Changes in the Microbial Community of Lubomirskia Baicalensis Affected by Red Sponge Disease
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Download
http://wjst.wu.ac.th Natural Sciences Diversity Analysis of an Extremely Acidic Soil in a Layer of Coal Mine Detected the Occurrence of Rare Actinobacteria Megga Ratnasari PIKOLI1,*, Irawan SUGORO2 and Suharti3 1Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Ciputat, Tangerang Selatan, Indonesia 2Center for Application of Technology of Isotope and Radiation, Badan Tenaga Nuklir Nasional, Jakarta Selatan, Indonesia 3Department of Chemistry, Faculty of Science and Computation, Universitas Pertamina, Simprug, Jakarta Selatan, Indonesia (*Corresponding author’s e-mail: [email protected], [email protected]) Received: 7 September 2017, Revised: 11 September 2018, Accepted: 29 October 2018 Abstract Studies that explore the diversity of microorganisms in unusual (extreme) environments have become more common. Our research aims to predict the diversity of bacteria that inhabit an extreme environment, a coal mine’s soil with pH of 2.93. Soil samples were collected from the soil at a depth of 12 meters from the surface, which is a clay layer adjacent to a coal seam in Tanjung Enim, South Sumatera, Indonesia. A culture-independent method, the polymerase chain reaction based denaturing gradient gel electrophoresis, was used to amplify the 16S rRNA gene to detect the viable-but-unculturable bacteria. Results showed that some OTUs that have never been found in the coal environment and which have phylogenetic relationships to the rare actinobacteria Actinomadura, Actinoallomurus, Actinospica, Streptacidiphilus, Aciditerrimonas, and Ferrimicrobium. Accordingly, the highly acidic soil in the coal mine is a source of rare actinobacteria that can be explored further to obtain bioactive compounds for the benefit of biotechnology. -
Taxonomy JN869023
Species that differentiate periods of high vs. low species richness in unattached communities Species Taxonomy JN869023 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 JN674641 Bacteria; Bacteroidetes; [Saprospirae]; [Saprospirales]; Chitinophagaceae; Sediminibacterium JN869030 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 U51104 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae; Limnohabitans JN868812 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae JN391888 Bacteria; Planctomycetes; Planctomycetia; Planctomycetales; Planctomycetaceae; Planctomyces HM856408 Bacteria; Planctomycetes; Phycisphaerae; Phycisphaerales GQ347385 Bacteria; Verrucomicrobia; [Methylacidiphilae]; Methylacidiphilales; LD19 GU305856 Bacteria; Proteobacteria; Alphaproteobacteria; Rickettsiales; Pelagibacteraceae GQ340302 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales JN869125 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae New.ReferenceOTU470 Bacteria; Cyanobacteria; ML635J-21 JN679119 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae HM141858 Bacteria; Acidobacteria; Holophagae; Holophagales; Holophagaceae; Geothrix FQ659340 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; auto67_4W AY133074 Bacteria; Elusimicrobia; Elusimicrobia; Elusimicrobiales FJ800541 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; R4-41B JQ346769 Bacteria; Acidobacteria; [Chloracidobacteria]; RB41; Ellin6075 -
A Noval Investigation of Microbiome from Vermicomposting Liquid Produced by Thai Earthworm, Perionyx Sp
International Journal of Agricultural Technology 2021Vol. 17(4):1363-1372 Available online http://www.ijat-aatsea.com ISSN 2630-0192 (Online) A novel investigation of microbiome from vermicomposting liquid produced by Thai earthworm, Perionyx sp. 1 Kraisittipanit, R.1,2, Tancho, A.2,3, Aumtong, S.3 and Charerntantanakul, W.1* 1Program of Biotechnology, Faculty of Science, Maejo University, Chiang Mai, Thailand; 2Natural Farming Research and Development Center, Maejo University, Chiang Mai, Thailand; 3Faculty of Agricultural Production, Maejo University, Thailand. Kraisittipanit, R., Tancho, A., Aumtong, S. and Charerntantanakul, W. (2021). A noval investigation of microbiome from vermicomposting liquid produced by Thai earthworm, Perionyx sp. 1. International Journal of Agricultural Technology 17(4):1363-1372. Abstract The whole microbiota structure in vermicomposting liquid derived from Thai earthworm, Perionyx sp. 1 was estimated. It showed high richness microbial species and belongs to 127 species, separated in 3 fungal phyla (Ascomycota, Basidiomycota, Mucoromycota), 1 Actinomycetes and 16 bacterial phyla (Acidobacteria, Armatimonadetes, Bacteroidetes, Balneolaeota, Candidatus, Chloroflexi, Deinococcus, Fibrobacteres, Firmicutes, Gemmatimonadates, Ignavibacteriae, Nitrospirae, Planctomycetes, Proteobacteria, Tenericutes and Verrucomicrobia). The OTUs data analysis revealed the highest taxonomic abundant ratio in bacteria and fungi belong to Proteobacteria (70.20 %) and Ascomycota (5.96 %). The result confirmed that Perionyx sp. 1 -
