Glycerol to Propylene Glycol

Total Page:16

File Type:pdf, Size:1020Kb

Glycerol to Propylene Glycol University of Pennsylvania ScholarlyCommons Department of Chemical & Biomolecular Senior Design Reports (CBE) Engineering 4-2011 Glycerol to Propylene Glycol Kumar Chatterjee University of Pennsylvania Kelsey Hall University of Pennsylvania Samuel Tell University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/cbe_sdr Chatterjee, Kumar; Hall, Kelsey; and Tell, Samuel, "Glycerol to Propylene Glycol" (2011). Senior Design Reports (CBE). 26. https://repository.upenn.edu/cbe_sdr/26 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cbe_sdr/26 For more information, please contact [email protected]. Glycerol to Propylene Glycol Abstract A Cu-ZnO-Al2O3 catalyst has been observed in laboratory scale tests to effectively produce propylene glycol from glycerol using a liquid phase hydrogenolysis reaction, which occurs at 410 F and 580 psia. A trickle-bed reactor will be used to ensure the full contact of liquid and vapor phases with the solid catalyst. This project aims to successfully scale up this reactor model, which has thus far only been tested in bench scale. The design specification stipulates that this process will produce 100 MM lb/year of propylene glycol. Using crude glycerol harvested from biodiesel production, a final product purity of 99.6% was achieved from a feedstock of 80% glycerol, 15% water, 1% methanol, and 4% sodium chloride by weight, plus trace amounts of organic salts. The economic analysis that follows assumes a grassroots plant on the US Gulf Coast. The total capital investment was calculated to be $34.0 million, which includes a working capital of $9.78 million. Under the assumptions that the prices of crude glycerol, hydrogen, and propylene glycol are $0.22, $0.50, and $1.00 per pound respectively, the net present value (NPV) at the end of the 15 year allotted course of the project is $88.4 million and the investors’ rate of return (IRR) is 58.45%. The price of glycerol is projected to remain stable or decrease in the future and the price of propylene glycol is projected to remain stable or increase suggesting that this project could become even more profitable in the future. The apparent profitability of this project is largely caused by the efficient and cost effective method of desalting glycerol through electrodeionization. Unfortunately, the proprietary nature of this new process precludes public access to true costing and specifications for the equipment since firms as Dow largely control the technology. Thus, conservative estimations were made in our economic analysis to account for this uncertainty. This working paper is available at ScholarlyCommons: https://repository.upenn.edu/cbe_sdr/26 Glycerol to Propylene Glycol Glycerol to Propylene Glycol April 12, 2011 Kumar Chatterjee Kelsey Hall Samuel Tell Advisor: Dr. Warren Seider Glycerol to Propylene Glycol Glycerol to Propylene Glycol Professor Warren Seider Professor Leonard Fabiano Department of Chemical and Biomolecular Engineering University of Pennsylvania 220 South 33rd Street Philadelphia, PA 19104 April 12, 2011 Dear Professor Seider and Professor Fabiano, As proposed by Bruce Vrana, we have designed a plant that will produce one hundred million pounds per year of propylene glycol from crude glycerol, which is a byproduct derivative of biodiesel production. This process integrates electrodeionization, an emerging glycerine refinement technology, with a multiphase reaction in a trickle-bed reactor. This report includes the design details for the process, an economic analysis, and recommendations and predictions for the extent of its success. Based on the aforementioned analysis, this process is found to be a viable and profitable alternative to current methods of propylene glycol production. Furthermore, the process is environmentally friendly while also complementing the growth of the biodiesel industry that is predicted to surge over the project’s lifetime. Thank you for your consideration and assistance with this endeavor. Sincerely, Kelsey Hall Kumardipti Chatterjee Samuel Tell Glycerol to Propylene Glycol Glycerol to Propylene Glycol TABLE OF CONTENTS Section 1. Abstract 1 Section 2. Introduction 5 Section 3. Project Charter 9 Section 4. Technology-Readiness Assessment 13 Section 5. Concept Stage 17 Section 