ISTAR Concepts and Solutions Engine Room

Total Page:16

File Type:pdf, Size:1020Kb

ISTAR Concepts and Solutions Engine Room UNCLASSIFIED ANNEX A Statement of Requirements – ISTAR Concepts and Solutions Engine Room CONTENTS Page 1. Terminology 2 2. Background 2 3. The ICS Engine Room 4 4. The Engine Room Team Construct 6 5. The Engine Room Operation 10 6. Engine Room Management 13 7. Glossary 20 8. References 23 APPENDICIES Appendix 1 – Task-based Scenario for ICS Experiment Hub Appendix 2 – Task-based Scenario for Concept Development for [Redacted] Appendix 3 – Forward Experimentation Plan Appendix 4 – Core Competencies (Engine Room Leader and Strand Leaders) Appendix 5 – Engine Room deliverables Appendix 6 – Government Furnished entities (services, equipment, information, etc) Appendix 7 – The ICS Process SUPPORTING INFORMATION [To assist in completion of task-based scenarios] Appendix 8 – ISTAR Experimental Hub – IOC Architectural Design Appendix 9 – Concept Capture PowerPoint presentation – [Redacted] UNCLASSIFIED 1 UNCLASSIFIED ANNEX A 1. TERMINOLOGY 1.1 The term “Engine Room” covers all suppliers who shall form the Engine Room team, to be detailed by the Prime Contractor. 1.2 The term “The Contractor” shall refer to the Prime Contractor for the Engine Room. 1.3 The term “The Authority” shall refer to the Defence Science and Technology Laboratory (Dstl), an agency of the MOD. 2. BACKGROUND 2.1 The ISTAR Concepts and Solutions (ICS) Programme was initiated in July 2011 by the ISTAR and Sensors (I&S) Domain within the Defence Science and Technology (DST) Programme Office (PO), part of Dstl. ICS will enable Science and Technology (S&T) to take a whole-systems approach in addressing MOD Unified Customer (MUC) problems and issues across the ISTAR enterprise. 2.2 “Concepts”1 within the scope of ICS (specifically Applied Concepts) are focused primarily on ISTAR Capability Requirements which are defined as ‘services to decision-makers’ within the ISR2 Enterprise Architecture (EA). The Authority will provide access to MOD Reference Architectures (such as the Information Superiority Reference Architecture) during the life of the programme. These concepts may be combinations of equipment, processes, tactics, techniques, training & procedures that may comprise varying sets of ‘capability components’ (or ‘capability building blocks’) that are intended to meet a desired requirement or level of capability. Herein where the term concept is used the above description is assumed. 2.3 In addressing ISTAR problems and issues, ICS will inevitably impact on other areas, from dismounted combat to littoral manoeuvre, and as such ICS will be required to be coherent with ongoing work and future plans across a broad range of capability areas which will be dependent on the specific concept under investigation. 2.4 The I&S Domain receives ISTAR S&T research goals (RGs) from the capability areas within MOD, and these span the complete ISTAR enterprise from integrated sensing and collection, to intelligence analysis and production. In order to address the RGs, MOD S&T needs to: • Understand the intelligence enterprise • Have knowledge of where it does and does not work • Understand the contribution S&T can make to the enterprise • Have vision, leadership and motivation. 2.5 The scope of the ICS programme will include the whole of the I&S Domain S&T programme, which is sub-divided into eight application areas. These are: • [Redacted} 2.6 Each of the eight application areas draws from some or all of the six Domain research areas, which are: 1 DCDC defines a concept as ‘a notion or statement of an idea, expressing how something might be done or accomplished, that may lead to an accepted procedure or capability.’ Concepts can be further sub-divided into Analytical and Applied Concepts. ‘Analytical Concepts assist with the formulation of Defence strategy by describing in broad terms, the principles and characteristics of future ways of operating out to a 20 year horizon ‘(e.g. High Level Operational Concepts). ‘Applied Concepts describe specific ways of operating within existing policy and provide the detail required to support capability development and delivery via the Through- Life Capability Management (TLCM) process. The most detailed examples of Applied Concepts are CONEMPs and CONUSEs.’ 2 Intelligence, Surveillance and Reconnaissance UNCLASSIFIED 2 UNCLASSIFIED ANNEX A • Concepts and Capability: focus areas for decision support to capability planning and acquisition3 • Sensor Technologies: multi-function sensor systems built from a common core of technologies reusable across land, sea, air and space • Sensor Exploitation: extraction of the maximum possible information from sensor data at its lowest level of digitisation • Integrated Sensing: synchronised, cross-cued sensing across sensor modalities, platforms and environments to provide guaranteed detection, recognition, identification and tracking of targets • Information Exploitation: optimised extraction and interpretation of information from all available data sources • Intelligence Production: detection, association and correlation of events across the widest range of disparate sources 2.7 Each application area may cut across one or more operational environments (Land, Sea, Air, Space, Cyber and Spectrum), or part of the “Direct, Collect, Process, Disseminate” (DCPD) Intelligence cycle4, and impact on one or many Defence Lines of Development (DLoD)5, [Redacted] Figure 1: ICS interaction with the eight I&S Domain application areas. 