Proposal of Vibrionimonas Magnilacihabitans Gen. Nov., Sp
Marquette University e-Publications@Marquette Civil and Environmental Engineering Faculty Civil and Environmental Engineering, Department Research and Publications of 2-1-2014 Proposal of Vibrionimonas magnilacihabitans gen. nov., sp. nov., a Curved Gram Negative Bacterium Isolated From Lake Michigan Water Richard A. Albert Marquette University, [email protected] Daniel Zitomer Marquette University, [email protected] Michael Dollhopf Marquette University, [email protected] Anne Schauer-Gimenez Marquette University Craig Struble Marquette University, [email protected] See next page for additional authors Accepted version. International Journal of Systematic and Evolutionary Microbiology, Vol. 64, No. 2 (February 2014): 613-620. DOI. © 2014 Society for General Microbiology. Used with permission. Authors Richard A. Albert, Daniel Zitomer, Michael Dollhopf, Anne Schauer-Gimenez, Craig Struble, Michael King, Sona Son, Stefan Langer, and Hans-Jürgen Busse This article is available at e-Publications@Marquette: https://epublications.marquette.edu/civengin_fac/8 NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation at the bottom of the page. Proposal of Vibrionimonas magnilacihabitans gen. nov., sp. nov., a Curved Gram-Stain-Negative Bacterium Isolated from Lake Water Richard A. Albert Water Quality Center, Marquette University, Milwaukee, WI Daniel Zitomer Water Quality Center, Marquette University, Milwaukee, WI Michael Dollhopf Water Quality Center, Marquette University, Milwaukee, WI A.E. Schauer-Gimenez Water Quality Center, Marquette University, Milwaukee, WI Craig Struble Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI International Journal of Systematic and Evolutionary Microbiology, Vol. 64, No. 2 (February 2014): pg. -
Fmicb-09-02926 November 29, 2018 Time: 17:35 # 1
fmicb-09-02926 November 29, 2018 Time: 17:35 # 1 ORIGINAL RESEARCH published: 30 November 2018 doi: 10.3389/fmicb.2018.02926 Effects of Organic Pollutants on Bacterial Communities Under Future Climate Change Scenarios Juanjo Rodríguez1*, Christine M. J. Gallampois2, Sari Timonen1, Agneta Andersson3,4, Hanna Sinkko5, Peter Haglund2, Åsa M. M. Berglund3, Matyas Ripszam6, Daniela Figueroa3, Mats Tysklind2 and Owen Rowe1,7 1 Department of Microbiology, University of Helsinki, Helsinki, Finland, 2 Department of Chemistry, Umeå University, Umeå, Sweden, 3 Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden, 4 Umeå Marine Research Centre (UMF), Umeå University, Hörnefors, Sweden, 5 Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland, 6 MSCi ApS Laboratory, Skovlunde, Denmark, 7 Helsinki Commission (HELCOM), Baltic Marine Environment Protection Commission, Helsinki, Finland Coastal ecosystems are highly dynamic and can be strongly influenced by climate Edited by: change, anthropogenic activities (e.g., pollution), and a combination of the two Alison Buchan, The University of Tennessee, pressures. As a result of climate change, the northern hemisphere is predicted to Knoxville, United States undergo an increased precipitation regime, leading in turn to higher terrestrial runoff Reviewed by: and increased river inflow. This increased runoff will transfer terrestrial dissolved organic Veljo Kisand, University of Tartu, Estonia matter (tDOM) and anthropogenic contaminants to coastal waters. Such changes can Andrew C. Singer, directly influence the resident biology, particularly at the base of the food web, and can Natural Environment Research influence the partitioning of contaminants and thus their potential impact on the food Council (NERC), United Kingdom web. -
Bacterial Metataxonomic Profile and Putative Functional Behavior
Soil Biology and Biochemistry 119 (2018) 184–193 Contents lists available at ScienceDirect Soil Biology and Biochemistry journal homepage: www.elsevier.com/locate/soilbio Bacterial metataxonomic profile and putative functional behavior associated T with C and N cycle processes remain altered for decades after forest harvest ∗ Ryan M. Mushinskia, ,1, Yong Zhoua, Terry J. Gentryb, Thomas W. Bouttona a Department of Ecosystem Science & Management, Texas A&M University, TAMU 2138, College Station, TX, 77843, United States b Department of Soil & Crop Sciences, Texas A&M University, TAMU 2474, College Station, TX, 77843, United States ARTICLE INFO ABSTRACT Keywords: While the impacts of forest disturbance on soil physicochemical parameters and soil microbial ecology have been Biomass decomposition studied, their effects on microbial