6. Preliminary Process Synthesis 25 Section 7. Chemical Database 31 Section 8. Kinetics of Reaction 41 Section 9. Process Flow Diagram and Material Balances 47 Section 10. Bench-Scale Laboratory Work 55 Section 11. Process Description 59 Section 12. Heat Integration: Energy Balance and Utility Requirements 69 Section 13. Equipment List and Unit Descriptions 73 Section 14. Specification Sheets 85 Section 15. Fixed-Capital Investment Summary 105 Section 16. Environmental Considerations 110 Section 17. Health and Safety Concerns 115 Section 18. Startup Considerations 121 Section 19. Plant Layout 125 Section 20. Operating Costs and Economic Analysis 129 Section 21. Conclusion and Recommendations 153 Section 22. Acknowledgements 157 Section 23. Bibliography 161 Section 24. Appendix 165 Section 25. Problem Statement 185 Section 26. Patent and Aspen Simulation Report 191 Glycerol to Propylene Glycol Abstract Section 1 ABSTRACT 1 Glycerol to Propylene Glycol Abstract Abstract A Cu-ZnO-Al2O3 catalyst has been observed in laboratory scale tests to effectively produce propylene glycol from glycerol using a liquid phase hydrogenolysis reaction, which occurs at 410 F and 580 psia. A trickle-bed reactor will be used to ensure the full contact of liquid and vapor phases with the solid catalyst. This project aims to successfully scale up this reactor model, which has thus far only been tested in bench scale. The design specification stipulates that this process will produce 100 MM lb/year of propylene glycol. Using crude glycerol harvested from biodiesel production, a final product purity of 99.6% was achieved from a feedstock of 80% glycerol, 15% water, 1% methanol, and 4% sodium chloride by weight, plus trace amounts of organic salts. The economic analysis that follows assumes a grassroots plant on the US Gulf Coast. The total capital investment was calculated to be $34.0 million, which includes a working capital of $9.78 million. Under the assumptions that the prices of crude glycerol, hydrogen, and propylene glycol are $0.22, $0.50, and $1.00 per pound respectively, the net present value (NPV) at the end of the 15 year allotted course of the project is $88.4 million and the investors’ rate of return (IRR) is 58.45%. The price of glycerol is projected to remain stable or decrease in the future and the price of propylene glycol is projected to remain stable or increase suggesting that this project could become even more profitable in the future. The apparent profitability of this project is largely caused by the efficient and cost effective method of desalting glycerol through electrodeionization. Unfortunately, the proprietary nature of this new process precludes public access to true costing and specifications for the equipment since firms as Dow largely control the technology. Thus, conservative estimations were made in our economic analysis to account for this uncertainty. 2 Glycerol to Propylene Glycol Abstract 3 Glycerol to Propylene Glycol Abstract 4 Glycerol to Propylene Glycol Introduction Section 2 INTRODUCTION 5 Glycerol to Propylene Glycol Introduction Introduction Propylene glycol (also called 1,2-propanediol) is an incredibly versatile compound that is used in a number of industrial applications that range from transportation and construction to food and pharmaceutical production. Pharmaceutical (USP) grade propylene glycol is at least 99.5% pure by weight and is used in health- sensitive products such as food, personal consumer goods, cosmetics, and pharmaceuticals. Due to its highly sensitive applications, USP grade propylene glycol is regulated carefully by the FDA and producers must comply with strict regulations to ensure the quality and purity of their product. Industrial grade propylene glycol is at least 95% pure and is an important player in the transportation industry as it is used in aircraft de-icer, antifreeze, and brake fluid. It is also used in the construction industry as the primary component in unsaturated polyester resins (UPRs) that are used to make fiberglass reinforced plastics. Propylene glycol’s chemical neutrality and nonreactivity make it very useful as a solvent. It can be used as an emulsifier to stabilize mixtures of two or more immiscible liquids. This often occurs in the preparation of cosmetics, where oil and water must be mixed to produce creams or lotions, and in the preparation and