2.8 Each Application Area has a dynamic S&T roadmap, access to which shall be provided to the Contractor by the Authority from Contract start date6, which cover: • Exploitation plans • Demonstrations • Underpinning technical activities, including those both in-Government and from the supply base, including S&T research and development of: o Concepts, architecture and enterprise o Networked systems o Systems and sub-systems o Science and technology research 2.9 [Redacted] 2.10 The ICS programme aims to address these issues and will develop and validate new (and existing) concepts for future ISTAR solutions to: • Address MUC Research Goals and future capability gaps, risks and issues which will be maintained and interpreted by the Authority • Provide understanding of cost, benefit and timescales/risks to the MUC • Exploit innovative technology and systems approaches across the DCPD cycle, to inform the design of the ISTAR Enterprise 2.11 The chosen delivery method for Industrial and Academic support to the ICS programme is via the Engine Room contract. The Authority believes that MOD and a technically excellent Engine Room, led by a Prime Contractor, working together in a collaborative environment, is the 3 The ICS Programme is a core element of this research area 4 Joint Doctrine Publication 2-00 [1]; Understanding and Intelligence Support to Joint Operations. 5 DLoD descriptions [2]; Acquisition Operating Framework 6 A list shall be maintained in Appendix 6 of all items to be provided as GFX (e.g. information, services, equipment, etc) UNCLASSIFIED 3 UNCLASSIFIED ANNEX A construct most likely to succeed in delivering this complex, fast paced, technically challenging programme. 2.12 The ICS Programme shall take a rigorous approach to test and evaluation of concepts, which will ensure that only those high-priority concepts that: • Address a MOD-endorsed problem • Have a viable exploitation route • Deliver real benefit to the end-user will be developed into a solution. The work of the Engine Room will be key to delivering this approach. There will be scope for innovative exploratory activities where, for example, future technology options generated by the Centre for Defence Enterprise (CDE) will be examined within a complete DCPD test environment. 2.13 The Engine Room will form the core of the ICS Programme. Concept ideas, captured by the Authority, will form the basis of Engine Room tasks to take each concept through an iterative process of development and assessment, resulting ultimately in the production of detailed E2E solution options – i.e. proposed solutions to the original customer problem (against which the concept was generated). Invariably not all concepts will reach this stage of maturity, as the ICS process shall be structured such that concept development can be put “on-hold” or terminated at any stage, if: • MOD priorities change • Assessment activities show it will not deliver a solution which meets the customer requirement, • A particular technology is not at a sufficient level of maturity to take the Concept further. 2.14 Assessment activities, such as cost analysis, benefits analysis, or E2E system assessment will therefore underpin concept development. Concepts will be tested through combinations of simulation, modelling and both emulated and live experimentation (which may include full-scale live experiments) across the complete system-of-systems architecture. 3. THE ICS ENGINE ROOM OVERVIEW 3.1 The following are the overarching requirements of this Contract for the provision of the ICS Engine Room. 3.2 Day-to-day management of the Engine Room at a task level shall be the responsibility of the Contractor, with leadership and technical oversight from the Authority. There shall be close cooperation between Dstl and Engine Room staff in the delivery of individual tasks under this contract. 3.3 The Engine Room shall be flexible, dynamic and built on a culture of sharing and collaboration to achieve a common goal. It will have an “open-door” policy to ensure that suppliers can join and leave depending on programme priorities. Elements of the Engine Room shall be embedded at Dstl Porton Down where suitable infrastructure for the embedded Engine Room staff shall be provided by the Authority. 3.4 “Embedded” refers to staff whose permanent place of work for a period of time greater than 2 months is at Dstl Porton Down. Embedded staff shall be required to hold appropriate security clearances (minimum SC) and be UK Nationals. 3.5 The Authority shall ensure embedded staff undergo site induction; be issued with a pass; and have provision made for IT equipment. 3.6 The Authority will make four single occupancy open-plan office spaces available for the use of the embedded Engine Room at Dstl Porton Down, for the duration of the programme.
