Speciation in the Coral-Boring Bivalve Lithophaga Purpurea: Evidence from Ecological, Biochemical and SEM Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Speciation in the Coral-Boring Bivalve Lithophaga Purpurea: Evidence from Ecological, Biochemical and SEM Analysis MARINE ECOLOGY PROGRESS SERIES Published November 4 Mar. Ecol. Prog. Ser. Speciation in the coral-boring bivalve Lithophaga purpurea: evidence from ecological, biochemical and SEM analysis ' Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Department of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel ABSTRACT The bonng mytil~d L~thophagapurpurea densely inhabits the scleractinian corals Cyphastrea chalc~d~cum(Forskal 1775) and Montlpora erythraea Marenzeler, 1907 In the Gulf of Ellat, Red Sea Profound differences in reproductive seasons postlarval shell morphology and isozyme poly- morphism exlst between the bivalve populatlons inhabihng the 2 coral specles wh~chshare the same reef environments Two distlnct reproductive seasons were identified in the blvalves L purpurea inhabiting A4 erythraea reproduce in summer while those In C chalcjd~cumreproduce in late fall or early winter SEM observations revealed distlnct postlarval shell morphologies of bivalves inhabiting the 2 coral hosts Postlarvae from C chalc~dcumare chalactenzed by tooth-like structures on their dissoconch, as opposed to the smooth dissoconch surface of postlarvae from M erythraea In addition, there is a significant difference (p<0 001) In prodissoconch height between the 2 bivalve populations Results obtained from isozyme electrophores~sshowed d~stinctpatterns of aminopeptidase (LAP) and esterase polymorphism, indicating genehc differences between the 2 populahons These data strongly support the hypothesis that L purpurea inhabiting the 2 coral hosts are indeed 2 d~stlnctspecles Species specificity between corals and their symbionts may therefore be more predominant than prev~ouslybeheved INTRODUCTION Boring organisms play an important role in regulat- ing the growth of coral reefs (MacCeachy & Stearn A common definition of the term species is included 1976). Bivalves belonging to the subfamily Litho- in the 'biological species concept' as 'groups of actually phaginae (Mytilidae: Bivalvia) are responsible for the or potentially interbreeding natural populations, which erosion and eventual destruction of a wide range of are reproductively isolated from other groups' (Mayr calcareous substrates (Morton 1983). Members of the 1963).Speciation may, at times, be affected by physical genus Lithophaga bore in a variety of live coral hosts in boundaries (as in allopatric speciation) and/or repro- the Gulf of Eilat, Red Sea (Loya 1981, Brickner 1985, ductive boundaries (as in sympatric speciation). Thus, Winter 1985).The common corals Montipora erythraea a new species may slowly evolve due to some physical and Cyphastrea chalcidicum were found to be infested or physiological boundaries which keep 2 or more by purple colored bivalves identified by K. Kleemann groups from genetically mixing (Tauber & Tauber as Lithophaga purpurea Kleemann. Lithophaginae are 1989). In order to understand important ecological taxonomically categorized by various physical charac- phenomena, such as species specific interactions teristics such as coloration, shell size and structure and between different organisms, systematic accuracy to soft body morphology (Wilson 1979, Kleemann 1980, the species level is imperative. In the present study, we Morton & Scott 1980). Due to the strong resemblance examine 2 bivalve populations which are currently between species of live-coral boring Lithophaga, defined as 1 species, but are found within 2 different morphological techniques alone provide a rather coral hosts. subjective method of taxonomy (see McLaughlin et al. 1982). L. purpurea is a good example of these taxo- 'Addressee for correspondence nomic difficulties. Kleemann (1980) claims that Litho- @ Inter-Research 1993 140 Mar. Ecol. Prog. Ser. phaga lima reported by Gohar & Soliman (1963) boring during 1982-1983 from the reef at the H. Steinitz Marine in Montipora spp, and Cyphastrea spp. in the Red Sea Biology Laboratory in the Gulf of Eilat. Three to five is, in fact, L. purpurea. His definition of this species Lithophaga purpurea-infested coral colonies of each from the Great Barrier Reef is based on the mor- species were collected