On a Numerical Upper Bound for the Extended Goldbach Conjecture
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
[Math.NT] 10 May 2005
Journal de Th´eorie des Nombres de Bordeaux 00 (XXXX), 000–000 Restriction theory of the Selberg sieve, with applications par Ben GREEN et Terence TAO Resum´ e.´ Le crible de Selberg fournit des majorants pour cer- taines suites arithm´etiques, comme les nombres premiers et les nombres premiers jumeaux. Nous demontrons un th´eor`eme de restriction L2-Lp pour les majorants de ce type. Comme ap- plication imm´ediate, nous consid´erons l’estimation des sommes exponentielles sur les k-uplets premiers. Soient les entiers posi- tifs a1,...,ak et b1,...,bk. Ecrit h(θ) := n∈X e(nθ), ou X est l’ensemble de tous n 6 N tel que tousP les nombres a1n + b1,...,akn+bk sont premiers. Nous obtenons les bornes sup´erieures pour h p T , p > 2, qui sont (en supposant la v´erit´ede la con- k kL ( ) jecture de Hardy et Littlewood sur les k-uplets premiers) d’ordre de magnitude correct. Une autre application est la suivante. En utilisant les th´eor`emes de Chen et de Roth et un «principe de transf´erence », nous demontrons qu’il existe une infinit´ede suites arithm´etiques p1 < p2 < p3 de nombres premiers, telles que cha- cun pi + 2 est premier ou un produit de deux nombres premier. Abstract. The Selberg sieve provides majorants for certain arith- metic sequences, such as the primes and the twin primes. We prove an L2–Lp restriction theorem for majorants of this type. An im- mediate application is to the estimation of exponential sums over prime k-tuples. -
On Sufficient Conditions for the Existence of Twin Values in Sieves
On Sufficient Conditions for the Existence of Twin Values in Sieves over the Natural Numbers by Luke Szramowski Submitted in Partial Fulfillment of the Requirements For the Degree of Masters of Science in the Mathematics Program Youngstown State University May, 2020 On Sufficient Conditions for the Existence of Twin Values in Sieves over the Natural Numbers Luke Szramowski I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: Luke Szramowski, Student Date Approvals: Dr. Eric Wingler, Thesis Advisor Date Dr. Thomas Wakefield, Committee Member Date Dr. Thomas Madsen, Committee Member Date Dr. Salvador A. Sanders, Dean of Graduate Studies Date Abstract For many years, a major question in sieve theory has been determining whether or not a sieve produces infinitely many values which are exactly two apart. In this paper, we will discuss a new result in sieve theory, which will give sufficient conditions for the existence of values which are exactly two apart. We will also show a direct application of this theorem on an existing sieve as well as detailing attempts to apply the theorem to the Sieve of Eratosthenes. iii Contents 1 Introduction 1 2 Preliminary Material 1 3 Sieves 5 3.1 The Sieve of Eratosthenes . 5 3.2 The Block Sieve . 9 3.3 The Finite Block Sieve . 12 3.4 The Sieve of Joseph Flavius . -
On Terms of Generalized Fibonacci Sequences Which Are Powers of Their Indexes
mathematics Article On Terms of Generalized Fibonacci Sequences which are Powers of their Indexes Pavel Trojovský Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic, [email protected]; Tel.: +42-049-333-2860 Received: 29 June 2019; Accepted: 31 July 2019; Published: 3 August 2019 (k) Abstract: The k-generalized Fibonacci sequence (Fn )n (sometimes also called k-bonacci or k-step Fibonacci sequence), with k ≥ 2, is defined by the values 0, 0, ... , 0, 1 of starting k its terms and such way that each term afterwards is the sum of the k preceding terms. This paper is devoted to the proof of the fact that the (k) t (2) 2 (3) 2 Diophantine equation Fm = m , with t > 1 and m > k + 1, has only solutions F12 = 12 and F9 = 9 . Keywords: k-generalized Fibonacci sequence; Diophantine equation; linear form in logarithms; continued fraction MSC: Primary 11J86; Secondary 11B39. 