processing of some foods. It is a useful excipient, a pharmacologically inactive substance that acts as a carrier for the active ingredients in medication. It can be used for boiling point elevation or freezing point reduction, which makes it an effective de-icer and antifreeze solution. Historically, propylene glycol has been produced by the hydration of propylene oxide, which occurs at 392 F and 174 psia, or catalytically at 302-356 F, and produces di- 6 Glycerol to Propylene Glycol Introduction and tripropylene glycols and small quantities of higher glycols in side reactions (ICIS, 2011). This process has a large negative environmental impact due to pollution and use of valuable resources, so alternative methods, such as production from glycerol, are under investigation worldwide. This option is especially promising in light of the recent surge in
Recommended publications
  • WHITE LABEL PRODUCT INGREDIENTS All the Information You Need When Creating Your Own Label Artwork
    WHITE LABEL PRODUCT INGREDIENTS All the information you need when creating your own label artwork. SPRAY TAN SOLUTION - LIGHT - 8% DHA INGREDIENTS: Aqua (Water), Dihydroxyacetone, Alcohol, Hamamelis Virginiana (Witch Hazel) Leaf Extract, Propylene Glycol, Caramel, Phenoxyethanol, Caprylyl Glycol, Potassium Sorbate, Hexylene Glycol, Polysorbate 20, Xanthan Gum, Glycerin, T-Butyl Alcohol, Helianthus Annuus (Sunflower) Seed Oil, Beta Vulgaris (Beet) Root Extract, Panthenol, Solanum Lycopersicum (Tomato) Fruit Extract, Vaccinium Macrocarpon (Cranberry) Fruit Extract, Ascorbic Acid (Vitamin C), Tocopheryl Acetate (Vitamin E), Theobroma Cacao (Cocoa) Seed Butter, Rosa Canina (Rose Hip) Fruit Oil, Glycine Soja (Soybean) Oil, Cucumis Sativus (Cucumber) Fruit Extract, Brucine Sulfate, Yellow 5 (CI 19140), Green 5 (CI 61570), Red 40 (CI 16035), Red 33 (CI 17200), Blue 1 (CI 42090), Yellow 6 (CI 15985) SPRAY TAN SOLUTION - MEDIUM - 10% DHA INGREDIENTS: Aqua (Water), Dihydroxyacetone, Alcohol, Hamamelis Virginiana (Witch Hazel) Extract, Propylene Glycol, Caramel, Phenoxyethanol, Caprylyl Glycol, Potassium Sorbate, Hexylene Glycol, Polysorbate 20, Xanthan Gum, Glycerin, T-Butyl Alcohol, Helianthus Annuus (Sunflower) Seed Oil, Beta Vulgaris (Beet) Root Extract, Panthenol, Solanum Lycopersicum (Tomato) Fruit Extract, Vaccinium Macrocarpon (Cranberry) Fruit Extract, Ascorbic Acid (Vitamin C), Tocopheryl Acetate (Vitamin E), Theobroma Cacao (Cocoa) Seed Butter, Rosa Canina (Rose Hip) Fruit Oil, Glycine Soja (Soybean) Oil, Cucumis Sativus (Cucumber) Fruit
    [Show full text]
  • Comparison of Ethylene Glycol and Propylene Glycol Based Aircraft
    Comparison of Ethylene Glycol- and Propylene Glycol-Based Aircraft Deicing Fluids Agenda • Executive Summary • Chemistry • Operational Properties (for the aircraft) o Freezing Point (efficiency) o Lowest Operational Use Temperature o Holdover Time and Allowance Times • Mammalian Toxicity o Operator Precautions • Environmental Toxicity o Aquatic Toxicity o Air Emissions / Vapor Pressure o Biodegradation Executive Summary • Both ethylene glycol- (EG) and propylene glycol- (PG) based aircraft deicing fluids (ADFs) consist of the base glycol plus water and additives • Operationally, EG-based fluids perform better: • Less EG is required to produce the same freezing point than PG. • Lower viscosity means EG-based fluids provide better aerodynamic performance at colder temperatures. • As a result, EG-based fluids have superior Holdover Times (HOTs) compared to PG-based fluids, as presented by the SAE G-12 HOT Committee in May 2017. • Mammalian Toxicity • EG and PG both have low to moderate acute toxicity. • If ingested in a large, single oral dose, EG is more toxic to mammals than PG. • Oral dosing is an unlikely route of exposure during deicing. • History in Canada, where EG fluids have been used safely for many years, confirms operator procedures can appropriately manage this risk. Executive Summary • Environmental Properties • EG-based fluids in concentrated form generally demonstrate better aquatic toxicity than PG-based fluids; however, both are non-toxic. • Mixtures of EG-based ADFs exhibit less air emissions than PG based fluids.1 • Both EG and PG are biodegradable in the environment and neither bio accumulates. • PG has higher Theoretical Oxygen Demand and requires a higher usage concentration than PG fluids.