at 3 to 6 m depth. The corals were phology and texture of the valves (Kleemann 1980). broken apart using a hammer and chisel in order to Coral host specificity of live-coral boring Lithophaga release intact bivalves. The entire mussel population was spp. ranges from single host borers to wide spectrum extracted from each coral and measured for length, width borers (Morton 1983). These bivalves are sessile and height (see Morton & Scott 1980). Dimensions throughout their adult life span. Fertilization occurs in measured were used to construct allometric relationships. the water column (Culliney 1971, Scott 1988). The The reproductive condition of the mussels was deter- planktonic larvae of Lithophaga spp. select a settle- mined according to the reproductive index (RI) defined ment substrate and metamorphose irreversibly on it by Seed (1969).Smears of the bivalves' mantle were ex- (Scott 1988, Mokady et al. 1993). Thus, it is this stage in amined microscopically for the appearance of gonadal the bivalves' Life history which is responsible for the tissue. The gonadal index (GI) was determined using observed host specificity (Mokady et al. 1991, 1992). the method of Seed & Brown (1977).Monthly samples of Once settled and metamorphosed, the adult boring 5 to 10 bivalves were used for histological preparations. bivalve may be subjected to morphogenic effects of its Mussels were fixed in 4% formaldehyde in filtered habitat. For this reason, Goodsell et al. (1992) sug- seawater, rinsed in fresh water after 24 h and preserved gested that closer examination (SEM) of larvae and in 70 % ethanol. Following removal of the valves, 10 pm early postlarvae of lamellibranch species might pro- thick serial histological sections were taken, stained vide a means of early identification and help resolve by hematoxylin and eosin, and examined by light taxonomic ambiguities. microscopy. Recently, Morrow et al. (1992) used allozyme elec- The reproductive cycle of the corals was studied by trophoresis to distinguish between 2 populations of measurement of oocyte diameter in histological sec- dorid nudibranchs of the genus Doto which feed on tions (see Shlesinger 1985). Preparation of the sections 2 different hydroid species in the same environment. followed Rinkevich & Loya (1979). The genetic divergence found by Morrow et al. (1992) Early postlarval stages of Lithophaga purpurea were in the nudibranch Doto coronata resulted in the collected from the surface of the corals Montipora definition of the 2 new species Doto sarsiae and Doto erythraea and Cyphastrea chalcidicum, and removed hydrallmaniae. We believe that in addition to mor- using a fine needle and a pasteur pipette. The young phology, other research tools, including SEM exarnina- bivalves were examined under a dissecting micro- tion, ecological observations, and biochemical charac- scope, and the height of the prodissoconch and the teristics (i.e. protein electrophoresis; see Koehn & length of the total shell were measured for 25 indi- Mitton 1972), may help resolve taxonomic ambiguities viduals of each population. The height of the larval between bivalve populations inhabiting corals. shell, defined as the greatest distance from the tip of The corals Montipora erythraea and Cyphastrea the umbo to the ventral margin, was used to compare chalcidicum belong to different families (Acroporidae between the bivalve populations. and Faviidae respectively) and are different in growth Shells of postlarvae of Lithophaga purpurea were form, surface topography and other features. These examined by a Joel JSM-840 SEM. Specimens were differences may act as a driving force for speciation of dehydrated in a series of alcohols and coated by Gold- cryptobionts such as boring bivalves (see Wilson 1979). Palladium. In the current study we apply biochemical and SEM Fifteen adult bivalves were extracted from 4 to 5 methods combined with ecological observations to try coral colonies of each host coral (either Montipora and resolve the taxonomic question of whether the erythraea or Cyphastrea chalcidcum) by gently break- Lithophaga purpurea populations found in Monti- ing the coral. Mussels were immediately stored at pora erythraea and Cyphastrea chalcidicum are actu- -70°C. To extract proteins, soft tissues were scraped ally 1 species. This may shed a new Light on our under- and homogenized in 15% sucrose, 0.1% mercapto- standing