Recommended publications
  • Technology Update on the Unified Architecture Framework (UAF)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KTUePubl (Repository of Kaunas University of Technology) Technology Update on the Unified Architecture Framework (UAF) Matthew Hause Graham Bleakley Engineering Fellow Solution Architect PTC IBM Analytics [email protected] [email protected] Aurelijus Morkevicius Senior Solution Architect No Magic [email protected] Copyright © 2016 by Matthew Hause, Graham Bleakley, Aurelijus Morkevicius. Abstract. Architecture frameworks continue to evolve. The Unified Profile for the Department of Defense (DoD) Architecture Framework (DoDAF) and the UK’s Ministry of Defence Architecture Framework (MODAF) (UPDM) provides a standard means of representing DoDAF, MODAF, and NATO Architecture Framework (NAF) conformant architectures using the Unified Modeling Language (UML), and Systems Modeling Language (SysML). Since the UPDM V2.0 publication, further information has emerged such as the June 2011 NATO study entitled: “Development of The AMN (Afghanistan Mission Network) Architecture In 2010 – Lessons Learned,” by Torsten Graeber of the NATO C3 Agency. This report identified the following in section 4.1-ARCHITECTURE FRAMEWORKS, sub-section 4.1.2 Observations (Need for a Unified Architecture Framework) and stated that: • differences in DoDAF, MODAF, and NAF make it difficult to match the metamodel one to one. • some of the concepts in the frameworks have the same name but different definitions, i.e. different semantics. • difficult to cross-walk the concepts between the different frameworks leads to miscommunication between architects using different frameworks. Based on the above, the NATO Architecture Capability Team (Architecture CaT) meeting on Sept. 10-11, 2012 committed to move to a single world-wide Architecture Framework.
    [Show full text]
  • Air Force Human Systems Integration Handbook
    Air Force Human Systems Integration Handbook: Planning and Execution of Human Systems Integration Distribution A: Unlimited Distribution Prepared by: Directorate of Human Performance Integration Human Performance Optimization Division 711 HPW/HPO 2485 Gillingham Drive Brooks City-Base, TX 78235-5105 This page intentionally left blank. 2 TABLE OF CONTENTS EXECUTIVE SUMMARY...........................................................................................................................................7 1. INTRODUCTION TO AIR FORCE HUMAN SYSTEMS INTEGRATION ......................................................8 1.1 HANDBOOK PURPOSE........................................................................................................................................8 1.2 HISTORY .............................................................................................................................................................8 1.3 KEY CONCEPTS................................................................................................................................................10 1.4 DOMAINS ..........................................................................................................................................................10 2. IMPLEMENTING AIR FORCE HUMAN SYSTEMS INTEGRATION...........................................................12 2.1 PRIMARY AFHSI ORGANIZATIONS..................................................................................................................12 2.1.1 Air Force
    [Show full text]
  • Paper 080: Service-Orientated Representations of the Military Business
    11th ICCRTS COALITION COMMAND AND CONTROL IN THE NETWORKED ERA Title: Paper 080: Service-orientated representations of the military business. Topic: C2 Concepts and Organisation Author 1 (POC): Author 2: Author 3: Geoff Markham Harry Duncan Robert Symonds QinetiQ plc QinetiQ plc QinetiQ plc St Andrew’s Road St Andrew’s Road St Andrew’s Road MALVERN MALVERN MALVERN WR14 3PS WR14 3PS WR14 3PS United Kingdom United Kingdom United Kingdom Tel: +44 1684 896399 E-mail: mailto:[email protected] This abstract is based on research undertaken for the United Kingdom Ministry of Defence and is covered in whole by Crown Copyright. v.0.2.6 GM 12th July 2006 REVISED ABSTRACT In the context of the deployment of military forces, command is the director and integrator of other capabilities, i.e. the structures, processes and assets