Prediction, Learning, and Games

Total Page:16

File Type:pdf, Size:1020Kb

Prediction, Learning, and Games Prediction, Learning, and Games NICOLO` CESA-BIANCHI Universita` degli Studi di Milano GABOR´ LUGOSI Universitat Pompeu Fabra, Barcelona cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge cb2 2ru,UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Informationonthistitle:www.cambridge.org/9780521841085 © Nicolo Cesa-Bianchi and Gabor Lugosi This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2006 isbn-13 978-0-511-19178-7 eBook (NetLibrary) isbn-10 0-511-19178-2 eBook (NetLibrary) isbn-13 978-0-521-84108-5 hardback isbn-10 0-521-84108-9 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. to Betta, Silvia, and Luca – NCB to Arrate, Dani, and Frida to the memory of my parents – GL Contents Preface page xi 1 Introduction1 1.1 Prediction1 1.2 Learning3 1.3 Games3 1.4 A Gentle Start4 1.5 A Note to the Reader6 2 Prediction with Expert Advice7 2.1 Weighted Average Prediction9 2.2 An Optimal Bound 15 2.3 Bounds That Hold Uniformly over Time 17 2.4 An Improvement for Small Losses 20 2.5 Forecasters Using the Gradient of the Loss 22 2.6 Scaled Losses and Signed Games 24 2.7 The Multilinear Forecaster 25 2.8 The Exponential Forecaster for Signed Games 27 2.9 Simulatable Experts 29 2.10 Minimax Regret 30 2.11 Discounted Regret 32 2.12 Bibliographic Remarks 34 2.13 Exercises 37 3 Tight Bounds for Specific Losses 40 3.1 Introduction 40 3.2 Follow the Best Expert 41 3.3 Exp-concave Loss Functions 45 3.4 The Greedy Forecaster 49 3.5 The Aggregating Forecaster 52 3.6 Mixability for Certain Losses 56 3.7 General Lower Bounds 59 3.8 Bibliographic Remarks 63 3.9 Exercises 64 vii viii Contents 4 Randomized Prediction 67 4.1 Introduction 67 4.2 Weighted Average Forecasters 71 4.3 Follow the Perturbed Leader 74 4.4 Internal Regret 79 4.5 Calibration 85 4.6 Generalized Regret 90 4.7 Calibration with Checking Rules 93 4.8 Bibliographic Remarks 94 4.9 Exercises 95 5Efficient Forecasters for Large Classes of Experts 99 5.1 Introduction 99 5.2 Tracking the Best Expert 100 5.3 Tree Experts 109 5.4 The Shortest Path Problem 116 5.5 Tracking the Best of Many Actions 121 5.6 Bibliographic Remarks 124 5.7 Exercises 125 6 Prediction with Limited Feedback 128 6.1 Introduction 128 6.2 Label Efficient Prediction 129 6.3 Lower Bounds 136 6.4 Partial Monitoring 143 6.5 A General Forecaster for Partial Monitoring 146 6.6 Hannan Consistency and Partial Monitoring 153 6.7 Multi-armed Bandit Problems 156 6.8 An Improved Bandit Strategy 160 6.9 Lower Bounds for the Bandit Problem 164 6.10 How to Select the Best Action 169 6.11 Bibliographic Remarks 173 6.12 Exercises 175 7 Prediction and Playing Games 180 7.1 Games and Equilibria 180 7.2 Minimax Theorems 185 7.3 Repeated Two-Player Zero-Sum Games 187 7.4 Correlated Equilibrium and Internal Regret 190 7.5 Unknown Games: Game-Theoretic Bandits 194 7.6 Calibration and Correlated Equilibrium 194 7.7 Blackwell’s Approachability Theorem 197 7.8 Potential-based Approachability 202 7.9 Convergence to Nash Equilibria 205 7.10 Convergence in Unknown Games 210 7.11 Playing Against Opponents That React 219 7.12 Bibliographic Remarks 225 7.13 Exercises 227 Contents ix 8 Absolute Loss 233 8.1 Simulatable Experts 233 8.2 Optimal Algorithm for Simulatable Experts 234 8.3 Static Experts 236 8.4 A Simple Example 238 8.5 Bounds for Classes of Static Experts 239 8.6 Bounds for General Classes 241 8.7 Bibliographic Remarks 244 8.8 Exercises 245 9 Logarithmic Loss 247 9.1 Sequential Probability Assignment 247 9.2 Mixture Forecasters 249 9.3 Gambling and Data Compression 250 