. No inhibitory concentrations. No inhibits CYP2A6 action on activity on and moderately CYP 1A2, 2C9, CYP2A6 or 2D6. inhibits CYP2C 19. 2D6, 2El or 3A4. (US Arimidex) (US Femara) (US Aromasin) Clinical drug-drug Antipyrine and Pharmacokinetic Ketoconazole has interactions cimetidine clinical interaction study no influence on interaction studies with cimetidine exemestane PKs. indicate co- showed no No other formal administration with clinically drug-drug other drugs significant effect on interaction studies Downloaded from clincancerres.aacrjournals.org on September 30, 2021. © 2001 American Association for Cancer Research. 4362s Aromatase Inhibitors Table 1 Continued unlikely to result in letrozole PKs. have been clinically Warfarin performed. significant interaction study However, a CYP450 mediated showed no possible decrease interactions. clinically of exemestane No evidence of significant effect of plasma levels by interaction in letrozole on inducers of patients treated warfarin PKs. CYP3A4 cannot with Arimidex and (US Femara) be excluded. other commonly (US Aromasin) prescribed drugs. (US Arimidex) Selectivity Androgenic properties No 60 No 60 Yes 60,32,61 Other endocrine effects in No 53,62 Yes (reduction of Yes (androgenic) addition to desired effects cortisol and 32,54,61 on estrogens aldosterone levels) 18,54 Effect on sex hormone Decreased Increased Decreased 28 binding globulin (SHBG) (p=0.003) 63 or no (p=0.0001) 54 change 64 Effect on basal cortisol No 53 No 63 No level or reduced (p<0.03) 18 Effect on basal aldosterone No 53 No 18or increased No level (p=0.025) 63 Effect on ACTH stimulated No 53 Reduced ND cortisol synthesis (p=0.015 )63 Effect on ACTH stimulated No 53 Reduced 63 (p=0.04) ND aldosterone synthesis Ratio dose affecting >10 53 1 i 8,63 >32 25 cortisol: clinical dose Ratio dose affecting >10 53 1 18,63 >32 25 aldosterone: clinical dose ND = No data available ~, First line studies recently completed and results should become available in the near future. strong but reversible, so that enzyme activity can recover if the tivity for aromatase of the first-generation aromatase inhibitor inhibitor is removed. Inhibition is sustained whenever the in- aminoglutethimide led to concomitant suppression of the im- portant corticosteroids aldosterone and cortisol. In clinical use, hibitor is present. it became necessary to concurrently administer a replacement Selectivity corticosteroid such as hydrocortisone. Although the second- The degree of selectivity of an aromatase inhibitor for the generation aromatase inhibitor fadrozole was shown to be more aromatase enzyme has a bearing on both the ease of use and the potent and selective (7), it demonstrated a lack of selectivity tolerability profile of the drug. For instance, the lack of selec- through its effect
Recommended publications
  • By Exemestane, a Novel Irreversible Aromatase Inhibitor, in Postmenopausal Breast Cancer Patients1
    Vol. 4, 2089-2093, September 1998 Clinical Cancer Research 2089 In Vivo Inhibition of Aromatization by Exemestane, a Novel Irreversible Aromatase Inhibitor, in Postmenopausal Breast Cancer Patients1 Jfirgen Geisler, Nick King, Gun Anker, ation aromatase inhibitor AG3 has been used for breast cancer Giorgio Ornati, Enrico Di Salle, treatment for more than two decades (1). Because of substantial side effects associated with AG treatment, several new aro- Per Eystein L#{248}nning,2 and Mitch Dowsett matase inhibitors have been introduced in clinical trials. Department of Oncology, Haukeland University Hospital, N-502l Aromatase inhibitors can be divided into two major classes Bergen, Norway [J. G., G. A., P. E. L.]; Academic Department of Biochemistry, Royal Marsden Hospital, London, SW3 6JJ, United of compounds, steroidal and nonsteroidal drugs. Nonsteroidal Kingdom [N. K., M. D.]; and Department of Experimental aromatase inhibitors include AG and the imidazole/triazole Endocrinology, Pharmacia and Upjohn, 20014 Nerviano, Italy [G. 