associated with Inform, Prepare, Project, Operate, Protect and Sustain1. Command is the ‘builder’ or ‘composer’ of the military organization (and its extra-military affiliations) in response to current operational needs. The commander may wish to adopt any of a variety of organizational configurations, yet is constrained to build his organization out of the existing military fabric (e.g. procedures, staff, equipment, HQ facilities). This is the architectural thesis of composition (the whole being constructed from known building blocks through the satisfaction of an architectural ruleset), being applied in the context of the command of a specific operation. Re-composition (re-build) continues in theatre in the form of Task Organization, and the ‘run-time’ behaviour of the organization are then excitations of features of the ‘built’ structure under the conditions of executing operational activities.
    [Show full text]
  • Nato Architecture Framework (Naf)
    NATO ARCHITECTURE FRAMEWORK Version 4 Architecture Capability Team Consultation, Command & Control Board January 2018 Acknowledgments for NAFv4 Publication Throughout the development of version 4 of this publication numerous individual experts of NATO Nations participated, resulting in this significant achievement: The realization of the NATO Architecture Framework. This work would not have been possible without the continuous support of the Ministries of Defence of United Kingdom and France, and the NATO Science and Technology Organization. Also special thanks goes to Partner Nations and Industry Partners for their unwavering support in assigning and providing their best professional resources in the architecture domain. The NATO Architecture Framework is a substantial achievement for the Architecture Capability Team under the Consultation, Command and Control Board. Each member of the Architecture Capability Team worked determinedly over the last four years to provide extensive professional guidance and personal effort in the development of this product. The Architecture Capability Team is grateful to all for their contributions to this effort. 4 NAFv4 NAFv4 5 CONTENTS Chapter 1 - Introduction 1 GENERAL ....................................................................................................................................................................... 11 1.1 Purpose ........................................................................................................................................................................
    [Show full text]
  • Unified Profile for the Department of Defense Architecture Framework (Dodaf) and the Ministry of Defence Architecture Framework (MODAF)
    Date: January 2009 Unified Profile for the Department of Defense Architecture Framework (DoDAF) and the Ministry of Defence Architecture Framework (MODAF) FTF Beta 1 OMG Document Number: dtc/2009-xx-xx Standard Document URL: http://www.omg.org/spec/UPDM/1.0 Associated File(s): http://www.omg.org/spec/20080801 * original files: c4i/2008-08-13, 2008-08-01, 2008-08-03, 2008-09-01 This OMG document replaces the submission document (c4i/08-08-13, Alpha). It is an OMG Adopted Beta Specification and is currently in the finalization phase. Comments on the content of this document are welcome, and should be directed to [email protected] by March 16, 2009. You may view the pending issues for this specification from the OMG revision issues web page http://www.omg.org/issues/. The FTF Recommendation and Report for this specification will be published on September 29, 2009. If you are reading this after that date, please download the available specification from the OMG Specifications Catalog. Copyright © 2003-2008, Adaptive Copyright © 2003-2008, Artisan Software Tools, Ltd. Copyright © 2003-2008, EmbeddedPlus Engineering Copyright © 2003-2008, No Magic Copyright © 2008, Object Management Group, Inc. Copyright © 2003-2008, Rolls Royce Copyright © 2003-2008, Sparx Systems Pty Ltd Copyright © 2003-2008, Visumpoint USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES The material in this document details an Object Management Group specification in accordance with the terms, conditions and notices set forth below. This document does not represent a commitment to implement any portion of this specification in any company's products. The information contained in this document is subject to change without notice.