of species distributions and species specific ethanol and 0.5% triton X-100 in saline. Samples interactions within the coral reef. were run on vertical polyacrylamide gel (7 to 9%) in borate buffer (pH = 8.2). Gels were stained for a-esterase and arninopeptidase-l (leucine amino MATERIALS AND METHODS peptidase, LAP) using methods slightly modified from Shaw & Prasad (1970). Monthly samples of the massive corals Cyphastrea Statistical analyses were carried out according to chalcidicum and Montipora erythraea were collected Sokal & Rotill (1969). Br~ckneret al.. Speciation of L~thophagapurpurea 141 RESULTS M. erythraea were significantly greater than these dimensions for bivalves from C. chalcidicurn (p< 0.001 The 2 Lithophaga purpurea populations show very for all 3 dimensions). Maximal length of bivalves from similar allometric relationships (Fig. 1).The data pre- C. chalcidicum and M. erythraea was 15 and 33.5 mm sented in Fig. 1 represent the allometric
Recommended publications
  • Cop13 Prop. 35
    CoP13 Prop. 35 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal Inclusion of Lithophaga lithophaga in Appendix II, in accordance with Article II, paragraph 2 (a). B. Proponents Italy and Slovenia (on behalf of the Member States of the European Community). C. Supporting statement Lithophaga lithophaga is an endolithic mussel from the family Mitilidae, which inhabits limestone rocks. This species needs specific substrate for its growth and owing to its particular biology (slow growing) it is not suitable for commercial breeding. L. lithophaga has a very distinctive and well known date-like appearance. L. lithophaga is distributed throughout the Mediterranean Sea. In the Atlantic Ocean it can be found on the Portugal coast and on the North African coast down to Senegal. It also inhabits the northern coast of Angola. The sole purpose of L. lithophaga exploitation is human consumption. It is known that the harvesting of the species from the wild for international trade has detrimental impact on the species. The collection of L. lithophaga for the purpose of trade poses a direct threat to this species due to the loss of its habitat. When L. lithophaga is harvested, the rocks it inhabits are broken into small pieces, often by very destructive methods such as pneumatic hammers and explosives. Broken rocks thus become unsuitable for colonisation by marine organisms. In addition to the direct threat to L. lithophaga, its collection reduces topographic heterogenity, macroalgal cover and epibiota. The destruction caused by L. lithophaga exploitation seriously affects littoral fish populations. The over-exploitation of L. lithophaga has caused important local ecological damage in many Mediterranean areas.
    [Show full text]
  • Biodiversity and Trophic Ecology of Hydrothermal Vent Fauna Associated with Tubeworm Assemblages on the Juan De Fuca Ridge
    Biogeosciences, 15, 2629–2647, 2018 https://doi.org/10.5194/bg-15-2629-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge Yann Lelièvre1,2, Jozée Sarrazin1, Julien Marticorena1, Gauthier Schaal3, Thomas Day1, Pierre Legendre2, Stéphane Hourdez4,5, and Marjolaine Matabos1 1Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France 2Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada 3Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 9 CNRS/UBO/IRD/Ifremer, BP 70, 29280, Plouzané, France 4Sorbonne Université, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France 5CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France Correspondence: Yann Lelièvre ([email protected]) Received: 3 October 2017 – Discussion started: 12 October 2017 Revised: 29 March 2018 – Accepted: 7 April 2018 – Published: 4 May 2018 Abstract. Hydrothermal vent sites along the Juan de Fuca community structuring. Vent food webs did not appear to be Ridge in the north-east Pacific host dense populations of organised through predator–prey relationships. For example, Ridgeia piscesae tubeworms that promote habitat hetero- although trophic structure complexity increased with ecolog- geneity and local diversity. A detailed description of the ical successional stages, showing a higher number of preda- biodiversity and community structure is needed to help un- tors in the last stages, the food web structure itself did not derstand the ecological processes that underlie the distribu- change across assemblages.
