Aerotech Congress & Exhibition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
VTOL Hybrids: Tiltrotors Are Gaining Acceptance Nihad E Daidzic,, Ph.D., Sc.D
Minnesota State University, Mankato From the SelectedWorks of Nihad E. Daidzic, Dr.-Ing., D.Sc., ATP, CFII, MEI February, 2017 VTOL hybrids: Tiltrotors are gaining acceptance Nihad E Daidzic,, Ph.D., Sc.D. This work is licensed under a Creative Commons CC_BY-NC-ND International License. Available at: https://works.bepress.com/nihad-daidzic/30/ VTOL HYBRIDS Tiltrotors are gaining acceptance Led by Bell’s XV3 and XV15 and military service-proven Bell-Boeing V22, Leonardo will market the AW609 with other wing & rotor hybrids forthcoming. ry-wing VTOL aircraft that can hov- er, ly vertically up and down, and ly forward, sideways and backward – simply amazing machines. Heli- copters produce thrust as a vector component of the total lift force by effectively tilting the main rotor disc. Gyroplanes, on the other hand, 1st lown in 1923, are hybrids between helicopters and airplanes in which case the lift-producing rotary-wing is in the constant state of autorota- tion (windmilling), while horizontal thrust is normally produced by an internal combustion engine driving conventional propellers. So why do Photo courtesy Leonardo we need yet another airplane-heli- Leonardo AW609, jointly developed by Bell Helicopter and AgustaWestland, holds promise to be copter crossbreed? We need it be- the 1st tiltrotor aircraft certified for civilian operations. Configuration options include corporate, cause helicopters and gyroplanes SAR and EMS. Projected max range is 1100 nm with aux fuel tank, cruise speed of up to 275 kts. are limited by low cruising airspeeds and ranges, while airplanes are not By Nihad Daidzic, PhD, ScD cipal innovations in the published VTOL-capable. -
74Th Annual Vertical Flight Society Forum and Technology Display 2018 (FORUM 74)
74th Annual Vertical Flight Society Forum and Technology Display 2018 (FORUM 74) The Future of Vertical Flight Phoenix, Arizona, USA 14 - 17 May 2018 Volume 1 of 5 ISBN: 978-1-5108-6329-3 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 Some format issues inherent in the e-media version may also appear in this print version. Copyright© (2018) by Vertical Flight Society All rights reserved. Printed by Curran Associates, Inc. (2018) For permission requests, please contact Vertical Flight Society at the address below. Vertical Flight Society 2701 Prosperity Ave, Suite 210 Fairfax, VA 22031 USA Phone: (703) 684-6777 Fax: (703) 739-9279 www.vtol.org Additional copies of this publication are available from: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2633 Email: [email protected] Web: www.proceedings.com TABLE OF CONTENTS VOLUME 1 TECHNICAL SESSION A ADVANCED VERTICAL FLIGHT I – AIRCRAFT DESIGN I Assessing the Impact of Distributed Electric Propulsion On VTOL Aircraft Design & System Effectiveness.......................................1 Daniel Schrage, Apinut Sirirojvisuth, Kaydon Stanzione Models and Methods at ONERA for the Presizing of eVTOL Hybrid Aircraft Including Analysis of Failure Scenarios............................................................................................................................................................................................................12 Pierre-Marie Basset, Philippe -
Lockheed Martin F-35 Lightning II Incorporates Many Significant Technological Enhancements Derived from Predecessor Development Programs