1. Introduction The well-known Fibonacci sequence (Fn)n≥0 is given by the following recurrence of the second order Fn+2 = Fn+1 + Fn, for n ≥ 0, with the initial terms F0 = 0 and F1 = 1. Fibonacci numbers have a lot of very interesting properties (see e.g., book of Koshy [1]). One of the famous classical problems, which has attracted a attention of many mathematicians during the last thirty years of the twenty century, was the problem of finding perfect powers in the sequence of Fibonacci numbers. Finally in 2006 Bugeaud et al. [2] (Theorem 1), confirmed these expectations, as they showed that 0, 1, 8 and 144 are the only perfect powers in the sequence of Fibonacci numbers. -
Number Systems and Radix Conversion
Number Systems and Radix Conversion Sanjay Rajopadhye, Colorado State University 1 Introduction These notes for CS 270 describe polynomial number systems. The material is not in the textbook, but will be required for PA1. We humans are comfortable with numbers in the decimal system where each po- sition has a weight which is a power of 10: units have a weight of 1 (100), ten’s have 10 (101), etc. Even the fractional apart after the decimal point have a weight that is a (negative) power of ten. So the number 143.25 has a value that is 1 ∗ 102 + 4 ∗ 101 + 3 ∗ 0 −1 −2 2 5 10 + 2 ∗ 10 + 5 ∗ 10 , i.e., 100 + 40 + 3 + 10 + 100 . You can think of this as a polyno- mial with coefficients 1, 4, 3, 2, and 5 (i.e., the polynomial 1x2 + 4x + 3 + 2x−1 + 5x−2+ evaluated at x = 10. There is nothing special about 10 (just that humans evolved with ten fingers). We can use any radix, r, and write a number system with digits that range from 0 to r − 1. If our radix is larger than 10, we will need to invent “new digits”. We will use the letters of the alphabet: the digit A represents 10, B is 11, K is 20, etc. 2 What is the value of a radix-r number? Mathematically, a sequence of digits (the dot to the right of d0 is called the radix point rather than the decimal point), : : : d2d1d0:d−1d−2 ::: represents a number x defined as follows X i x = dir i 2 1 0 −1 −2 = ::: + d2r + d1r + d0r + d−1r + d−2r + ::: 1 Example What is 3 in radix 3? Answer: 0.1. -
Cheat Sheet of SSE/AVX Intrinsics, for Doing Arithmetic Ll F(Int Ind, Int K) { Return Dp[Ind][K]; } on Several Numbers at Once
University of Bergen Garbage Collectors Davide Pallotti, Jan Soukup, Olav Røthe Bakken NWERC 2017 Nov 8, 2017 UiB template .bashrc .vimrc troubleshoot 1 tan v + tan w Contest (1) Any possible infinite recursion? tan(v + w) = Invalidated pointers or iterators? 1 − tan v tan w template.cpp Are you using too much memory? v + w v − w 15 lines Debug with resubmits (e.g. remapped signals, see Various). sin v + sin w = 2 sin cos #include <bits/stdc++.h> 2 2 using namespace std; Time limit exceeded: v + w v − w Do you have any possible infinite loops? cos v + cos w = 2 cos cos #define rep(i, a, b) for(int i = a; i < (b); ++i) What is the complexity of your algorithm? 2 2 #define trav(a, x) for(auto& a : x) Are you copying a lot of unnecessary data? (References) #define all(x) x.begin(), x.end() How big is the input and output? (consider scanf) (V + W ) tan(v − w)=2 = (V − W ) tan(v + w)=2 #define sz(x) (int)(x).size() Avoid vector, map. (use arrays/unordered_map) typedef long long ll; What do your team mates think about your algorithm? where V; W are lengths of sides opposite angles v; w. typedef pair<int, int> pii; typedef vector<int> vi; Memory limit exceeded: a cos x + b sin x = r cos(x − φ) What is the max amount of memory your algorithm should need? int main() { Are you clearing all datastructures between test cases? a sin x + b cos x = r sin(x + φ) cin.sync_with_stdio(0); cin.tie(0); cin.exceptions(cin.failbit); p 2 2 } Mathematics (2) where r = a + b ; φ = atan2(b; a). -