    [Show full text]
  • New Records of Three Deep-Sea Bathymodiolus Mussels (Bivalvia: Mytilida: Mytilidae) from Hydrothermal Vent and Cold Seeps in Taiwan
    352 Journal of Marine Science and Technology, Vol. 27, No. 4, pp. 352-358 (2019) DOI: 10.6119/JMST.201908_27(4).0006 NEW RECORDS OF THREE DEEP-SEA BATHYMODIOLUS MUSSELS (BIVALVIA: MYTILIDA: MYTILIDAE) FROM HYDROTHERMAL VENT AND COLD SEEPS IN TAIWAN Meng-Ying Kuo1, Dun- Ru Kang1, Chih-Hsien Chang2, Chia-Hsien Chao1, Chau-Chang Wang3, Hsin-Hung Chen3, Chih-Chieh Su4, Hsuan-Wien Chen5, Mei-Chin Lai6, Saulwood Lin4, and Li-Lian Liu1 Key words: new record, Bathymodiolus, deep-sea, hydrothermal vent, taiwanesis (von Cosel, 2008) is the only reported species of cold seep, Taiwan. this genus from Taiwan. It was collected from hydrothermal vents near Kueishan Islet off the northeast coast of Taiwan at depths of 200-355 m. ABSTRACT Along with traditional morphological classification, mo- The deep sea mussel genus, Bathymodiolus Kenk & Wilson, lecular techniques are commonly used to study the taxonomy 1985, contains 31 species, worldwide. Of which, one endemic and phylogenetic relationships of deep sea mussels. Recently, species (Bathymodiolus taiwanesis) was reported from Taiwan the complete mitochondrial genomes have been sequenced (MolluscaBase, 2018). Herein, based on the mitochondrial COI from mussels of Bathymodiolus japonicus, B. platifrons and results, we present 3 new records of the Bathymodiolus species B. septemdierum (Ozawa et al., 2017). Even more, the whole from Taiwan, namely Bathymodiolus platifrons, Bathymodiolus genome of B. platifrons was reported with sequence length of securiformis, and Sissano Bathymodiolus sp.1 which were collected 1.64 Gb nucleotides (Sun et al., 2017). from vent or seep environments at depth ranges of 1080-1380 Since 2013, under the Phase II National energy program of m.
    [Show full text]
  • Human Predation Along Apulian Rocky Coasts (SE Italy): Desertification Caused by Lithophaga Lithophaga (Mollusca) Fisheries
    MARINE ECOLOGY PROGRESS SERIES Published July 7 Mar. Ecol. Prog. Ser. Human predation along Apulian rocky coasts (SE Italy): desertification caused by Lithophaga lithophaga (Mollusca) fisheries 'Dipartimento di Biologia. Stazione di Biologia Marina di Porto Cesareo, Universita di Lecce, 1-73100 Lecce. Italy 'Dipartimento di Zoologia, Universita di Napoli, Via Mezzocannone 8,I-80134Napoli, Italy 31stituto Talassografico 'A. Cerruti'- CNR, Via Roma 3, 1-74100Taranto, Italy ABSTRACT: The date mussel Lithophaga lithophaga is a Mediterranean boring mollusc living in calcareous rocks. Its populations are intensely exploited by SCUBA divers, especially in southern Italy. Collection is carned out by demolition of the rocky substratum, so that human predation on date mussels causes the disappearance of the whole benthic community. The impact of this activity along the Apulian coast was evaluated by 2 surveys carried out by SCUBA diving inspection of the Salento peninsula. The Ionian coast of Apulia, from Taranto to Torre dell'orso (Otranto),was surveyed in 1990 and in 1992 by 2 series of transects (from 0 to 10 m depth, 2 km from each other), covering 210 km. Observations were transformed into an index of damage, ranging from 0 (no damage) to 1 (complete desertification). 159 km of the inspected coast are rocky. The first survey (1990) allowed us to estimate that a total of 44 km was heavily affected by this human activity (the index of damage ranging between 0.5 and l],whereas the second survey showed heavy damage along a total of 59 km. This Increase in length was accompanied by a high increase in the index of damage along parts of coast that were less intensely exploited in 1990 than in 1992.