0., compounds. With the exception of testololactone, a testosterone E. D. S.] derivative (2), steroidal aromatase inhibitors are all derivatives of A, the natural substrate for the aromatase enzyme (3). The second generation steroidal aromatase inhibitor, 4- ABSTRACT hydroxyandrostenedione (4-OHA, formestane), was found to The effect of exemestane (6-methylenandrosta-1,4- inhibit peripheral aromatization by -85% when administered diene-3,17-dione) 25 mg p.o. once daily on in vivo aromati- by the i.m. route at a dosage of 250 mg every 2 weeks as zation was studied in 10 postmenopausal women with ad- recommended (4) but only by 50-70% (5) when administered vanced breast cancer.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,552,057 B2 Brinton Et Al
    US008552057B2 (12) United States Patent (10) Patent No.: US 8,552,057 B2 Brinton et al. (45) Date of Patent: *Oct. 8, 2013 (54) PHYTOESTROGENIC FORMULATIONS FOR OTHER PUBLICATIONS ALLEVATION OR PREVENTION OF Morito et al. Interaction of Phytoestrogens with Estrogen Receptors NEURODEGENERATIVE DISEASES a and b (II). Biol. Pharm. Bull. 25(1), pp. 48-52 (2002).* Kinjo et al. Interactions of Phytoestrogens with Estrogen Receptors a (75) Inventors: Roberta Diaz, Brinton, Rancho Palos and b (III). Biol. Pharm. Bull. 27(2) pp. 185-188 (2004).* Verdes, CA (US); Liqin Zhao, Los An, et al., "Estrogen receptor -selective transcriptional activity and Angeles, CA (US) recruitment of coregulators by phytoestrogens', J Biol. Chem. 276(21): 17808-14 (2001). (73) Assignee: University of Southern California, Los Avis, et al. Is there a menopausal syndrome'? Menopausal status and symptoms across racial/ethnic groups', Soc. Sci. Med., 52(3):345-56 Angeles, CA (US) (2001). Brinton, et al. Impact of estrogen therapy on Alzheimer's disease: a (*) Notice: Subject to any disclaimer, the term of this fork in the road?’ CNS Drugs, 18(7):405-422 (2004). patent is extended or adjusted under 35 Bromberger, et al., Psychologic distress and natural menopause: a U.S.C. 154(b) by 0 days. multiethnic community study’. Am. J. Public Health, 91 (9) 1435-42 (2001). This patent is Subject to a terminal dis Brookmeyer, et al., “Projections of Alzheimer's disease in the United claimer. States and the public health impact of delaying disease onset'. Am. J. Public Health, 88(9): 1337-42 (1998). (21) Appl.
    [Show full text]
  • X FACT SHEET
    Letrozole For the Patient: Letrozole Other names: FEMARA • Letrozole (LET-roe-zole) is a drug that is used to treat breast cancer. It only works in women who are post-menopausal and producing estrogen outside the ovaries. Many cancers are hormone sensitive (estrogen or progesterone receptor positive) and their growth can be affected by lowering estrogen levels in the body. Letrozole is used to help reduce the amount of estrogen produced by your body and decrease the growth of hormone sensitive tumors. Letrozole is a tablet that you take by mouth. The tablet may contain lactose. • It is important to take letrozole exactly as directed by your doctor. Make sure you understand the directions. • Letrozole may be taken with food or on an empty stomach. • If you miss a dose of letrozole, take it as soon as you can if it is within 12 hours of the missed dose. If it is over 12 hours since your missed dose, skip the missed dose and go back to your usual dosing times. • Other drugs such as tamoxifen (NOLVADEX) and raloxifen (EVISTA) may interact with letrozole. Because letrozole works by reducing the amount of estrogen produced by your body, it is recommended that you avoid taking estrogen replacement therapy such as conjugated estrogens (PREMARIN, C.E.S., ESTRACE, ESTRACOMB, ESTRADERM, ESTRING). Tell your doctor if you are taking this or any other drugs as you may need extra blood tests or your dose may need to be changed. Check with your doctor or pharmacist before you start taking any new drugs. • The drinking of alcohol (in small amounts) does not appear to affect the safety or usefulness of letrozole.