Composite Numbers That Give Valid RSA Key Pairs for Any Coprime P
information Article Composite Numbers That Give Valid RSA Key Pairs for Any Coprime p Barry Fagin ID Department of Computer Science, US Air Force Academy, Colorado Springs, CO 80840, USA; [email protected]; Tel.: +1-719-339-4514 Received: 13 August 2018; Accepted: 25 August 2018; Published: 28 August 2018 Abstract: RSA key pairs are normally generated from two large primes p and q. We consider what happens if they are generated from two integers s and r, where r is prime, but unbeknownst to the user, s is not. Under most circumstances, the correctness of encryption and decryption depends on the choice of the public and private exponents e and d. In some cases, specific (s, r) pairs can be found for which encryption and decryption will be correct for any (e, d) exponent pair. Certain s exist, however, for which encryption and decryption are correct for any odd prime r - s. We give necessary and sufficient conditions for s with this property. Keywords: cryptography; abstract algebra; RSA; computer science education; cryptography education MSC: [2010] 11Axx 11T71 1. Notation and Background Consider the RSA public-key cryptosystem and its operations of encryption and decryption [1]. Let (p, q) be primes, n = p ∗ q, f(n) = (p − 1)(q − 1) denote Euler’s totient function and (e, d) the ∗ Z encryption/decryption exponent pair chosen such that ed ≡ 1. Let n = Un be the group of units f(n) Z mod n, and let a 2 Un. Encryption and decryption operations are given by: (ae)d ≡ (aed) ≡ (a1) ≡ a mod n We consider the case of RSA encryption and decryption where at least one of (p, q) is a composite number s. -
Sieve Theory and Small Gaps Between Primes: Introduction
Sieve theory and small gaps between primes: Introduction Andrew V. Sutherland MASSACHUSETTS INSTITUTE OF TECHNOLOGY (on behalf of D.H.J. Polymath) Explicit Methods in Number Theory MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH July 6, 2015 A quick historical overview pn+m − pn ∆m := lim inf Hm := lim inf (pn+m − pn) n!1 log pn n!1 Twin Prime Conjecture: H1 = 2 Prime Tuples Conjecture: Hm ∼ m log m 1896 Hadamard–Vallee´ Poussin ∆1 ≤ 1 1926 Hardy–Littlewood ∆1 ≤ 2=3 under GRH 1940 Rankin ∆1 ≤ 3=5 under GRH 1940 Erdos˝ ∆1 < 1 1956 Ricci ∆1 ≤ 15=16 1965 Bombieri–Davenport ∆1 ≤ 1=2, ∆m ≤ m − 1=2 ········· 1988 Maier ∆1 < 0:2485. 2005 Goldston-Pintz-Yıldırım ∆1 = 0, ∆m ≤ m − 1, EH ) H1 ≤ 16 2013 Zhang H1 < 70; 000; 000 2013 Polymath 8a H1 ≤ 4680 3 4m 2013 Maynard-Tao H1 ≤ 600, Hm m e , EH ) H1 ≤ 12 3:815m 2014 Polymath 8b H1 ≤ 246, Hm e , GEH ) H1 ≤ 6 H2 ≤ 398; 130, H3 ≤ 24; 797; 814,... The prime number theorem in arithmetic progressions Define the weighted prime counting functions1 X X Θ(x) := log p; Θ(x; q; a) := log p: prime p ≤ x prime p ≤ x p ≡ a mod q Then Θ(x) ∼ x (the prime number theorem), and for a ? q, x Θ(x; q; a) ∼ : φ(q) We are interested in the discrepancy between these two quantities. −x x x Clearly φ(q) ≤ Θ(x; q; a) − φ(q) ≤ q + 1 log x, and for any Q < x, X x X 2x log x x max Θ(x; q; a) − ≤ + x(log x)2: a?q φ(q) q φ(q) q ≤ Q q≤Q 1 P One can also use (x) := n≤x Λ(n), where Λ(n) is the von Mangoldt function. -
Explicit Counting of Ideals and a Brun-Titchmarsh Inequality for The