    [Show full text]
  • The PO Production Chain and Possibilities for Energy Saving
    The PO production chain and possibilities for energy saving Public Summary Report Delft, January 2012 Author(s): Ewout Dönszelmann Ab de Buck Harry Croezen Lonneke Wielders Publication Data Bibliographical data: Ewout Dönszelmann, Ab de Buck, Harry Croezen, Lonneke Wielders The PO production chain and possibilities for energy saving Public Summary Delft, CE Delft, January 2012 Energy saving / Chain Management / Products / Chemical industry / Propylene Oxide / Styrene / Iso-butylene FT: Tert-butyl alcohol (TBA) Publication code: 12.2232.12 CE publications are available from www.cedelft.eu. Commissioned by: Agentschap NL Further information on this study can be obtained from the contact person, Ewout Dönszelmann. © copyright, CE Delft, Delft CE Delft Committed to the Environment CE Delft is an independent research and consultancy organisation specialised in developing structural and innovative solutions to environmental problems. CE Delft’s solutions are characterised in being politically feasible, technologically sound, economically prudent and socially equitable. 2 January 2012 2.232.3 – The PO production chain and possibilities for energy saving Contents 1 Introduction 5 1.1 General background 5 1.2 The project 5 1.3 Approach 6 1.4 Reading guide 6 2 The production chains 7 2.1 The two processes 7 2.2 Expanded polystyrene 9 2.3 Polyols 11 2.4 TBA/iso-butylene applications 13 3 Conclusions, recommendations 17 3.1 Conclusions 17 3.2 Recommendations 17 4 Background of the Long-term Agreement Energy Efficiency ETS enterprises (LEE) 19 References 21 3 January 2012 2.232.3 – The PO production chain and possibilities for energy saving 4 January 2012 2.232.3 – The PO production chain and possibilities for energy saving 1 Introduction 1.1 General background The Dutch Industry and the Dutch government have made long term agreements on energy efficiency (LEE) for companies that are under the European Trading Scheme (ETS).
    [Show full text]
  • PROPYLENE GLYCOL from GLYCERIN (December 2007)
    Abstract Process Economics Program Report 262 PROPYLENE GLYCOL FROM GLYCERIN (December 2007) A variety of economic, environmental and technical factors have encouraged industry attention on producing industrial chemicals from bio-feedstocks, rather than from crude oil derivatives. One such example is producing propylene glycol (PG) from glycerine (GLY), rather than the conventional routes starting with propylene monomer. Propylene glycol has historically been produced in commercial quantities either via the chlorohydrin process or by peroxidation, both using propylene monomer as the starting material. Both routes produce propylene oxide (PO) as an intermediate chemical, which is then hydrated to propylene glycol. The peroxidation routes have evolved from those processes (Arco Chem/Lyondell, Repsol, Shell, BASF) producing a significant amount of by-product (PO/styrene monomer, PO/tertiary butyl alcohol, PO/ methyl tertiary butyl ether), to more recent processes developed by Solvay, Dow and BASF that eliminate the by-product by using hydrogen peroxide as the oxidizing agent. As of 2007, Degussa has announced the design and construction of a commercial scale PG plant using glycerine as its feedstock. Other companies have announced processes to use glycerine to produce polyols and epichlorohydrin. The combination of high crude oil prices and governmental subsidies to produce biofuels (bio-ethanol, bio-diesel) have resulted in an enormous increase in bio-diesel production, resulting in a glut of by-product glycerine (which represents 10% of biodiesel mass). As a result, glycerine market prices have fallen from $US 2/kg down to fuel value ($US 200/mt), or less. The low cost of glycerine combined with the high price of PG offers an opportunity to develop industrial scale processes converting glycerine to propylene glycol.