biogeochemical function are largely unknown, especially over longer time Nitrogen-cycling scales and at deeper soil depths. This study investigates how differing organic matter removal (OMR) intensities Metagenomic potential associated with timber harvest influence decadal-scale alterations in bacterial community composition and Organic matter removal functional potential in the upper 1-m of the soil profile, 18 years post-harvest in a Pinus taeda L. forest of the Soil bacterial ecology southeastern USA. 16S rRNA amplicon sequencing was used in conjunction with soil chemical analyses to Forest harvest evaluate (i) treatment-induced differences in bacterial community composition, and (ii) potential relationships between those differences and soil biogeochemical properties. Furthermore, functional potential was assessed by using amplicon data to make metagenomic predictions. Results indicate that increasing OMR intensity leads to altered bacterial community composition and the relative abundance of dominant operational taxonomic units (OTUs) annotated to Burkholderia and Aciditerrimonas; however, no significant differences in dominant phyla were observed. -
Genomic Analysis of a Freshwater Actinobacterium, “Candidatus
J. Microbiol. Biotechnol. (2017), 27(4), 825–833 https://doi.org/10.4014/jmb.1701.01047 Research Article Review jmb Genomic Analysis of a Freshwater Actinobacterium, “Candidatus Limnosphaera aquatica” Strain IMCC26207, Isolated from Lake Soyang Suhyun Kim, Ilnam Kang, and Jang-Cheon Cho* Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea Received: January 16, 2017 Revised: February 3, 2017 Strain IMCC26207 was isolated from the surface layer of Lake Soyang in Korea by the dilution- Accepted: February 6, 2017 to-extinction culturing method, using a liquid medium prepared with filtered and autoclaved lake water. The strain could neither be maintained in a synthetic medium other than natural freshwater medium nor grown on solid agar plates. Phylogenetic analysis of 16S rRNA gene First published online sequences indicated that strain IMCC26207 formed a distinct lineage in the order February 7, 2017 Acidimicrobiales of the phylum Actinobacteria. The closest relative among the previously *Corresponding author identified bacterial taxa was “Candidatus Microthrix parvicella” with 16S rRNA gene sequence Phone: +82-32-860-7711; similarity of 91.7%. Here, the draft genome sequence of strain IMCC26207, a freshwater Fax: +82-32-232-0541; actinobacterium, is reported with the description of the genome properties and annotation E-mail: [email protected] summary. The draft genome consisted of 10 contigs with a total size of 3,316,799 bp and an average G+C content of 57.3%. The IMCC26207 genome was predicted to contain 2,975 protein-coding genes and 51 non-coding RNA genes, including 45 tRNA genes. Approximately 76.8% of the protein coding genes could be assigned with a specific function. -
Novel and Unexpected Microbial Diversity in Acid Mine Drainage in Svalbard (78° N), Revealed by Culture-Independent Approaches
Microorganisms 2015, 3, 667-694; doi:10.3390/microorganisms3040667 OPEN ACCESS microorganisms ISSN 2076-2607 www.mdpi.com/journal/microorganisms Article Novel and Unexpected Microbial Diversity in Acid Mine Drainage in Svalbard (78° N), Revealed by Culture-Independent Approaches Antonio García-Moyano 1,*, Andreas Erling Austnes 1, Anders Lanzén 1,2, Elena González-Toril 3, Ángeles Aguilera 3 and Lise Øvreås 1 1 Department of Biology, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway; E-Mails: [email protected] (A.E.A.); [email protected] (A.L.); [email protected] (L.Ø.) 2 Neiker-Tecnalia, Basque Institute for Agricultural Research and Development, c/Berreaga 1, E48160 Derio, Spain 3 Instituto de Técnica Aeroespacial, Centro de Astrobiología (CAB-CSIC), Ctra. Torrejón-Ajalvir km 4, E-28850 Madrid, Spain; E-Mails: [email protected] (E.G.-T); [email protected] (A.A.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +47-5558-8187; Fax: +47-5558-4450. Academic Editor: Ricardo Amils Received: 27 July 2015 / Accepted: 29 September 2015 / Published: 13 October 2015 Abstract: Svalbard, situated in the high Arctic, is an important past and present coal mining area. Dozens of abandoned waste rock piles can be found in the proximity of Longyearbyen. This environment offers a unique opportunity for studying the biological control over the weathering of sulphide rocks at low temperatures. Although the extension and impact of acid mine drainage (AMD) in this area is known, the native microbial communities involved in this process are still scarcely studied and uncharacterized. -
Determining Lineage-Specific Bacterial Growth Curves with a Novel