9.4 The Minimax Optimal Forecaster 252 9.5 Examples 253 9.6 The Laplace Mixture 256 9.7 A Refined Mixture Forecaster 258 9.8 Lower Bounds for Most Sequences 261 9.9 Prediction with Side Information 263 9.10 A General Upper Bound 265 9.11 Further Examples 269 9.12 Bibliographic Remarks 271 9.13 Exercises 272 10 Sequential Investment 276 10.1 Portfolio Selection 276 10.2 The Minimax Wealth Ratio 278 10.3 Prediction and Investment 278 10.4 Universal Portfolios 282 10.5 The EG Investment Strategy 284 10.6 Investment with Side Information 287 10.7 Bibliographic Remarks 289 10.8 Exercises 290 11 Linear Pattern Recognition 293 11.1 Prediction with Side Information 293 11.2 Bregman Divergences 294 11.3 Potential-Based Gradient Descent 298 11.4 The Transfer Function 301 11.5 Forecasters Using Bregman Projections 307 11.6 Time-Varying Potentials 314 11.7 The Elliptic Potential 316 11.8 A Nonlinear Forecaster 320 11.9 Lower Bounds 322 11.10 Mixture Forecasters 325 11.11 Bibliographic Remarks 328 11.12 Exercises 330 x Contents 12 Linear Classification 333 12.1 The Zero–One Loss 333 12.2 The Hinge Loss 335 12.3 Maximum Margin Classifiers 343 12.4 Label Efficient Classifiers 346 12.5 Kernel-Based Classifiers 350 12.6 Bibliographic Remarks 355 12.7 Exercises 356 Appendix 359 A.1 Inequalities from Probability Theory 359 A.1.1 Hoeffding’s Inequality 359 A.1.2 Bernstein’s Inequality 361 A.1.3 Hoeffding–Azuma Inequality and Related Results 362 A.1.4 Khinchine’s Inequality 364 A.1.5 Slud’s Inequality 364 A.1.6 A Simple Limit Theorem 364 A.1.7 Proof of Theorem 8.3 367 A.1.8 Rademacher Averages 368 A.1.9 The Beta Distribution 369 A.2 Basic Information Theory 370 A.3 Basics of Classification 371 References 373 Author Index 387 Subject Index 390 Preface ...bewareofmathematicians,andallthosewhomakeemptyprophecies. St. Augustine, De Genesi ad Litteram libri duodecim. Liber Secundus, 17, 37. Prediction of individual sequences, the main theme of this book, has been studied in various fields, such as statistical decision theory, information theory, game theory, machine learning, and mathematical finance. Early appearances of the problem go back as far as the 1950s, with the pioneering work of Blackwell, Hannan, and others. Even though the focus of investigation varied across these fields, some of the main principles have been discovered independently. Evolution of ideas remained parallel for quite some time. As each community developed its own vocabulary, communication became difficult. By the mid-1990s, however, it became clear that researchers of the different fields had a lot to teach each other. When we decided to write this book, in 2001, one of our main purposes was to investigate these connections and help ideas circulate more fluently. In retrospect, we now realize that the interplay among these many fields is far richer than we suspected. For this reason, exploring this beautiful subject during the preparation of the book became a most exciting experience – we really hope to succeed in transmitting this excitement to the reader. Today, several hundreds of pages later, we still feel there remains a lot to discover. This book just shows the first steps of some largely unexplored paths. We invite the reader to join us in finding out where these paths lead and where they connect. The book should by no means be treated as an encyclopedia of the subject. The selection of the material reflects our personal taste. Large parts of the manuscript have been read and constructively criticized by Gilles Stoltz, whose generous help we greatly appreci- ate. Claudio Gentile and Andras´ Gyorgy¨ also helped us with many