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Fast Three Dimensional Pharmacophore Virtual Screening of New Potent Non-Steroid Aromatase Inhibitors
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE J. Med. Chem. 2009, 52, 143–150 143 provided by Estudo Geral Fast Three Dimensional Pharmacophore Virtual Screening of New Potent Non-Steroid Aromatase Inhibitors Marco A. C. Neves,† Teresa C. P. Dinis,‡ Giorgio Colombo,*,§ and M. Luisa Sa´ e Melo*,† Centro de Estudos Farmaceˆuticos, Laborato´rio de Quı´mica Farmaceˆutica, Faculdade de Farma´cia, UniVersidade de Coimbra, 3000-295, Coimbra, Portugal, Centro de Neurocieˆncias, Laborato´rio de Bioquı´mica, Faculdade de Farma´cia, UniVersidade de Coimbra, 3000-295, Coimbra, Portugal, and Istituto di Chimica del Riconoscimento Molecolare, CNR, 20131, Milano, Italy ReceiVed July 28, 2008 Suppression of estrogen biosynthesis by aromatase inhibition is an effective approach for the treatment of hormone sensitive breast cancer. Third generation non-steroid aromatase inhibitors have shown important benefits in recent clinical trials with postmenopausal women. In this study we have developed a new ligand- based strategy combining important pharmacophoric and structural features according to the postulated aromatase binding mode, useful for the virtual screening of new potent non-steroid inhibitors. A small subset of promising drug candidates was identified from the large NCI database, and their antiaromatase activity was assessed on an in vitro biochemical assay with aromatase extracted from human term placenta. New potent aromatase inhibitors were discovered to be active in the low nanomolar range, and a common binding mode was proposed. These results confirm the potential of our methodology for a fast in silico high-throughput screening of potent non-steroid aromatase inhibitors. Introduction built and proved to be valuable in understanding the binding 14-16 Aromatase, a member of the cytochrome P450 superfamily determinants of several classes of inhibitors.
    [Show full text]
  • Us Anti-Doping Agency
    2019U.S. ANTI-DOPING AGENCY WALLET CARDEXAMPLES OF PROHIBITED AND PERMITTED SUBSTANCES AND METHODS Effective Jan. 1 – Dec. 31, 2019 CATEGORIES OF SUBSTANCES PROHIBITED AT ALL TIMES (IN AND OUT-OF-COMPETITION) • Non-Approved Substances: investigational drugs and pharmaceuticals with no approval by a governmental regulatory health authority for human therapeutic use. • Anabolic Agents: androstenediol, androstenedione, bolasterone, boldenone, clenbuterol, danazol, desoxymethyltestosterone (madol), dehydrochlormethyltestosterone (DHCMT), Prasterone (dehydroepiandrosterone, DHEA , Intrarosa) and its prohormones, drostanolone, epitestosterone, methasterone, methyl-1-testosterone, methyltestosterone (Covaryx, EEMT, Est Estrogens-methyltest DS, Methitest), nandrolone, oxandrolone, prostanozol, Selective Androgen Receptor Modulators (enobosarm, (ostarine, MK-2866), andarine, LGD-4033, RAD-140). stanozolol, testosterone and its metabolites or isomers (Androgel), THG, tibolone, trenbolone, zeranol, zilpaterol, and similar substances. • Beta-2 Agonists: All selective and non-selective beta-2 agonists, including all optical isomers, are prohibited. Most inhaled beta-2 agonists are prohibited, including arformoterol (Brovana), fenoterol, higenamine (norcoclaurine, Tinospora crispa), indacaterol (Arcapta), levalbuterol (Xopenex), metaproternol (Alupent), orciprenaline, olodaterol (Striverdi), pirbuterol (Maxair), terbutaline (Brethaire), vilanterol (Breo). The only exceptions are albuterol, formoterol, and salmeterol by a metered-dose inhaler when used
    [Show full text]
  • Part I Biopharmaceuticals
    1 Part I Biopharmaceuticals Translational Medicine: Molecular Pharmacology and Drug Discovery First Edition. Edited by Robert A. Meyers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA. 3 1 Analogs and Antagonists of Male Sex Hormones Robert W. Brueggemeier The Ohio State University, Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Columbus, Ohio 43210, USA 1Introduction6 2 Historical 6 3 Endogenous Male Sex Hormones 7 3.1 Occurrence and Physiological Roles 7 3.2 Biosynthesis 8 3.3 Absorption and Distribution 12 3.4 Metabolism 13 3.4.1 Reductive Metabolism 14 3.4.2 Oxidative Metabolism 17 3.5 Mechanism of Action 19 4 Synthetic Androgens 24 4.1 Current Drugs on the Market 24 4.2 Therapeutic Uses