    [Show full text]
  • NVMC Newsletter 2018-05.Pdf
    The Mineral Newsletter Meeting: May 21—NOTE! One week earlier than usual! Time: 7:45 p.m. Long Branch Nature Center, 625 S. Carlin Springs Rd., Arlington, VA Volume 59, No. 5 May 2018 Explore our website! May Meeting Program: African Gemstones In this issue … Mineral of the month: Topaz.................... p. 2 May program details ................................. p. 5 The Prez Sez .............................................. p. 6 April meeting minutes .............................. p. 6 Nametags .................................................. p. 7 Bits and pieces .......................................... p. 8 Schaefermeyer scholarships for 2018 ...... p. 9 Field trip opportunities ............................. p. 9 AFMS: Safety matters ............................... p. 10 EFMLS: Experience Wildacres! ................. p. 10 Introduction to crystallography ................ p. 12 Book review: Reading the Rocks ............... p. 13 Humor: Ogden Nash ................................. p. 14 Story of geology: Charles Lyell .................. p. 15 Upcoming events ...................................... p. 19 Smithsonian Mineral Gallery. Photo: Chip Clark. Mineral of the Month Topaz by Sue Marcus Happy May Day! Our segue from the April to the May Mineral of the Month comes through an isle in the Red Sea called Topasios Island. You might guess from that name Northern Virginia Mineral Club alone that the May mineral is topaz. members, And I hope you recall that the April mineral, olivine Please join our May speaker, Logan Cutshall, for dinner (or peridot), was found on an Egyptian island in the at the Olive Garden on May 21 at 6 p.m. Rea Sea. Ancient lapidaries and naturalists apparently used the name “topaz” for peridot! Olive Garden, Baileys Cross Roads (across from Skyline The island of Topasios (also known as St. John’s or Towers), 3548 South Jefferson St. (intersecting Zabargad Island) eventually gave its name to topaz, Leesburg Pike), Falls Church, VA although the mineral topaz is not and has never been Phone: 703-671-7507 found there.
    [Show full text]
  • Marine Boring Bivalve Mollusks from Isla Margarita, Venezuela
    ISSN 0738-9388 247 Volume: 49 THE FESTIVUS ISSUE 3 Marine boring bivalve mollusks from Isla Margarita, Venezuela Marcel Velásquez 1 1 Museum National d’Histoire Naturelle, Sorbonne Universites, 43 Rue Cuvier, F-75231 Paris, France; [email protected] Paul Valentich-Scott 2 2 Santa Barbara Museum of Natural History, Santa Barbara, California, 93105, USA; [email protected] Juan Carlos Capelo 3 3 Estación de Investigaciones Marinas de Margarita. Fundación La Salle de Ciencias Naturales. Apartado 144 Porlama,. Isla de Margarita, Venezuela. ABSTRACT Marine endolithic and wood-boring bivalve mollusks living in rocks, corals, wood, and shells were surveyed on the Caribbean coast of Venezuela at Isla Margarita between 2004 and 2008. These surveys were supplemented with boring mollusk data from malacological collections in Venezuelan museums. A total of 571 individuals, corresponding to 3 orders, 4 families, 15 genera, and 20 species were identified and analyzed. The species with the widest distribution were: Leiosolenus aristatus which was found in 14 of the 24 localities, followed by Leiosolenus bisulcatus and Choristodon robustus, found in eight and six localities, respectively. The remaining species had low densities in the region, being collected in only one to four of the localities sampled. The total number of species reported here represents 68% of the boring mollusks that have been documented in Venezuelan coastal waters. This study represents the first work focused exclusively on the examination of the cryptofaunal mollusks of Isla Margarita, Venezuela. KEY WORDS Shipworms, cryptofauna, Teredinidae, Pholadidae, Gastrochaenidae, Mytilidae, Petricolidae, Margarita Island, Isla Margarita Venezuela, boring bivalves, endolithic. INTRODUCTION The lithophagans (Mytilidae) are among the Bivalve mollusks from a range of families have more recognized boring mollusks.