important and useful comments. We are equally grateful to the members of a seminar group in Budapest who periodically gathered in Laci Gyor¨ fi’s office at the Technical University and unmercifully questioned every line of the manuscript they had access to, and to Gyorgy¨ Ottucsak´ who diligently communicated to us all these questions and remarks. The members of the group are Andras´ Antos, Balazs´ Csanad´ Csaji,´ Laci Gyor¨ fi, Andras´ Gyorgy,¨ Levente Kocsis, Gyorgy¨ Ottucsak,´ Marti´ Pinter,´ Csaba Szepesvari,´ and Kati Varga. Of course, all remaining errors are our responsibility. We thank all our friends and colleagues who, often without realizing it, taught us many ideas, tricks, and points of view that helped us understand the subtleties of the material. xi xii Preface The incomplete list includes Peter Auer, Andrew Barron, Peter Bartlett, Shai Ben-David, Stephane´ Boucheron, Olivier Bousquet, Miklos´ Cs``uros,¨ Luc Devroye, Meir Feder, Paul Fischer, Dean Foster, Yoav Freund, Claudio Gentile, Fabrizio Germano, Andras´ Gyorgy,¨ Laci Gyor¨ fi, Sergiu Hart, David Haussler, David Helmbold, Marcus Hutter, Sham Kakade, Adam Kalai, Balazs´ Kegl,´ Jyrki Kivinen, Tamas´ Linder, Phil Long, Yishay Mansour, Andreu Mas-Colell, Shahar Mendelson, Neri Merhav, Jan Poland, Hans Simon, Yoram Singer, Rob Schapire, Kic Udina, Nicolas Vayatis, Volodya Vovk, Manfred Warmuth, Marcelo Weinberger, and Michael ‘Il Lupo’ Wolf. We gratefully acknowledge the research support of the Italian Ministero dell’Istruzione, Universita` e Ricerca, the Generalitat de Catalunya, the Spanish Ministry of Science and Technology, and the IST Programme of the European Community under the PASCAL Network of Excellence.
Recommended publications
  • Generalized Linear Models (Glms)
    San Jos´eState University Math 261A: Regression Theory & Methods Generalized Linear Models (GLMs) Dr. Guangliang Chen This lecture is based on the following textbook sections: • Chapter 13: 13.1 – 13.3 Outline of this presentation: • What is a GLM? • Logistic regression • Poisson regression Generalized Linear Models (GLMs) What is a GLM? In ordinary linear regression, we assume that the response is a linear function of the regressors plus Gaussian noise: 0 2 y = β0 + β1x1 + ··· + βkxk + ∼ N(x β, σ ) | {z } |{z} linear form x0β N(0,σ2) noise The model can be reformulate in terms of • distribution of the response: y | x ∼ N(µ, σ2), and • dependence of the mean on the predictors: µ = E(y | x) = x0β Dr. Guangliang Chen | Mathematics & Statistics, San Jos´e State University3/24 Generalized Linear Models (GLMs) beta=(1,2) 5 4 3 β0 + β1x b y 2 y 1 0 −1 0.0 0.2 0.4 0.6 0.8 1.0 x x Dr. Guangliang Chen | Mathematics & Statistics, San Jos´e State University4/24 Generalized Linear Models (GLMs) Generalized linear models (GLM) extend linear regression by allowing the response variable to have • a general distribution (with mean µ = E(y | x)) and • a mean that depends on the predictors through a link function g: That is, g(µ) = β0x or equivalently, µ = g−1(β0x) Dr. Guangliang Chen | Mathematics & Statistics, San Jos´e State University5/24 Generalized Linear Models (GLMs) In GLM, the response is typically assumed to have a distribution in the exponential family, which is a large class of probability distributions that have pdfs of the form f(x | θ) = a(x)b(θ) exp(c(θ) · T (x)), including • Normal - ordinary linear regression • Bernoulli - Logistic regression, modeling binary data • Binomial - Multinomial logistic regression, modeling general cate- gorical data • Poisson - Poisson regression, modeling count data • Exponential, Gamma - survival analysis Dr.