    [Show full text]
  • Boiling Points of the Propylene Glycol + Glycerol System at 1 Atmosphere Pressure: 188.6–292 °C Without and with Added Water Or Nicotine
    Portland State University PDXScholar Chemistry Faculty Publications and Presentations Chemistry 2018 Boiling Points of the Propylene Glycol + Glycerol System at 1 Atmosphere Pressure: 188.6–292 °c Without and with Added Water or Nicotine Anna K. Duell Portland State University, [email protected] James F. Pankow Portland State University, [email protected] Samantha M. Gillette Portland State University, [email protected] David H. Peyton Portland State University, [email protected] Follow this and additional works at: https://pdxscholar.library.pdx.edu/chem_fac Part of the Chemistry Commons Let us know how access to this document benefits ou.y Citation Details Duell, A. K., Pankow, J. F., Gillette, S. M., & Peyton, D. H. (2018). Boiling points of the propylene glycol + glycerol system at 1 atmosphere pressure: 188.6-292 °C without and with added water or nicotine. Chemical Engineering Communications, 205(12), 1691–1700. https://doi.org/10.1080/ 00986445.2018.1468758 This Post-Print is brought to you for free and open access. It has been accepted for inclusion in Chemistry Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. 1 1 Full title: 2 Boiling Points of the Propylene Glycol + Glycerol System 3 at 1 Atmosphere Pressure: 188.6 to 292 °C 4 Short title: 5 Boiling Points: Propylene Glycol + Glycerol 6 7 Anna K. Duell, 1 James F. Pankow,1,2 David H. Peyton1,3 8 1Department of Chemistry, Portland State University, Portland, Oregon, 97207, United States of 9 America 10 2Department of Civil and Environmental Engineering, Portland State University, Portland, 11 Oregon, 97207, United States of America 12 3Corresponding author 13 E-mail: [email protected] (DP) 14 Phone number: 503-725-3875 15 16 Abstract 17 In electronic cigarettes (“electronic nicotine delivery systems”, ENDSs), mixtures of propylene 18 glycol (PG) and/or glycerol (GL; aka “vegetable glycerin”, VG) with nicotine are vaporized to 19 create a nicotine-containing aerosol.
    [Show full text]
  • Propylene Glycol
    PROPYLENEGLYCOL ____________________Name ____________________________________________DateDate alsocalled…methylethylglycol , propane-1,2-diol , 1,2-propanediol ,2-hydroxypropanol , 1,2-dihydroxypropane , isopropyleneglycol ,and E1520 . Whatisit? Propyleneglycolisusedasasofteningagent,solvent,moisturizer,preservativeor vehicleinmanypersonalproducts,medications,andindustry. Wheremightitbefound? Heattransferfluid Householdcleaningproducts Moisturizinglotion,cream Hydraulicpressfluid Make-up(foundation,concealer, Industrialsolvents lipstick,lipliner,lipbalm, Insecttrapcontents gloss,mascara,eyeliner) Paint,enamel,stain,deckcoat,varnish Hairproducts(shampoo,gel, Paintballingredient conditioner,color,minoxidil) Petshampoo,spray,deodorizer Soap,cleanser,bodywash Photographicchemical Bubblebath,showergel Pitfalltrapforgroundbeetles Handsanitizer,handcleaner Plasticizer,polyesterandalkydresins Moisttowelettes,babywipes Polyurethanecushions Toothpaste,toothwhiteners Printingfountaininksolution,rollerwash Mouthwash,coldsoreremedy Tiresealant Shavingcream,aftershavegel Tobaccohumectant,cigarhumidor Antiperspirant,deodorant Transcutaneous-nervestimulatorgel Cuticleremover Ultraviolettattooink Salinesolution Wallpaperstripper,drywallprimer Personallubricant Waterproofing,cracksealant Sunscreen,massageoil Treatmentforathletesfoot,itch, PGisinmanyprescriptions : acne,yeast,earache Most cortisone creams,ointments,lotions,gels Clindamycingel,sol’nKeralytGel OtherPossibleExposures: Dovonexsolution Ketoconazolecr,foam Aircraftde-icingfluid Efudexcream,sol’nMetronidazolegel
    [Show full text]
  • HPPO Process Technology a Novel Route to Propylene Oxide Without Coproducts
    sustainability/ Industry perspective GREEN CHEMISTRy FRANZ SCHMIDT, MAIK BERNHARD, HEIKO MORELL, MATTHIAS PASCALy* *Corresponding author Evonik Industries AG, Advanced Intermediates – Innovation, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany Matthias Pascaly HPPO Process Technology A novel route to propylene oxide without coproducts KEYWORDS: HPPO process, propylene oxide, hydrogen peroxide, titanium silicalite. The common industrial technologies for the conversion of propylene to propylene oxide have been Abstract compared with a special focus on the direct oxidation using hydrogen peroxide. The HPPO process is an economically and ecologically superior technology since there are no market dependencies of other coproducts and water is the only waste product. The catalyst used in this process is a partly titanium substituted silica based zeolite called TS-1. The article summarizes the most important information concerning the HPPO process. INTRODUCTION approximately 7 Mt/a in the year 2010 at a production capacity of approximately 8 Mt/a. Based on a total The oxidation of organic compounds is of vital importance market growth of around 5 % per year, the expected for the chemical industry. Besides basic oxidation reactions values for demand and capacity in 2015 are nearly such as bleaching processes (e.g. paper or laundry) also at 9 and 10 Mt/a respectively. The growing markets are in oxidation reactions of chemicals are important: Epoxides Asia and potentially in the Middle East (1). - especially ethylene and propylene oxide – are among the There are several industrial routes to produce propylene major chemicals. Replacement of traditionally used halide- oxide, of which the chlorohydrin process (CH) is the based oxidants (chlorine) by hydrogen peroxide provided a oldest one (2).