and Bioassays 25 4.3 Structure–Activity Relationships for Steroidal Androgens 26 4.3.1 Early Modifications 26 4.3.2 Methylated Derivatives 26 4.3.3 Ester Derivatives 27 4.3.4 Halo Derivatives 27 4.3.5 Other Androgen Derivatives 28 4.3.6 Summary of Structure–Activity Relationships of Steroidal Androgens 28 4.4 Nonsteroidal Androgens, Selective Androgen Receptor Modulators (SARMs) 30 4.5 Absorption, Distribution, and Metabolism 31 4.6 Toxicities 32 Translational Medicine: Molecular Pharmacology and Drug Discovery First Edition. Edited by Robert A. Meyers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA. 4 Analogs and Antagonists of Male Sex Hormones 5 Anabolic Agents 32 5.1 Current Drugs on the Market 32 5.2 Therapeutic Uses and Bioassays
    [Show full text]
  • Pharmacogenomics of Endocrine Therapy in Breast Cancer
    Journal of Human Genetics (2013) 58, 306–312 & 2013 The Japan Society of Human Genetics All rights reserved 1434-5161/13 OPEN www.nature.com/jhg REVIEW Pharmacogenomics of endocrine therapy in breast cancer James N Ingle The most important modality of treatment in the two-thirds of patients with an estrogen receptor (ER)-positive early breast cancer is endocrine therapy. In postmenopausal women, options include the selective ER modulators (SERMs), tamoxifen and raloxifene, and the ‘third-generation’ aromatase inhibitors (AIs), anastrozole, exemestane and letrozole. Under the auspices of the National Institutes of Health Global Alliance for Pharmacogenomics, Japan, the Mayo Clinic Pharmacogenomics Research Network Center and the RIKEN Center for Genomic Medicine have worked collaboratively to perform genome-wide association studies (GWAS) in women treated with both SERMs and AIs. On the basis of the results of the GWAS, scientists at the Mayo Clinic have proceeded with functional genomic laboratory studies. As will be seen in this review, this has led to new knowledge relating to endocrine biology that has provided a clear focus for further research to move toward truly personalized medicine for women with breast cancer. Journal of Human Genetics (2013) 58, 306–312; doi:10.1038/jhg.2013.35; published online 2 May 2013 Keywords: aromatase inhibitors; breast cancer; pharmacogenomics; tamoxifen INTRODUCTION trials were the double-blind, placebo-controlled NSABP P-1 trial of Breast cancer is the most common form of cancer in women both in tamoxifen8, and the double-blind NSABP P-2 trial that compared the United States1 and Japan.2 Endocrine therapy is the most raloxifene with tamoxifen.9,10 Combined, these two studies involved important modality in the two-thirds of patients with an estrogen over 33 000 women, which constituted about 59% of the world’s receptor (ER)-positive early breast cancer.
    [Show full text]
  • Aromatase Inhibitors
    FACTS FOR LIFE Aromatase Inhibitors What are aromatase inhibitors? Aromatase Inhibitors vs. Tamoxifen Aromatase inhibitors (AIs) are a type of hormone therapy used to treat some breast cancers. They AIs and tamoxifen are both hormone therapies, are taken in pill form and can be started after but they act in different ways: surgery or radiation therapy. They are only given • AIs lower the amount of estrogen in the body to postmenopausal women who have a hormone by stopping certain hormones from turning receptor-positive tumor, a tumor that needs estrogen into estrogen. If estrogen levels are low to grow. enough, the tumor cannot grow. AIs are used to stop certain hormones from turning • Tamoxifen blocks estrogen receptors on breast into estrogen. In doing so, these drugs lower the cancer cells. Estrogen is still present in normal amount of estrogen in the body. levels, but the breast cancer cells cannot get enough of it to grow. Generic/Brand names of AI’s As part of their treatment plan, some post- Generic name Brand name menopausal women will use AIs alone. Others anastrozole Arimidex will use tamoxifen for 1-5 years and then begin exemestane Aromasin using AIs. letrozole Femara Who can use aromatase inhibitors? Postmenopausal women with early stage and metastatic breast cancer are often treated with AIs. After menopause, the ovaries produce only a small amount of estrogen. AIs stop the body from making estrogen, and as a result hormone receptor-positive tumors do not get fed by estrogen and die. AIs are not given to premenopausal women because their ovaries still produce estrogen.