    [Show full text]
  • How Prediction Statistics Can Help Us Cope When We Are Shaken, Scared and Irrational
    EGU21-15219 https://doi.org/10.5194/egusphere-egu21-15219 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. How prediction statistics can help us cope when we are shaken, scared and irrational Yavor Kamer1, Shyam Nandan2, Stefan Hiemer1, Guy Ouillon3, and Didier Sornette4,5 1RichterX.com, Zürich, Switzerland 2Windeggstrasse 5, 8953 Dietikon, Zurich, Switzerland 3Lithophyse, Nice, France 4Department of Management,Technology and Economics, ETH Zürich, Zürich, Switzerland 5Institute of Risk Analysis, Prediction and Management (Risks-X), SUSTech, Shenzhen, China Nature is scary. You can be sitting at your home and next thing you know you are trapped under the ruble of your own house or sucked into a sinkhole. For millions of years we have been the figurines of this precarious scene and we have found our own ways of dealing with the anxiety. It is natural that we create and consume prophecies, conspiracies and false predictions. Information technologies amplify not only our rational but also irrational deeds. Social media algorithms, tuned to maximize attention, make sure that misinformation spreads much faster than its counterpart. What can we do to minimize the adverse effects of misinformation, especially in the case of earthquakes? One option could be to designate one authoritative institute, set up a big surveillance network and cancel or ban every source of misinformation before it spreads. This might have worked a few centuries ago but not in this day and age. Instead we propose a more inclusive option: embrace all voices and channel them into an actual, prospective earthquake prediction platform (Kamer et al.
    [Show full text]
  • Reliability Engineering: Trends, Strategies and Best Practices
    Reliability Engineering: Trends, Strategies and Best Practices WHITE PAPER September 2007 Predictive HCL’s Predictive Engineering encompasses the complete product life-cycle process, from concept to design to prototyping/testing, all the way to manufacturing. This helps in making decisions early Engineering in the design process, perfecting the product – thereby cutting down cycle time and costs, and Think. Design. Perfect! meeting set reliability and quality standards. Reliability Engineering: Trends, Strategies and Best Practices | September 2007 TABLE OF CONTENTS Abstract 3 Importance of reliability engineering in product industry 3 Current trends in reliability engineering 4 Reliability planning – an important task 5 Strength of reliability analysis 6 Is your reliability test plan optimized? 6 Challenges to overcome 7 Outsourcing of a reliability task 7 About HCL 10 © 2007, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved. Reliability Engineering: Trends, Strategies and Best Practices | September 2007 Abstract In reliability engineering, product industries now follow a conscious and planned approach to effectively address multiple issues related to product certification, failure returns, customer satisfaction, market competition and product lifecycle cost. Today, reliability professionals face new challenges posed by advanced and complex technology. Expertise and experience are necessary to provide an optimized solution meeting time and cost constraints associated with analysis and testing. In the changed scenario, the reliability approach has also become more objective and result oriented. This is well supported by analysis software. This paper discusses all associated issues including outsourcing of reliability tasks to a professional service provider as an alternate cost-effective option. Importance of reliability engineering in product industry The degree of importance given to the reliability of products varies depending on their criticality.
    [Show full text]
  • Prediction in Multilevel Generalized Linear Models
    J. R. Statist. Soc. A (2009) 172, Part 3, pp. 659–687 Prediction in multilevel generalized linear models Anders Skrondal Norwegian Institute of Public Health, Oslo, Norway and Sophia Rabe-Hesketh University of California, Berkeley, USA, and Institute of Education, London, UK [Received February 2008. Final revision October 2008] Summary. We discuss prediction of random effects and of expected responses in multilevel generalized linear models. Prediction of random effects is useful for instance in small area estimation and disease mapping, effectiveness studies and model diagnostics. Prediction of expected responses is useful for planning, model interpretation and diagnostics. For prediction of random effects, we concentrate on empirical Bayes prediction and discuss three different kinds of standard errors; the posterior standard deviation and the marginal prediction error standard deviation (comparative standard errors) and the marginal sampling standard devi- ation (diagnostic standard error). Analytical expressions are available only for linear models and are provided in an appendix. For other multilevel generalized linear models we present approximations and suggest using parametric bootstrapping to obtain standard errors. We also discuss prediction of expectations of responses or probabilities for a new unit in a hypotheti- cal cluster, or in a new (randomly sampled) cluster or in an existing cluster. The methods are implemented in gllamm and illustrated by applying them to survey data on reading proficiency of children nested in schools. Simulations are used to assess the performance of various pre- dictions and associated standard errors for logistic random-intercept models under a range of conditions. Keywords: Adaptive quadrature; Best linear unbiased predictor (BLUP); Comparative standard error; Diagnostic standard error; Empirical Bayes; Generalized linear mixed model; gllamm; Mean-squared error of prediction; Multilevel model; Posterior; Prediction; Random effects; Scoring 1.