AIAA AVIATION Forum 10.2514/6.2018-3368 June 25-29, 2018, Atlanta, Georgia 2018 Aviation Technology, Integration, and Operations Conference F-35 Air Vehicle Technology Overview Chris Wiegand,1 Bruce A. Bullick,2 Jeffrey A. Catt,3 Jeffrey W. Hamstra,4 Greg P. Walker,5 and Steve Wurth6 Lockheed Martin Aeronautics Company, Fort Worth, TX, 76109, United States of America The Lockheed Martin F-35 Lightning II incorporates many significant technological enhancements derived from predecessor development programs. The X-35 concept demonstrator program incorporated some that were deemed critical to establish the technical credibility and readiness to enter the System Development and Demonstration (SDD) program. Key among them were the elements of the F-35B short takeoff and vertical landing propulsion system using the revolutionary shaft-driven LiftFan® system. However, due to X- 35 schedule constraints and technical risks, the incorporation of some technologies was deferred to the SDD program. This paper provides insight into several of the key air vehicle and propulsion systems technologies selected for incorporation into the F-35. It describes the transition from several highly successful technology development projects to their incorporation into the production aircraft. I. Introduction HE F-35 Lightning II is a true 5th Generation trivariant, multiservice air system. It provides outstanding fighter T class aerodynamic performance, supersonic speed, all-aspect stealth with weapons, and highly integrated and networked avionics. The F-35 aircraft -
The Raf Harrier Story
THE RAF HARRIER STORY ROYAL AIR FORCE HISTORICAL SOCIETY 2 The opinions expressed in this publication are those of the contributors concerned and are not necessarily those held by the Royal Air Force Historical Society. Copyright 2006: Royal Air Force Historical Society First published in the UK in 2006 by the Royal Air Force Historical Society All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical including photocopying, recording or by any information storage and retrieval system, without permission from the Publisher in writing. ISBN 0-9530345-2-6 Printed by Advance Book Printing Unit 9 Northmoor Park Church Road Northmoor OX29 5UH 3 ROYAL AIR FORCE HISTORICAL SOCIETY President Marshal of the Royal Air Force Sir Michael Beetham GCB CBE DFC AFC Vice-President Air Marshal Sir Frederick Sowrey KCB CBE AFC Committee Chairman Air Vice-Marshal N B Baldwin CB CBE FRAeS Vice-Chairman Group Captain J D Heron OBE Secretary Group Captain K J Dearman Membership Secretary Dr Jack Dunham PhD CPsychol AMRAeS Treasurer J Boyes TD CA Members Air Commodore H A Probert MBE MA *J S Cox Esq BA MA *Dr M A Fopp MA FMA FIMgt *Group Captain N Parton BSc (Hons) MA MDA MPhil CEng FRAeS RAF *Wing Commander D Robertson RAF Wing Commander C Cummings Editor & Publications Wing Commander C G Jefford MBE BA Manager *Ex Officio 4 CONTENTS EARLY HISTORICAL PERSPECTIVES AND EMERGING 8 STAFF TARGETS by Air Chf Mshl Sir Patrick Hine JET LIFT by Prof John F Coplin 14 EVOLUTION OF THE PEGASUS VECTORED -
A Perspective on 15 Years of Proof-Of-Concept Aircraft
NASA Reference Publication . 1- 1- August 1987 / A Perspective on 15 Years of Proof-of-ConceptAircraft Development and Flight Research at Arnes-Moffett by the Rotorcraft and Powered-Lift Flight Projects Division, 197 0- 1985 David D. Few NASA NASA Reference Publication 1187 . 1987 A Perspective on 15 Years of Proof-of-ConceptAircraft Development and Flight Research at Ames-Moffett by the Rotorcraft and Powered-Lift Flight Projects Division, 1970-1985 David D. Few Ames Research Center Mofett Field, Calfa ornia National Aeronautics and Space Administration Scientific and Technical Information Office NOMENCLATURE i CL coefficient of lift i. CTOL conventional takeoff and landing DARPA Defense Advanced Research Projects Agency v DTNSRDC David Taylor Naval Systems Research and Development Center KTAS knots true air speed PNdB perceived noise level in decibels R&T research and technology RCF rotating cylinder flap SCAS stability and control augmentation system STOL shor t takeoff and landing STOVL shoft takeoff and vertical landing TOFL takeoff field length T/W thrust-weight VC critical control speed V/STOL vertical/short takeoff and landing V/STOLAND vertical/short takeoff and landing avionics system VTOL vertical takeoff and landing iii SUMMARY This paper defines a proof-of-concept (POC) aircraft and briefly describes the concept of interest for each of the six aircraft developed by the Ames-Moffett Rotorcraft and Powered-Lift Flight Projects Division from 1970 through 1985; namely, the OV-10, the C-8A Augmentor Wing, the Quiet Short-Haul Research Aircraft (QSRA), the XV-15 Tilt Rotor Research Aircraft (TRRA), the Rotor Systems Research Aircraft (RSRA)-compound, and the yet-to-fly RSRA/X-Wing Aircraft. -