    [Show full text]
  • NCSC Certification for Cyber Security/IA Professionals
    November 2018 Issue No: 5.4 NCSC Certification for Cyber Security/IA Professionals NCSC Certification for Cyber Security/IA Professionals Issue No: 5.4 November 2018 The copyright of this document is reserved and vested in the Crown. Document History Issue Date Comment 1.0 March 2011 First definitive version. Certification Bodies may, at their discretion, accept the Infosec Training Paths Competency scheme qualification as sufficient evidence for 1.1 September 2012 meeting the requirements of the Security & Information Risk Advisor role at responsibility Level 2. Removal of FOIA footer throughout the document. Addition to both the role purpose and the responsibilities for both the 1.2 May 2012 Comsec Practitioner and the ComSO roles. Updates to reflect revised mapping of Mandatory Requirements (MR) in HMG SPF v7.0, October 11. 1.3 May 2012 Minor update to Table 7. Second definitive version. Removal of guidance chapters and their incorporation with NCSC ‘Awareness & Training’ web pages. Removal of statements in Accreditor role definition requiring Senior & Lead Accreditors to meet responsibility requirements of Practitioner and 2.0 September 2012 Senior Accreditors respectively. Change of role title from Security Architect to IA Architect. Additional bullet point to the S&IRA Lead Practitioner role: ‘Leads development of IA training, guidance or professional standards in widespread use across the public sector’. Addition of knowledge statements to skill group definitions – see Annex A Third definitive version. Incorporating HM Treasury GPG on role of internal audit in IA. Additional 3.0 June 2013 bullets to IA Senior & Lead Auditor roles Introduction of flexibility in core skills for IA Auditor role.
    [Show full text]
  • Returning Science to the Social (Making Sense of Confusion: a Case for Honest Reflection) Simon Reay Atkinson
    Defence Academy of the United Kingdom The Shrivenham Papers Returning Science To The Social (Making Sense Of Confusion: A Case For Honest Reflection) Simon Reay Atkinson Number 10 - July 2010 The Defence Academy of the United Kingdom The Defence Academy is the institution responsible for post- graduate education and the majority of staff, command, leadership, defence management, acquisition and technology training for members of the UK Armed Forces and MOD Civil Servants. It is also responsible for the provision of non-technical research and assessment in support of the Department, and for establishing and maintaining itself as the MOD’s primary link with and with international military educational institutions. By operating under unified direction and with a single budget, it capitalises on the combined strengths of its Colleges, enables the cost-effective use of staff, facilities and money and maximises influence both nationally and internationally. The Academy comprises the Royal College of Defence Studies, the Joint Services Command and Staff College, the College of Management and Technology, and the Armed Forces Chaplaincy Centre. The Academy has three strategic partners – King’s College London, Serco Defence, Science and Technology, and Cranfield University – who provide our academic and facilities support and who are vital to our success. DEFENCE ACADEMY OF THE UNITED KINGDOM RETURNING SCIENCE TO THE SOCIAL (MAKING SENSE OF CONFUSION: A CASE FOR HONEST REFLECTION) BY SIMON REAY ATKINSON THE SHRIVENHAM PAPERS NUMBER 10 JULY 2010
    [Show full text]
  • 21 ICCRTS Implementing UPDM to Develop Command and Control
    21st ICCRTS Implementing UPDM to Develop Command and Control Systems Topics Topic 7: Methodological Development, Experimentation, Analysis, Assessment and Metrics Author Rudolph Oosthuizen (CSIR, South Africa; [email protected]) Cobus Venter (CSIR, South Africa; [email protected]) Point of Contact Rudolph Oosthuizen (CSIR, South Africa; [email protected]) Name of Organization: Council for Scientific and Industrial Research PO Box 395 Pretoria 0001 [email protected] 1 Implementing UPDM to Develop Command and Control Systems Abstract Systems engineering is an established approach to develop systems, including complex sociotechnical systems such as Command and Control (C2) systems. These systems often occur through the introduction of a new technology into an existing system. In systems engineering, modelling is applied to capture and represent the mental models of the systems’ stakeholders during the concept development stage. These models, consisting of various views on the system structure and behaviour, can be used to derive requirements for system development. The views of the models must represent the mental model of the originator as well as ensure that the interpreters develop the same understanding. An architectural frameworks, such as the Ministry of Defence Architecture Framework (MoDAF) and Department of Defence Architecture Framework (DoDAF), supports Model Based Systems Engineering (MBSE). The Unified Profile for DODAF and MoDAF (UPDM) supports development of the model to ensure transportability to other participants in the development process. This paper proposes a model development process within UPDM for a C2 system during concept development. 1 Introduction Systems engineering aims to solve problems by bringing systems into being through systems thinking for understanding the part in the context of the whole (Hitchins 2008, Stensson 2010).