    [Show full text]
  • Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
    Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine
    [Show full text]
  • The Role of the Androgen Receptor Signaling in Breast Malignancies PANAGIOTIS F
    ANTICANCER RESEARCH 37 : 6533-6540 (2017) doi:10.21873/anticanres.12109 Review The Role of the Androgen Receptor Signaling in Breast Malignancies PANAGIOTIS F. CHRISTOPOULOS*, NIKOLAOS I. VLACHOGIANNIS*, CHRISTIANA T. VOGKOU and MICHAEL KOUTSILIERIS Department of Experimental Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece Abstract. Breast cancer (BrCa) is the most common decades, BrCa still has a poor prognosis with 5-year survival malignancy among women worldwide, and one of the leading rates of metastatic disease reaching to 26% only. BrCa is the causes of cancer-related deaths in females. Despite the second leading cause of death among female cancers with development of novel therapeutic modalities, triple-negative 40,610 estimated deaths in the U.S. expected in 2017 (1). breast cancer (TNBC) remains an incurable disease. Androgen Breast cancer comprises a heterogeneous group of diseases receptor (AR) is widely expressed in BrCa and its role in the with variable course and outcome. Currently, BrCa is sub- disease may differ depending on the molecular subtype and the classified into distinct molecular subtypes named: normal stage. Interestingly, AR has been suggested as a potential target breast like, luminal A/B, HER-2 related, basal-like and claudin- candidate in TNBC, while sex hormone levels may regulate the low (2, 3). Estrogen receptor (ER), progesterone receptor (PR) role of AR in BrCa subtypes. In the presence of estrogen and HER2 have long been established as useful prognostic and receptor α ( ERa ), AR may antagonize the ER α- induced effects, predictive biomarkers. Hormonal therapy in ER and PR whereas in the absence of estrogens, AR may act as an ER α- positive tumors (4), as well as the use of monoclonal antibodies mimic, promoting tumor.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,616,072 B2 Birrell (45) Date of Patent: *Apr
    USOO961. 6072B2 (12) United States Patent (10) Patent No.: US 9,616,072 B2 Birrell (45) Date of Patent: *Apr. 11, 2017 (54) REDUCTION OF SIDE EFFECTS FROM 6,200,593 B1 3, 2001 Place AROMATASE INHIBITORS USED FOR 6,241,529 B1 6, 2001 Place 6,569,896 B2 5/2003 Dalton et al. TREATING BREAST CANCER 6,593,313 B2 7/2003 Place et al. 6,696,432 B1 2/2004 Elliesen et al. (71) Applicant: Chavah Pty Ltd, Medindie, South 6,995,284 B2 2/2006 Dalton et al. Australia (AU) 7,772.433 B2 8, 2010 Dalton et al. 8,003,689 B2 8, 2011 Veverka 8,008,348 B2 8, 2011 Steiner et al. (72) Inventor: Stephen Nigel Birrell, Medindie (AU) 8,980,569 B2 3/2015 Weinberg et al. 8,980,840 B2 3/2015 Truitt, III et al. (73) Assignee: CHAVAH PTY LTD., Stirling, South 9,150,501 B2 10/2015 Dalton et al. Australia (AU) 2003/0O87885 A1 5/2003 Masini-Eteve et al. 2004/O191311 A1 9/2004 Liang et al. *) Notice: Subject to anyy disclaimer, the term of this 2005/OO32750 A1 2/2005 Steiner et al. 2005/0176692 A1 8/2005 Amory et al. patent is extended or adjusted under 35 2005/0233970 A1 10/2005 Garnick U.S.C. 154(b) by 0 days. 2006, OO69067 A1 3/2006 Bhatnagar et al. 2007/0066568 A1 3/2007 Dalton et al. This patent is Subject to a terminal dis 2009,0264534 A1 10/2009 Dalton et al. claimer. 2010, O144687 A1 6, 2010 Glaser 2014, OO18433 A1 1/2014 Dalton et al.
    [Show full text]