    [Show full text]
  • A Philosophical Treatise of Universal Induction
    Entropy 2011, 13, 1076-1136; doi:10.3390/e13061076 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article A Philosophical Treatise of Universal Induction Samuel Rathmanner and Marcus Hutter ? Research School of Computer Science, Australian National University, Corner of North and Daley Road, Canberra ACT 0200, Australia ? Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 20 April 2011; in revised form: 24 May 2011 / Accepted: 27 May 2011 / Published: 3 June 2011 Abstract: Understanding inductive reasoning is a problem that has engaged mankind for thousands of years. This problem is relevant to a wide range of fields and is integral to the philosophy of science. It has been tackled by many great minds ranging from philosophers to scientists to mathematicians, and more recently computer scientists. In this article we argue the case for Solomonoff Induction, a formal inductive framework which combines algorithmic information theory with the Bayesian framework. Although it achieves excellent theoretical results and is based on solid philosophical foundations, the requisite technical knowledge necessary for understanding this framework has caused it to remain largely unknown and unappreciated in the wider scientific community. The main contribution of this article is to convey Solomonoff induction and its related concepts in a generally accessible form with the aim of bridging this current technical gap. In the process we examine the major historical contributions that have led to the formulation of Solomonoff Induction as well as criticisms of Solomonoff and induction in general. In particular we examine how Solomonoff induction addresses many issues that have plagued other inductive systems, such as the black ravens paradox and the confirmation problem, and compare this approach with other recent approaches.
    [Show full text]
  • Some Statistical Models for Prediction Jonathan Auerbach Submitted In
    Some Statistical Models for Prediction Jonathan Auerbach Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2020 © 2020 Jonathan Auerbach All Rights Reserved Abstract Some Statistical Models for Prediction Jonathan Auerbach This dissertation examines the use of statistical models for prediction. Examples are drawn from public policy and chosen because they represent pressing problems facing U.S. governments at the local, state, and federal level. The first five chapters provide examples where the perfunctory use of linear models, the prediction tool of choice in government, failed to produce reasonable predictions. Methodological flaws are identified, and more accurate models are proposed that draw on advances in statistics, data science, and machine learning. Chapter 1 examines skyscraper construction, where the normality assumption is violated and extreme value analysis is more appropriate. Chapters 2 and 3 examine presidential approval and voting (a leading measure of civic participation), where the non-collinearity assumption is violated and an index model is more appropriate. Chapter 4 examines changes in temperature sensitivity due to global warming, where the linearity assumption is violated and a first-hitting-time model is more appropriate. Chapter 5 examines the crime rate, where the independence assumption is violated and a block model is more appropriate. The last chapter provides an example where simple linear regression was overlooked as providing a sensible solution. Chapter 6 examines traffic fatalities, where the linear assumption provides a better predictor than the more popular non-linear probability model, logistic regression.