EXPLICIT COUNTING OF IDEALS AND A BRUN-TITCHMARSH INEQUALITY FOR THE CHEBOTAREV DENSITY THEOREM KORNEEL DEBAENE Abstract. We prove a bound on the number of primes with a given split- ting behaviour in a given field extension. This bound generalises the Brun- Titchmarsh bound on the number of primes in an arithmetic progression. The proof is set up as an application of Selberg’s Sieve in number fields. The main new ingredient is an explicit counting result estimating the number of integral elements with certain properties up to multiplication by units. As a conse- quence of this result, we deduce an explicit estimate for the number of ideals of norm up to x. 1. Introduction and statement of results Let q and a be coprime integers, and let π(x,q,a) be the number of primes not exceeding x which are congruent to a mod q. It is well known that for fixed q, π(x,q,a) 1 lim = . x→∞ π(x) φ(q) A major drawback of this result is the lack of an effective error term, and hence the impossibility to let q tend to infinity with x. The Brun-Titchmarsh inequality remedies the situation, if one is willing to accept a less precise relation in return for an effective range of q. It states that 2 x π(x,q,a) , for any x q. ≤ φ(q) log x/q ≥ While originally proven with 2 + ε in place of 2, the above formulation was proven by Montgomery and Vaughan [16] in 1973. Further improvement on this constant seems out of reach, indeed, if one could prove that the inequality holds with 2 δ arXiv:1611.10103v2 [math.NT] 9 Mar 2017 in place of 2, for any positive δ, one could deduce from this that there are no Siegel− 1 zeros. -
An Introduction to Sieve Methods and Their Applications Alina Carmen Cojocaru , M
Cambridge University Press 978-0-521-84816-9 — An Introduction to Sieve Methods and Their Applications Alina Carmen Cojocaru , M. Ram Murty Frontmatter More Information An Introduction to Sieve Methods and Their Applications © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-84816-9 — An Introduction to Sieve Methods and Their Applications Alina Carmen Cojocaru , M. Ram Murty Frontmatter More Information LONDON MATHEMATICAL SOCIETY STUDENT TEXTS Managing editor: Professor J. W. Bruce, Department of Mathematics, University of Hull, UK 3 Local fields, J. W. S. CASSELS 4 An introduction to twistor theory: Second edition, S. A. HUGGETT & K. P. TOD 5 Introduction to general relativity, L. P. HUGHSTON & K. P. TOD 8 Summing and nuclear norms in Banach space theory, G. J. O. JAMESON 9 Automorphisms of surfaces after Nielsen and Thurston, A. CASSON & S. BLEILER 11 Spacetime and singularities, G. NABER 12 Undergraduate algebraic geometry, MILES REID 13 An introduction to Hankel operators, J. R. PARTINGTON 15 Presentations of groups: Second edition, D. L. JOHNSON 17 Aspects of quantum field theory in curved spacetime, S. A. FULLING 18 Braids and coverings: selected topics, VAGN LUNDSGAARD HANSEN 20 Communication theory, C. M. GOLDIE & R. G. E. PINCH 21 Representations of finite groups of Lie type, FRANCOIS DIGNE & JEAN MICHEL 22 Designs, graphs, codes, and their links, P. J. CAMERON & J. H. VAN LINT 23 Complex algebraic curves, FRANCES KIRWAN 24 Lectures on elliptic curves, J. W. S CASSELS 26 An introduction to the theory of L-functions and Eisenstein series, H. HIDA 27 Hilbert Space: compact operators and the trace theorem, J. -
Arxiv:1608.06086V1 [Math.NT]
POWER OF TWO AS SUMS OF THREE PELL NUMBERS JHON J. BRAVO, BERNADETTE FAYE AND FLORIAN LUCA Abstract. In this paper, we find all the solutions of the Diophantine equation a Pℓ +Pm +Pn =2 , in nonnegative integer variables (n,m,ℓ,a) where Pk is the k-th term of the Pell sequence Pn n≥0 given by P0 = 0, P1 = 1 and Pn+1 =2Pn+Pn−1 for all n 1. { } ≥ MSC: 11D45, 11B39; 11A25 Keywords: Diophantine equations, Pell numbers, Linear forms in logarithm, reduction method. 1. Introduction The Pell sequence P is the binary reccurent sequence given by P = 0, P =1 { n}n≥0 0 1 and Pn+1 = 2Pn + Pn−1 for all n 0. There are many papers in the literature dealing with Diophantine equations≥ obtained by asking that members of some fixed binary recurrence sequence be squares, factorials, triangular, or belonging to some other interesting sequence of positive integers. For example, in 2008, A. Peth˝o[18] found all the perfect powers (of exponent larger than 1) in the Pell sequence. His result is the following. Theorem 1 (A. Peth˝o, [18]). The only positive integer solutions (n, q, x) with q 2 of the Diophantine equation ≥ q Pn = x are (n, q, x) = (1, q, 1) and (7, 2, 13). That is, the only perfect powers of exponent larger than 1 in the Pell numbers are 2 P1 =1 and P7 = 13 . The case q = 2 had been treated earlier by Ljunggren [13]. Peth˝o’s result was rediscovered by J. H. -