Preparation of Papers for AIAA Journals
F-35 Program History – From JAST to IOC Copyright © 2018 by Lockheed Martin Corporation. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Arthur E. Sheridan1 Lockheed Martin Aeronautics Company, Fort Worth, Texas, 76101, USA AIAA AVIATION Forum June 25-29, 2018, Atlanta, Georgia June 25-29, 2018, Atlanta, Georgia and 10.2514/6.2018-3366 2018 Aviation Technology, Integration, and Operations Conference Robert Burnes2 F-35 Lightning II Joint Program Office, Arlington, Virginia, USA The Joint Strike Fighter program leading to the Lockheed Martin family of F•35 aircraft has been unprecedented in terms of scope and challenge. This paper reviews the background and need for the air system. It summarizes the environment, objectives, approach, and results of each of three distinct development phases, and highlights some of the most significant challenges encountered and solutions achieved. It also covers initial production and sustainment achievements in parallel. Despite the ambitious goals and numerous challenges, the development program is drawing to a close, and a system is now being produced and sustained that meets its customers’ warfighting requirements. I. Background HE origins of the Joint Strike Fighter (JSF) program can be traced to the longstanding commitment of the U.S. T Marine Corps (USMC) and United Kingdom (UK) Royal Air Force (RAF) and Royal Navy (RN) to develop a short takeoff and vertical landing (STOVL) strike fighter, and to the end of the Cold War. Drastic defense budget reductions after the Cold War, together with aging fleets of fighter aircraft in the United States and across the west, demanded a new level of cooperation in development and production. -
Alternative to High-Speed Helicopters Or Tilt-Rotor Aircraft
The Moller Skycar: An Simple, Low-cost Alternative to High-Speed Helicopters or Tilt-rotor Aircraft Why are all the major helicopter companies trying to build faster helicopters? Obviously the short answer is money. A representative from Piasecki says "The military will spend $40 billion over the next 20 years recapitalizing its (helicopter) fleet." Helicopters Historically, vertical flight has required a compromise between hover performance and forward speed. Low disk loading aircraft, such as helicopters, fall on the left of the graph below, along with their desirable attributes (hover efficiency, low speed controllability, low downwash, and hover endurance). Higher disk loading aircraft, such as Harriers and the Joint Strike Fighter (JSF), trade off decreased hovering capabilities for speed and increased operating costs. Enablers for advances in helicopter technology are primarily in aircraft engineering and control systems. Now, rotor vibrations can be reduced using “active control”, which consists of placing sensors around the helicopter to detect the onset of vibration and then using force generators on various parts of the frame to vibrate in such a way that they cancel out the original tremors. Advanced computer modeling has also made it possible to design more efficient rotors. Additional propellers provide additional forward thrust and increase speed and/or assist with braking. Computerized “fly-by-wire” controls allow these new helicopters to be flown relatively easily. For example, the Sikorsky X2 incorporates several new technologies and has successfully demonstrated them in a flight environment. These technologies include an integrated fly-by-wire system that allows the engine/rotor/propulsor system to operate efficiently, with full control of rotor rpm throughout the flight envelope, high lift-to-drag rigid blades, low drag hub fairings, and Active Vibration Control. -
The a Graduate Team Aircraft Design Stanford University