    [Show full text]
  • Outer Ards Modiolus Modiolus Report
    R Assessment of Outer Ards Modiolus modiolus biogenic reefs against Special Area of Conservation (SAC) criteria JULY 2016 A report from the Fisheries and Aquatic Ecosystems Branch, Agri-food and Biosciences Institute to The Department of Agriculture, Environment and Rural Affairs (Northern Ireland) Document version control: Version Issue date Modifier Note Issued to and date 1.0 31/03/2016 AFBI-AC First draft for review DAERA & MS: 31/03/2016 1.1 19/05/2016 AFBI-AC Second draft for review DAERA & MS: 19/05/2016 1.2 19/07/2016 AFBI-AC Final draft for sign off following MS: 19/07/2016 receipt of comments 22/06/2016 1.3 19/07/2016 AFBI-AC Final version DAERA: 20/07/2016 Further information Dr. Annika Clements Seabed Habitat Mapping Project Leader Fisheries & Aquatic Ecosystems Branch Newforge Lane Belfast BT9 5PX Tel: +44(0)2890255153 Email: [email protected] DAERA Client Officer Joe Breen DAERA, Marine Conservation and Reporting Team Marine & Fisheries Division Portrush Coastal Zone 8 Bath Road PORTRUSH BT56 8AP Tel: +44(0)2870823600 (ext31) Email: [email protected] The GIS project “Outer_Ards_Modiolus_2016.mxd” should be available for use in conjunction with this report. Recommended citation: AFBI, 2016. Special Area of Conservation Designation Assessment of Outer Ards Modiolus modiolus Biogenic Reef. Report to the Department of Agriculture, Environment and Rural Affairs, Northern Ireland. Acknowledgements The author wishes to thank Adele Boyd and Matthew Service (AFBI) for data provision, James McArdle (AFBI), Katie Lilley (Ulster University placement student with AFBI) and Clara Alvarez Alonso (DAERA) and the master and crew of the R.V.
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIOXS. 227 AEEANGEMENT FAMILIES OF MOLLUSKS. PREPARED FOR THE SMITHSONIAN INSTITUTION BY THEODORE GILL, M. D., Ph.D. WASHINGTON: PUBLISHED BY THE SMITHSONIAN INSTITUTION, FEBRUARY, 1871. ^^1 I ADVERTISEMENT. The following list has been prepared by Dr. Theodore Gill, at the request of the Smithsonian Institution, for the purpose of facilitating the arrangement and classification of the Mollusks and Shells of the National Museum ; and as frequent applica- tions for such a list have been received by the Institution, it has been thought advisable to publish it for more extended use. JOSEPH HENRY, Secretary S. I. Smithsonian Institution, Washington, January, 1871 ACCEPTED FOR PUBLICATION, FEBRUARY 28, 1870. (iii ) CONTENTS. VI PAGE Order 17. Monomyaria . 21 " 18. Rudista , 22 Sub-Branch Molluscoidea . 23 Class Tunicata , 23 Order 19. Saccobranchia . 23 " 20. Dactjlobranchia , 24 " 21. Taeniobranchia , 24 " 22. Larvalia , 24 Class Braehiopoda . 25 Order 23. Arthropomata , 25 " . 24. Lyopomata , 26 Class Polyzoa .... 27 Order 25. Phylactolsemata . 27 " 26. Gymnolseraata . 27 " 27. Rhabdopleurse 30 III. List op Authors referred to 31 IV. Index 45 OTRODUCTIO^. OBJECTS. The want of a complete and consistent list of the principal subdivisions of the mollusks having been experienced for some time, and such a list being at length imperatively needed for the arrangement of the collections of the Smithsonian Institution, the present arrangement has been compiled for that purpose. It must be considered simply as a provisional list, embracing the results of the most recent and approved researches into the systematic relations and anatomy of those animals, but from which innova- tions and peculiar views, affecting materially the classification, have been excluded.
    [Show full text]
  • TREATISE ONLINE Number 48
    TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North
    [Show full text]
  • HORSE MUSSEL BEDS Image Map
    PRIORITY MARINE FEATURE (PMF) - FISHERIES MANAGEMENT REVIEW Feature HORSE MUSSEL BEDS Image Map Image: Rob Cook Description Characteristics - Horse mussels (Modiolus modiolus) may occur as isolated individuals or aggregated into beds in the form of scattered clumps, thin layers or dense raised hummocks or mounds, with densities reaching up to 400 individuals per m2 (Lindenbaum et al., 2008). Individuals can grow to lengths >150 mm and live for >45 years (Anwar et al., 1990). The mussels attach to the substratum and to each other using tough threads (known as byssus) to create a distinctive biogenic habitat (or reef) that stabilises seabed sediments and can extend over several hectares. Silt, organic waste and shell material accumulate within the structure and further increase the bed height. In this way, horse mussel beds significantly modify sedimentary habitats and provide substrate, refuge and ecological niches for a wide variety of organisms. The beds increase local biodiversity and may provide settling grounds for commercially important bivalves, such as queen scallops. Fish make use of both the higher production of benthic prey and the added structural complexity (OSPAR, 2009). Definition - Beds are formed from clumps of horse mussels and shells covering more than 30% of the seabed over an area of at least 5 m x 5 m. Live adult horse mussels must be present. The horse mussels may be semi-infaunal (partially embedded within the seabed sediments - with densities of greater than 5 live individuals per m2) or form epifaunal mounds (standing clear of the substrate with more than 10 live individuals per clump) (Morris, 2015).