    [Show full text]
  • The Case of Astrology –
    The relation between paranormal beliefs and psychological traits: The case of Astrology – Brief report Antonis Koutsoumpis Department of Behavioral and Social Sciences, Vrije Universiteit Amsterdam Author Note Antonis Koutsoumpis ORCID: https://orcid.org/0000-0001-9242-4959 OSF data: https://osf.io/62yfj/?view_only=c6bf948a5f3e4f5a89ab9bdd8976a1e2 I have no conflicts of interest to disclose Correspondence concerning this article should be addressed to: De Boelelaan 1105, 1081HV Amsterdam, The Netherlands. Email: [email protected] The present manuscript briefly reports and makes public data collected in the spring of 2016 as part of my b-thesis at the University of Crete, Greece. The raw data, syntax, and the Greek translation of scales and tasks are publicly available at the OSF page of the project. An extended version of the manuscript (in Greek), is available upon request. To the best of my knowledge, this is the first public dataset on the astrological and paranormal beliefs in Greek population. Introduction The main goal of this work was to test the relation between Astrological Belief (AB) to a plethora of psychological constructs. To avoid a very long task, the study was divided into three separate studies independently (but simultaneously) released. Study 1 explored the relation between AB, Locus of Control, Optimism, and Openness to Experience. Study 2 tested two astrological hypotheses (the sun-sign and water-sign effects), and explored the relation between personality, AB, and zodiac signs. Study 3 explored the relation between AB and paranormal beliefs. Recruitment followed both a snowball procedure and it was also posted in social media groups of various Greek university departments.
    [Show full text]
  • Prediction in General Relativity
    Synthese (2017) 194:491–509 DOI 10.1007/s11229-015-0954-3 ORIGINAL RESEARCH Prediction in general relativity C. D. McCoy1 Received: 2 July 2015 / Accepted: 17 October 2015 / Published online: 27 October 2015 © Springer Science+Business Media Dordrecht 2015 Abstract Several authors have claimed that prediction is essentially impossible in the general theory of relativity, the case being particularly strong, it is said, when one fully considers the epistemic predicament of the observer. Each of these claims rests on the support of an underdetermination argument and a particular interpretation of the concept of prediction. I argue that these underdetermination arguments fail and depend on an implausible explication of prediction in the theory. The technical results adduced in these arguments can be related to certain epistemic issues, but can only be misleadingly or mistakenly characterized as related to prediction. Keywords Prediction · General theory of relativity · Theory interpretation · Global spacetime structure 1 Introduction Several authors have investigated the subject of prediction in the general theory of relativity (GTR), arguing on the strength of various technical results that making predictions is essentially impossible for observers in the spacetimes permitted by the theory (Geroch 1977; Hogarth 1993, 1997; Earman 1995; Manchak 2008). On the face of it, such claims seem to be in significant tension with the important successful predictions made on the theoretical basis of GTR. The famous experimental predictions of the precession of the perihelion of Mercury and of gravitational lensing, for example, are widely understood as playing a significant role in the confirmation of the theory (Brush 1999). Well-known relativist Clifford Will observes furthermore that “today, B C.
    [Show full text]
  • Statistical Learning and Sequential Prediction
    Statistical Learning and Sequential Prediction Alexander Rakhlin and Karthik Sridharan DRAFT September 7, 2014 Contents I Introduction7 1 About8 2 An Appetizer: A Bit of Bit Prediction 12 3 What are the Learning Problems? 18 4 Example: Linear Regression 34 II Theory 43 5 Minimax Formulation of Learning Problems 44 5.1 Minimax Basics................................ 45 5.2 Defining Minimax Values for Learning Problems............ 48 5.3 No Free Lunch Theorems.......................... 55 5.3.1 Statistical Learning and Nonparametric Regression....... 55 5.3.2 Sequential Prediction with Individual Sequences........ 56 6 Learnability, Oracle Inequalities, Model Selection, and the Bias-Variance Trade-off 58 6.1 Statistical Learning.............................. 58 6.2 Sequential Prediction............................. 64 6.3 Remarks.................................... 65 1 7 Stochastic processes, Empirical processes, Martingales, Tree Processes 67 7.1 Motivation................................... 67 7.1.1 Statistical Learning.......................... 67 7.1.2 Sequential Prediction........................ 68 7.2 Defining Stochastic Processes........................ 69 7.3 Application to Learning........................... 73 7.4 Symmetrization................................ 74 7.5 Rademacher Averages............................ 79 7.6 Skolemization................................. 81 7.7 ... Back to Learning.............................. 81 8 Example: Learning Thresholds 82 8.1 Statistical Learning.............................. 82 8.2 Separable
    [Show full text]
  • Spiritual Expressions' Prediction of Mindfulness: the Case of Prospective Teachers
    Universal Journal of Educational Research 6(6): 1216-1221, 2018 http://www.hrpub.org DOI: 10.13189/ujer.2018.060612 Spiritual Expressions' Prediction of Mindfulness: The Case of Prospective Teachers S. Barbaros Yalçin Ahmet Keleşoğlu Faculty of Education, Necmettin Erbakan University, Turkey Copyright©2018 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Abstract The purpose of this research is to determine search for meaning in life comes out as a necessity which whether prospective teachers’ spiritual expressions have includes spirituality. The ability of people to think is predicted their mindfulness. The research was conducted in developed by the need to acquire new and specific relational screening model. The study group consisted of information from experiences they have gained over their 411 students (81.2%) females and 94 (18.6%) males, lifetime, the ability to come up with the problems they have totally 505 undergraduate students who are studying in the experienced, and the means of their life interpretation. last year and who participated in teaching practice. For data Indeed, the human spirit rises up while overcoming collection procedure, the Mindful Awareness Scale, challenges and obstacles [1]. The science of psychology developed by Brown and Ryan [9] was used. Turkish considers the existential needs that make up the human validity and reliability of the scale was studied by Özyeşil, body while examining basic concepts [2]. Although no one Arslan, Kesici and Deniz [8] and the Spiritual Expression is certain, all people expect to find some meaning in life [3].