    [Show full text]
  • Propylene Oxide
    This report contains the collective views of an in- ternational group of experts and does not necessarily epresent the decisions or the stated policy of the United Nations Environment Programme, the Interna- tional Labour Organisation, or the World Health lOrganization Environmental Health Criteria 56 PROPYLENE OXIDE Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization World Health Organization --'-- Geneva, 1985 The International Programme on Chemical Safety (IPCS) is a joint venture the United Nations Environment Programme, the International Labour Organis tion, and the World Health Organization. The main objective of the IPCS is carry Out and disseminate evaluations of the effects of chemicals on human hea' and the quality of the environment. Supporting activities include the developm of epidemiological, experimental laboratory, and risk-assessment methods that cou produce internationally comparable results, and the development of manpower the field of toxicology. Other activities carried out by 1PCS include the develo ment of know-how for coping with chemical accidents, coordination of laborato. testing and epidemiological studies, and promotion of research on the mechanisi of th biological action of chemicals ISBN 92 4 154196 2 \Vorld Health Organization 1985 Publications of the World Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Conven- tion. For rights
    [Show full text]
  • Propylene Glycol Dinitrate (PGDN) As an Explosive Taggant
    Central European Journal of Energetic Materials ISSN 1733-7178; e-ISSN 2353-1843 Copyright © 2016 Institute of Industrial Organic Chemistry, Poland Cent. Eur. J. Energ. Mater., 2016, 13(3), 627-640; DOI: 10.22211/cejem/65007 Propylene Glycol Dinitrate (PGDN) as an Explosive Taggant Hichem FETTAKA,* Michel H. LEFEBVRE Laboratory for Energetic Materials, Department of Chemistry, Royal Military Academy, Av. De la Renaissance 30, 1000 Brussels, Belgium * E-mail: h−[email protected] Abstract: Propylene Glycol Dinitrate (PGDN) is a liquid nitrate ester explosive which has been used as a gelatinating agent in some energetic formulations. The aim of the present work was to assess whether PGDN could be used as a detection taggant. The PGDN was synthesized in the laboratory using laboratory grade propylene glycol (PG). The purity of the synthesized PGDN was assessed using gas chromatography-mass spectrometry (GC/MS) and Fourier transform infrared spectroscopy (FTIR). A study of the thermal decomposition of PGDN was carried out using both DSC and thermogravimetry-mass spectrometry analysis (TG/MS) methods. The gases produced during thermal decomposition were identified by mass spectrometry and the influence of the heating rate was investigated. The duality of DSC-TGA was highlighted by studying the complementarity between these two methods. Vapour pressure and enthalpy of vaporisation of PGDN were considered as the foremost taggant characteristics, and were estimated using TGA and taking benzoic acid as the reference. The vapour pressure of PGDN at ambient temperature is 2.54 Pa, therefore the PGDN could be a good candidate as a detection taggant compared to other explosive taggants (Nitroglycerin, EGDN, DMNB and PDCB).