    [Show full text]
  • Model-Based System of Systems Engineering with UPDM
    Model- Based System of Systems Engineering with UPDM Matthew Hause Atego Eagle Tower Suite 701 Cheltenham, Glos, GL50 1TN England [email protected] Copyright © 2010 by Matthew Hause. Published and used by INCOSE with permission. Abstract. The Unified Profile for DoDAF and MODAF, (UPDM) initiative was started by members of INCOSE and the OMG. UPDM provides a consistent, standardized means to describe DoDAF 1.5 and MODAF 1.2 architectures in SysML/UML-based tools as well as a standard for interchange. The concepts found in the Systems Modeling Language (SysML) such as parametrics, blocks, complex ports, enhanced activity modeling, and cross-cutting constructs improve the state of the art for systems engineers and architects. The formal meta-model basis of UPDM also provides a basis for trade-off analysis, model execution, requirements traceability, and the transition to systems development and implementation. Finally, the interconnections between views can help combat stovepipe development and improve communication. This paper looks at the current direction of UPDM, how it is improving the state of the art for system architects, and enables interchange of architectural information. We will also examine some of the latest concepts found in DoDAF 2.0 and how the UPDM Group is addressing these. INTRODUCTION What is a Military Architectural Framework? Arguably, the two most widely used military frameworks are the Department of Defense (DoD) Architecture Framework (DoDAF) in the USA and the Ministry of Defence (MOD) Architecture Framework (MODAF) in the UK. Military Architectural Frameworks such as DoDAF define a standard way to organize an enterprise architecture (EA) or systems architecture into complementary and consistent views.
    [Show full text]
  • UPDM – Unified Profile for Dodaf/MODAF
    UPDM – Unified Profile for DoDAF/MODAF Clarence C. Moreland UPDM DMM-AT & DM2 TWG UPDM Group Adaptive Mitre Artisan Software Northrop ASMG Grumman BAE Systems L3 Comms DoD MOD DND NoMagic embeddedPlus Raytheon Generic Rolls Royce General Sparx Systems Dynamics VisumPoint IBM Selex SI Lockheed Martin Thales August, 2010 Co Unisys Mega UPDM – Unified Profile for DoDAF and MODAF What is the Purpose of UPDM? • UPDM – Standardized way of expressing DoDAF and MODAF artefacts using OMG UML, OMG SysML, OMG XMI, & associated specifications such as BPMN – “Conforms” with DoDAF & MODAF metamodels and products/views – Is NOT a new Architectural Framework – Nor is it is a new methodology or a process – Developed by members of the OMG with help from industry and government domain experts. • Version 1.0: Implemented by multiple tool vendors with multiple tools available now. (DoDAF 1.5, MODAF 1.2) • Version 2.0: – scheduled to address DoDAF 2.0, MODAF 1.2+, NAF 3.x, and DNDAF 1.7 – “Final” draft to OMG in August 2010 – “Finalization Task Force” in early CY 2011 to address issues/defects DoD AF Plenary 12 Aug 2010,–Clarence Moreland 2 UPDM – Unified Profile for DoDAF and MODAF Why? The need for UPDM. • Motivation – US DoD and UK MOD interested in leveraging commercial standards for their Military Architecture Framework – Military Architecture Framework Tool Interoperability – Formal MetaModel basis for the Military Architecture Framework • Critical to Interoperability Objectives • Critical to Understanding Profile Requirements • Proliferation of Military Architectural frameworks – DoDAF, MODAF, DNDAF, NAF, AGATE, ADOAF, MDAF, etc. – Defence organizations, contractors and tool vendors are hoping to find a way out of the alphabet soup.