Rapid Multiplication Modulo the Sum and Difference of Highly Composite Numbers
MATHEMATICS OF COMPUTATION Volume 72, Number 241, Pages 387{395 S 0025-5718(02)01419-9 Article electronically published on March 5, 2002 RAPID MULTIPLICATION MODULO THE SUM AND DIFFERENCE OF HIGHLY COMPOSITE NUMBERS COLIN PERCIVAL Abstract. We extend the work of Richard Crandall et al. to demonstrate how the Discrete Weighted Transform (DWT) can be applied to speed up multiplication modulo any number of the form a b where p is small. In ± p ab particular this allows rapid computation modulo numbers of thej form k 2n 1. Q · ± In addition, we prove tight bounds on the rounding errors which naturally occur in floating-point implementations of FFT and DWT multiplications. This makes it possible for FFT multiplications to be used in situations where correctness is essential, for example in computer algebra packages. 1. Introduction In their seminal paper of 1994, Richard Crandall and Barry Fagin introduced the Discrete Weighted Transform (DWT) as a means of eliminating zero-padding when performing integer multiplication modulo Mersenne numbers [2]. While this does not give any improvement in the order of the multiplication, it nevertheless cuts the transform length (and thus time and memory) in half. For these reasons the DWT has become a fixture of the search for Mersenne primes [10]. By using the same form of irrational-base representation as is used for Mersenne numbers, we can in fact eliminate the zero-padding when working modulo a b ± provided that p ab p is sufficiently small that we have enough precision. Essen- tially, as with Mersennej numbers, we choose the base so that the reduction modulo xn 1 implicitQ in the FFT multiplication turns into a reduction modulo a b. -
A Friendly Intro to Sieves with a Look Towards Recent Progress on the Twin Primes Conjecture
A FRIENDLY INTRO TO SIEVES WITH A LOOK TOWARDS RECENT PROGRESS ON THE TWIN PRIMES CONJECTURE DAVID LOWRY-DUDA This is an extension and background to a talk I gave on 9 October 2013 to the Brown Graduate Student Seminar, called `A friendly intro to sieves with a look towards recent progress on the twin primes conjecture.' During the talk, I mention several sieves, some with a lot of detail and some with very little detail. I also discuss several results and built upon many sources. I'll provide missing details and/or sources for additional reading here. Furthermore, I like this talk, so I think it's worth preserving. 1. Introduction We talk about sieves and primes. Long, long ago, Euclid famously proved the in- finitude of primes (≈ 300 B.C.). Although he didn't show it, the stronger statement that the sum of the reciprocals of the primes diverges is true: X 1 ! 1; p p where the sum is over primes. Proof. Suppose that the sum converged. Then there is some k such that 1 X 1 1 < : pi 2 i=k+1 Qk Suppose that Q := i=1 pi is the product of the primes up to pk. Then the integers 1 + Qn are relatively prime to the primes in Q, and so are only made up of the primes pk+1;:::. This means that 1 !t X 1 X X 1 ≤ < 2; 1 + Qn pi n=1 t≥0 i>k where the first inequality is true since all the terms on the left appear in the middle (think prime factorizations and the distributive law), and the second inequality is true because it's bounded by the geometric series with ratio 1=2.