    [Show full text]
  • Propylene Glycol Cetearyl Alcohol Cyclopentasiloxane, Behentrimoni
    Express Miracle Silk Leave In * Ingredients: Aqua (Water/Eau) Propylene Glycol Cetearyl Alcohol Cyclopentasiloxane, Behentrimonium Chloride Quaternium-80 Fragrance/Parfum Panthenol, Hydrolyzed Silk, Morus Alba Leaf Extract, Elaeis Guineensis (Palm) Oil, Linalool, Benzyl Salicylate Limonene, Hydroxycitronellal, Butylphenyl Methylpropional, Eugenol, Coumarin Isoeugenol, Citral, Hexyl Cinnamal, Benzyl Alcohol, Benzyl Benzoate, Amyl Cinnamal, Geraniol Methylchloroisothiazolinone, Methylisothiazolinone Citric Acid. Express Miracle Silk Shampoo * Ingredients: Water/Aqua/Eau, Sodium Cocoyl Isethionate, Sodium Lauryl Sulfocetate, Disodium Laureth Sulfosuccinate, Disodium Laureth Sulfosuccinate, Cocamide MEA, Cocamidopropyl Betaine, Fragrance/Parfum, Decyl Glucoside, Gylcol Distearate, Amodimethicone, Dihydroxypropyl PEG-5 Linoleammonium Chloride, Divinyldimethicone/Dimethicone Copolymer, Glycereth-26, Hydrolyzed Silk, Morus Alba Leaf Extract, Elaeis Guineensis (Palm) Oil, Panthenol, Propylene Glycol, Butylene Gycol, Helianthus Annuus (Sunflower) Seed Extract, Cinnamidopropyltrimonium Chloride, Glycerin, Lauryl Alcohol, C11-15 Pareth-7, Guar Hydroxypropyltrimonium Chloride, Polyquatermium-7, C12-13 Pareth-23, C12-13 Pareth-3, Tetrasodium EDTA, Citric Acid, Laureth-9, Trideceth-12, Benzyl Salicylate, Linalool, Methylchloroisothiazolinone, Methylisothiazolinone. Miracle Blowdry Volumizer * Ingredients: Alcohol Denat, Water/Aqua/Eau, VP/VA Copolymer, Vinyl Caprolactam/ VP/ Dimethylaminoethyl Methacrylate Copolymer, Keratin Amino Acids, PEG-12 Dimethicone,
    [Show full text]
  • Pesticides EPA 738-R-06-029 Environmental Protection and Toxic Substances August 2006 Agency (7508P)
    United States Prevention, Pesticides EPA 738-R-06-029 Environmental Protection and Toxic Substances August 2006 Agency (7508P) Reregistration Eligibility Decision for Propylene Oxide Reregistration Eligibility Decision (RED) Document for Propylene Oxide List B Case Number 2560 Approved by: Date: July 31, 2006 Debra Edwards, Ph. D. Director Special Review and Reregistration Division Page 2 of 192 Table of Contents Propylene Oxide Reregistration Eligibility Decision Team ...................................................... 5 Glossary of Terms and Abbreviations ........................................................................................ 6 Abstract.......................................................................................................................................... 8 I. Introduction ............................................................................................................................... 9 II. Chemical Overview................................................................................................................ 10 A. Chemical Identity................................................................................................................10 B. Use and Usage Profile .........................................................................................................11 C. Tolerances............................................................................................................................11 III. Propylene Oxide Risk Assessments ...................................................................................
    [Show full text]
  • Ethylene Glycol
    Ethylene Glycol 107-21-1 Hazard Summary Ethylene glycol has many uses, including as antifreeze in cooling and heating systems, in hydraulic brake fluids, and as a solvent. Acute (short-term) exposure of humans to ethylene glycol by ingesting large quantities causes three stages of health effects: central nervous system (CNS) depression, followed by cardiopulmonary effects, and later renal damage. The only effects noted in one study of individuals exposed to low levels of ethylene glycol by inhalation for about a month were throat and upper respiratory tract irritation. Rats and mice chronically (long-term) exposed to ethylene glycol in their diet exhibited signs of kidney toxicity and liver effects. Several studies of rodents exposed orally or by inhalation showed ethylene glycol to be fetotoxic. An epidemiologic study on renal cancer mortality did not find an increased risk for workers exposed to ethylene glycol. EPA has not classified ethylene glycol for carcinogenicity. Please Note: The main sources of information for this fact sheet are EPA's Integrated Risk Information System (IRIS) (7), which contains information on oral chronic toxicity and the RfD, and the carcinogenic effects of ethylene glycol, and the Agency for Toxic Substances and Disease Registry's Toxicological Profile for Ethylene Glycol and Propylene Glycol. (2) Uses Ethylene glycol is used as antifreeze in cooling and heating systems, in hydraulic brake fluids, as an industrial humectant, as an ingredient of electrolytic condensers, as a solvent in the paint and plastics industries, in the formulations of printers' inks, stamp pad inks, and inks for ballpoint pens, as a softening agent for cellophane, and in the synthesis of safety explosives, plasticizers, synthetic fibers (Terylene, Dacron), and synthetic waxes.
    [Show full text]