    [Show full text]
  • Soa in Healthcareconference
    SOA IN HEALTHCARE CONFERENCE VALUE IN A TIME OF CHANGE June 2 - 4, 2009 - Chicago, IL USA SPEAKER BIOGRAPHIES ANNUAL SPONSORS: Platinum Sponsor: Gold Sponsor: Silver Sponsors: EVENT SPONSORS: Gold Sponsor: Silver Sponsors: Analyst Sponsor: Media Sponsors: Hosted by TUESDAY, June 2, 2009 EXECUTIVE SUMMIT PLENARY (Single Track) 0830 - 0900 Conference Welcome Richard Mark Soley, PhD Executive Director, SOA Consortium and Chairman & CEO, Object Management Group As Chairman and CEO, Dr. Soley is responsible for the vision and direction of the world's largest consortium of its type. Dr. Soley joined the nascent OMG as Technical Director in 1989, leading the development of OMG's world-leading standardization process and the original CORBA® specification. In 1996, he led the effort to move into vertical market standards (starting with healthcare, finance, telecommunications and manufacturing) and modeling, leading first to the Unified Modeling Language (UML®) and later the Model Driven Architecture (MDA®). Previously, Dr. Soley was a cofounder and former Chairman/CEO of A. I. Architects, Inc., maker of the 386 HummingBoard and other PC and workstation hardware and software. Prior to that, he consulted for various technology companies and venture firms on matters pertaining to software investment opportunities. Dr. Soley has also consulted for IBM, Motorola, PictureTel, Texas Instruments, Gold Hill Computer and others. He began his professional life at Honeywell Computer Systems working on the Multics operating system. A native of Baltimore, Maryland, U.S.A., Dr. Soley holds the bachelor's, master's and doctoral degrees in Computer Science and Engineering from the Massachusetts Institute of Technology. 0900 - 1015 Keynote: Who Defines the 'Service' in SOA The Honorable James B.
    [Show full text]
  • Jukka Anteroinen National Defence University Department of Military Technology Series 1: Publication No
    Jukka Anteroinen National Defence University Department of Military Technology Series 1: Publication No. 33 Enhancing the Development of Military Capabilities by a Systems Approach The political environment of security and defence has changed radically in the Western industrialised world since the Cold War. As a response to these changes, since the beginning of the twen- Enhancing the Development of Military Capabilities by a Systems Approach ty-first century, most Western countries have adopted a ‘capabil- Enhancing the Development of Military ities-based approach’ to developing and operating their armed forces. More responsive and versatile military capabilities must be Capabilities by a Systems Approach developed to meet the contemporary challenges. The systems ap- proach is seen as a beneficial means of overcoming traps in resolv- ing complex real-world issues by conventional thinking. Jukka Anteroinen The doctoral dissertation of Commander G.S, M.Sc. (SED) Jukka Anteroinen explores and assesses the means to enhance the de- velopment of military capabilities both in concept development and experimentation (CD&E) and in national defence materiel col- laboration issues. This research provides a unique perspective, a systems approach, to the development areas of concern in resolv- ing complex real-world issues. Furthermore, this dissertation seeks to increase the understanding of the military capability concept both as a whole and within its life cycle. This dissertation makes contribution to current studies about mili- tary capability. It presents two interdependent conceptual capa- bility models: the comprehensive capability meta-model and the holistic capability life cycle model. These models holistically and systematically complement the existing, but still evolving, under- standing of military capability and its life cycle.
    [Show full text]