    [Show full text]
  • A Theory of Everything. Book Review of Richard Dawid: String Theory and the Scientific Method
    A theory of everything. Book review of Richard Dawid: String Theory and the Scientific Method Philosophers of science generally assume that theorizing is boundless in principle, but in fact constrained mostly by the phenomena. Theories which violate empirical constraints are weeded out in the scientific process. String theory research, which unifies the four fundamental forces in nature and postulates strings as the smallest physical unit, is different: in its current form, string theory makes no empirical predictions. Still, string theory research has enjoyed great popularity in the community of high energy physics theoreticians for decades. In fact, string theory is more popular than any other approach that attempts to unify gravity with the principles of quantum mechanics. Given the lack of empirical constraints, this surely seems odd. One way of viewing the situation is it to hold on to the standard view of the relation between theorizing and empirical constraints. The popularity of string theory is then an unhealthy anomaly, which can be explained sociologically as resulting from the influence of certain individuals and herd behavior (for such views see Penrose 2004; Smolin 2007; Woit 2011). Richard Dawid, in his rich book String Theory and the Scientific Method, has set himself a much more demanding task. Instead of castigating string theory research, Dawid asks how we could perhaps extend our idea of the scientific method so as to incorporate string theory research. Dawid’s book consists of three parts. In the first part, Dawid argues that theorizing in the context of string theory is not as unconstrained as one might think—even in the absence of any direct empirical tests.
    [Show full text]
  • The Real World Significance of Performance Prediction Zachary A
    The real world significance of performance prediction Zachary A. Pardos Qing Yang Wang Shubhendu Trivedi Department of Computer Science Department of Computer Science Department of Computer Science Worcester Polytechnic Institute Worcester Polytechnic Institute Worcester Polytechnic Institute 100 Institute Rd. 100 Institute Rd. 100 Institute Rd. Worcester, MA 01609, USA Worcester, MA 01609, USA Worcester, MA 01609, USA [email protected] [email protected] [email protected] ABSTRACT the relative rankings of algorithms in the competition may vary when future information is not available. We investigate the effect In recent years, the educational data mining and user modeling of leakage on the task of predicting end of year state test scores in communities have been aggressively introducing models for section 2. predicting student performance on external measures such as standardized tests as well as within-tutor performance. While Removing leakage from evaluation adds confidence in replicating these models have brought statistically reliable improvement to the reported error in real world deployment, however; of equal performance prediction, the real world significance of the significance to deployment considerations is the real world differences in errors has been largely unexplored. In this paper we meaning of the error and its implications for students. Recent take a deeper look at what reported errors actually mean in the work on ensemble learning with educational data [3] chronicles context of high stakes test score prediction as well as student the various models introduced in the past years which track mastery prediction. We report how differences in common error student knowledge. A common practice among these papers has and accuracy metrics on prediction tasks translate to impact on been to compare the error of a newly introduced method to that of students and depict how standard validation methods can lead to a longer established method.
    [Show full text]