    [Show full text]
  • Modiolus Demissus
    J. exp. Biol. (i977)I 6q> I-I» I With 4 figure* tinted in Great Britain METABOLIC AND TISSUE SOLUTE CHANGES ASSOCIATED WITH CHANGES IN THE FREEZING TOLERANCE OF THE BIVALVE MOLLUSC MODIOLUS DEMISSUS BY DENNIS J. MURPHY* Department of Zoology, University of Maryland, College Park, Maryland 2074a (Received 27 July 1976) SUMMARY 1. A physiological mechanism responsible for increasing the freezing tolerance of the bivalve Modiolus demissus (Dillwyn) following low- temperature acclimation was demonstrated. 2. The rates of oxygen consumption of M. demissus acclimated to temperatures between o and 24 °C were presented as an Arrhenius plot. A change in slope occurred at 10 °C, suggesting that temperature alone was not responsible for the increased decline in the rate of oxygen consumption below 10 °C. 3. Low-temperature acclimation had no effect on blood Na+ or K+ con- centrations but did reduce the concentration of blood Mg2+ and, in addition, resulted in the accumulation of end-products characteristic of anaerobic metabolism - tissue alanine and proline, and blood Ca*"1". Furthermore, maintenance of M. demissus under anaerobic conditions increased freezing tolerance. 4. Taken together, these data indicate that the increased freezing tolerance of M. demissus acclimated to low temperatures involves a con- version to anaerobic metabolism. 5. The increase in blood Ca2+ following low-temperature acclimation was associated with the increased freezing tolerance. Finally, Mg2* simulated the effect of Ca2+ on freezing tolerance, but was only 20 % as effective. 6. These results suggest that a Cas+-dependent mechanism responsible for increasing the freezing tolerance of M. demissus exists, and that the increase in blood Cal+ is due to a conversion to anaerobic metabolism.
    [Show full text]
  • Densities of the Endolithic Bivalve Lithophaga Lessepsiana (Vaillant, 1865) in Pocillopora Damicornis, Solitary Islands Marine Park, Northern NSW, Australia
    Molluscan Research 31(1): 42–46 ISSN 1323-5818 http://www.mapress.com/mr/ Magnolia Press Densities of the endolithic bivalve Lithophaga lessepsiana (Vaillant, 1865) in Pocillopora damicornis, Solitary Islands Marine Park, northern NSW, Australia STEPHEN D. A. SMITH National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, New South Wales, 2450, Australia. Email: [email protected] Abstract The Solitary Islands Marine Park is positioned in a transition zone between tropical and temperate regions and consequently supports a range of taxa with different biogeographic affinities. Driven by variable influence of the East Australian Current, there is increasing representation of tropical taxa along a cross-shelf gradient (inshore to offshore). Patterns in the population of the endolithic bivalve Lithophaga lessepsiana were examined by sampling host corals (Pocillopora damicornis) across the cross-shelf gradient and were more broadly contextualised by comparisons with samples from Heron Island. Contrary to pre- dictions based on studies on low latitude reefs, where densities are higher close to shore, these increased with increasing dis- tance from the coast. Densities were almost an order of magnitude higher at Heron Island than in the Solitary Islands Marine Park. These patterns indicate that factors other than nutrient load and temperature primarily determine L. lessepsiana densities over the scales of this study. These are likely to include larval supply, colony morphology and availability of larval settlement sites within individual coral colonies. Key words: bioerosion, boring bivalve, colony morphology, cross-shelf gradient, high latitude reefs, Bivalvia, Mytilidae Introduction SIMP where it occurs in association with Pocillopora damicornis (Linnaeus, 1758), one of the dominant coral Scleractinian corals are a dominant feature of benthic species in local coral communities (Veron et al.
    [Show full text]