The A Graduate Team Aircraft Design June 1, 1999 Stanford University The Cardinal: A 1999 AIAA Graduate Team Aircraft Design TH E St a n f o r d Un iv er s it y A 1999 AIAA GRADUATE TEAM AIRCRAFT PROPOSAL PROJECT LEADER: Patrick LeGresley Jose Daniel Cornejo AIAA Member Number 144155 AIAA Member Number 143144 MS Expected June 1999 MS Expected March 2000 [email protected] [email protected] Teal Bathke Jennifer Owens AIAA Member Number 183891 AIAA Member Number 113704 MS Expected June 2000 MS Expected December 1999 [email protected] [email protected] Angel Carrion Ryan Vartanian AIAA Member Number 183513 AIAA Member Number 154990 MS Expected March 2000 MS Expected June 1999 [email protected] [email protected] ADVISORS: Dr. Juan Alonso Dr. Ilan Kroo Assistant Professor Professor Stanford University Aeronautics & Astronautics Stanford University Aeronautics & Astronautics [email protected] [email protected] “When I was a student in college, just flying an airplane seemed a dream…” ~Charles Lindbergh JUNE 1, 1999 “When I was a student in college, just flying an airplane seemed a dream…” June 1, 1999 Signature Page ~Charles Lindbergh The Cardinal: A 1999 AIAA Graduate Team Aircraft Design EXECUTIVE SUMMARY Commuting from center-city to center-city is not viable with existing aircraft due to the lack of available runways in metropolitan areas for airplanes and higher expense of helicopter service. The Cardinal is a Super Short Takeoff and Landing (SSTOL) aircraft which attempts to fill this gap. The major goal of this airplane design is to fulfill the desire for center-city to center-city travel by utilizing river “barges” for short takeoffs and landings to avoid construction of new runways or heliports. -
Second European Rotorcraft and Powered Lift Aircraft Forum
SECOND EUROPEAN ROTORCRAFT AND POWERED LIFT AIRCRAFT FORUM Paper No. 36 TILT ROTOR V/STOL AIRCRAFT TECHNOLOGY L. Kingston Director of Research and J. DeTore Group Engineer Advanced V/STOL Bell Helicopter Textron Fort Worth, Texas September 20 - 22 1976 Bllckeburg, Federal Republic of Germany Deutsche Gesellschaft fUr Luft- und Raurnfahrt e.V. Postfach 510645, D-5000 K8ln, Germany TILT ROTOR V/STOL AIRCRAFT TECHNOLOGY L. Kingston, Director of Research J. DeTore, Group Engineer, Advanced V/STOL Bell Helicopter Textron 1.0 Abstract This paper summarizes current tilt rotor technology and discusses the operation al concept of this class aircraft. The basis for selecting the tilt rotor from a spectrum of V/STOL aircraft options spanning the subsonic speed range is presented. The development of tilt rotor technology starting with the XV-3 Convertiplane pro gram is reviewed resulting in a summary of the rationale behind the configuration of the XV-15. Descriptions of the XV-15 aircraft and its present program are in cluded. Future applications are discussed and the role of an operational demon strator aircraft is identified. Conclusions are presented concerning projected tilt rotor productivity, current tilt rotor technology status, and future steps. An extensive list of reference~ is provided. 2.0 Introduction Bell Helicopter Textron is currently preparing the XV-15 Tilt Rotor Research Aircraft, Figure 1, for its first flight. The effort is the culmination of a period of development of tilt rotor technology begun in the 1950 1 s with the XV-3 Converti plane. The tilt rotor aircraft is the one of several V/STOL aircraft options which promises the greatest improvement in productivity over the helicopter. -
F-16.Net Version: Ski Jump Ramp + STO & EAF Explanations for Harrier
Naval Aviation Firsts Leading the way in Innovation Ski-Jump In the 1970s Lt Cdr Doug Taylor invented the ‘Ski-Jump’. This upwards curving ramp at the forward end of the flight deck ensures that the aircraft is launched on an upward trajectory giving considerable performance gains, including much greater payload and range, than a corresponding flat deck, short take-off. The early trials proved so successful that the Ski-Jump was incorporated into the design of HMS Hermes and the Invincible ClassSRVL carriers. royalnavy.mod.uk/flynavy100 Shipborne Rolling Vertical Landing 1909 - 2009 ryyhrvtuurhv p hsvr hpvuhuvyhqvtr H8 EvFUuh qrpxhquhth VTHh vrG8yA rqTpurx rvurA"$7hsr yhqvtv Uursv yhqvtPp"hqrq vtvprrhur hqrh urVTTXhTpurxuhirr pqvvpup vqhqhrhqqrpxvuyruh vtur: $vyyvwr qrt rrvpuhq$qrt rrs yyPr urrsrrrxTpurxsyr u tuvhpr vvp rhvtyyrsh hiyrpqvvs urVTTXhh huvivhhyuvirphryvhryvyvyyirhxvtsshq yhqvtvhyyxvqsrhur hqrh Uursv hrhr vphyyhqvthr vpxyTpurxhvq /Dh rhyywsprquuryhrhqvtuvh uhqyvthqwrqrrvtuhhyyuvvurprhhq uhvtyhqv/hvqTpurxurh ryvrvXuvrGhxr /Duvxuhvvvyr ihiyrhvr yhqurhyyuv qvthr vphyyhqvtuhqvthivtuvyhqvtvuhhvyux/ Tpurxhqqrq/Dvyy rrpvvthqrhvvqhv hq hxrhyxhuruvhqp s r urhr ursyvtuqrpx hqi vtvqyhq/ Uu rrr vsurA"$h rqr tvtrvts ur6v A pr Hh vrhqIh8hhiyrsu hxrsshqr vphyyhqvtur A"$7vyy ryhprHh vr6W'7Ch vr hqA 'C rhqv qrvtrqirrqhuvivuvhqhv svryqv s Hh vrt qs prUurA"$6vyyirrqiur6v A prs prvhyhxrsshqyhqvthqurIhvyysyurA"$8 uvpusrh ryh tr vt shprhq rvs prqyhqvttrh vuhqhv p hsph vr yhpur Av hrhr vphyyhqvts UurA"$7 vprhtv tuy: $vyyvvpyqvtqrryr -
Proposed Special Condition for Small-Category VTOL Aircraft
SPECIAL CONDITION Doc. No: SC-VTOL-01 Issue: 1 (proposed) Vertical Take-Off and Landing (VTOL) Date: 15 October 2018 Aircraft Proposed Special Condition for small-category VTOL aircraft Introductory note The following Special Condition has been classified as an important Special Condition and as such shall be subject to public consultation, in accordance with EASA Management Board decision 12/2007 dated 11 September 2007, Article 3 (2.) of which states: "2. Deviations from the applicable airworthiness codes, environmental protection certification specifications and/or acceptable means of compliance with Part 21, as well as important special conditions and equivalent safety findings, shall be submitted to the panel of experts and be subject to a public consultation of at least 3 weeks, except if they have been previously agreed and published in the Official Publication of the Agency. The final decision shall be published in the Official Publication of the Agency." Statement of Issue The Agency has received a number of requests for the type certification of vertical take-off and landing (VTOL) aircraft, which differ from conventional rotorcraft or fixed-wing aircraft. In the absence of certification specifications for the type certification of this type of product, a complete set of dedicated technical specifications in the form of a special condition for VTOL aircraft has been developed. This special condition addresses the unique characteristics of these products and prescribes airworthiness standards for the issuance of the type certificate, and changes to this type certificate, for a person- carrying VTOL aircraft in the small category, with lift/thrust units used to generate powered lift and control. -
VI: Military Aviation
VI: Military aviation Eglin Air Force B ase • Hurlburt Field • Duke Field • Fort Ruc ker • Camp Shelby National Gua rd Com bat Readiness Training Center • Tynda llll Air Force Base Coast Gu ar d Avia tion Training Center Mobile • Keesler A irir Force Base NAS Whitinitin g Field • NAS Pensacola • NAS JRB Ne w Orleans U.S. Air Force photo by Samuel King Jr. Gulf Coast Aerospace Corridor 2014-2015 – 78 Chapter VI: Military aviation A bastion of military aviation Military aviation is deeply Chapter at a glance embedded in the fabric of • F-35 center has churned out more than the Gulf Coast, and it’s just 1,200 maintainers and 100 pilots • Replacement value for 45 military sites the most high-profile part of in the region about $20 billion • Bases in the region involved in a wide the region’s activities... range of training, operational missions hrill cries for program and budget cuts • Region companies awarded $76.7 billion have been drowned out by the sound of in contracts between 2000-2013 freedom in aviation happy Northwest • Florida budgeted $22.2 million in 2014 Florida, where the expensive, contro- to protect its bases versial,S but exciting and capable F-35 Lightning II Joint Strike Fighter has established itself as an everyday sight and an economic engine. cess of the Lockheed Martin Joint Strike “The future is bright. Every day you see Fighter. Funded jointly by the United States and planes flying over Eglin and the same thing is allies, the F-35 is envisioned as the aircraft that happening at bases around the country,” said will dominate the skies in future battlefields.