The ISME Journal (2018) 12:2640–2654 https://doi.org/10.1038/s41396-018-0213-y ARTICLE Determining lineage-specific bacterial growth curves with a novel approach based on amplicon reads normalization using internal standard (ARNIS) 1 2 3 2 1,4 3 Kasia Piwosz ● Tanja Shabarova ● Jürgen Tomasch ● Karel Šimek ● Karel Kopejtka ● Silke Kahl ● 3 1,4 Dietmar H. Pieper ● Michal Koblížek Received: 10 January 2018 / Revised: 1 June 2018 / Accepted: 9 June 2018 / Published online: 6 July 2018 © The Author(s) 2018. This article is published with open access Abstract The growth rate is a fundamental characteristic of bacterial species, determining its contributions to the microbial community and carbon flow. High-throughput sequencing can reveal bacterial diversity, but its quantitative inaccuracy precludes estimation of abundances and growth rates from the read numbers. Here, we overcame this limitation by normalizing Illumina-derived amplicon reads using an internal standard: a constant amount of Escherichia coli cells added to samples just before biomass collection. This approach made it possible to reconstruct growth curves for 319 individual OTUs during the 1234567890();,: 1234567890();,: grazer-removal experiment conducted in a freshwater reservoir Římov. The high resolution data signalize significant functional heterogeneity inside the commonly investigated bacterial groups. For instance, many Actinobacterial phylotypes, a group considered to harbor slow-growing defense specialists, grew rapidly upon grazers’ removal, demonstrating their considerable importance in carbon flow through food webs, while most Verrucomicrobial phylotypes were particle associated. Such differences indicate distinct life strategies and roles in food webs of specific bacterial phylotypes and groups. The impact of grazers on the specific growth rate distributions supports the hypothesis that bacterivory reduces competition and allows existence of diverse bacterial communities. -
The Case of the Red Pigment Miltos
Greco-Roman mineral (litho)therapeutics and their relationship to their microbiome: The case of the red pigment miltos E. Photos-Jones a,b, C.W.Knapp c, D. Venieri d, G.E.Christidis f, C.Elgy e, E. Valsami-Jones e, I. Gounaki c and N.C.Andriopoulou f. a Analytical Services for Art and Archaeology (Ltd), Glasgow G12 8JD, UK b Archaeology, School of Humanities, University of Glasgow, Glasgow G12 8QQ, UK c Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XQ, UK d School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece e School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK f School of Mineral Resources Engineering, Technical University of Crete, 73100 Chania, Greece Journal of Archaeological Science: Reports. Volume 22, December 2018, Pages 179-192 https://doi.org/10.1016/j.jasrep.2018.07.017 corresponding author address: [email protected] Abstract This paper introduces a holistic approach to the study of Greco-Roman (G-R) lithotherapeutics. These are the minerals or mineral combinations that appear in the medical and scientific literature of the G-R world. It argues that they can best be described not simply in terms of their bulk chemistry/mineralogy but also their ecological microbiology and nanofraction component. It suggests that each individual attribute may have underpinned the bioactivity of the lithotherapeutic as an antibacterial, antifungal or other. We focus on miltos, the highly prized, naturally fine, red iron oxide-based mineral used as a pigment, in boat maintenance, agriculture and medicine. -
Thermophilic and Alkaliphilic Actinobacteria: Biology and Potential Applications
REVIEW published: 25 September 2015 doi: 10.3389/fmicb.2015.01014 Thermophilic and alkaliphilic Actinobacteria: biology and potential applications L. Shivlata and Tulasi Satyanarayana * Department of Microbiology, University of Delhi, New Delhi, India Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive Edited by: compounds, which find multifarious applications. Wen-Jun Li, Sun Yat-Sen University, China Keywords: Actinobacteria, thermophiles, alkaliphiles, polyextremophiles, bioactive compounds, enzymes Reviewed by: Erika Kothe, Friedrich Schiller University Jena, Introduction Germany Hongchen Jiang, The phylum Actinobacteria is one of the most dominant phyla in the bacteria domain (Ventura Miami University, USA et al., 2007), that comprises a heterogeneous Gram-positive and Gram-variable genera. The Qiuyuan Huang, phylum also includes a few Gram-negative species such as Thermoleophilum sp. (Zarilla and Miami University, USA Perry, 1986), Gardenerella vaginalis (Gardner and Dukes, 1955), Saccharomonospora -
Taibaiella Smilacinae Gen. Nov., Sp. Nov., an Endophytic Member of The
International Journal of Systematic and Evolutionary Microbiology (2013), 63, 3769–3776 DOI 10.1099/ijs.0.051607-0 Taibaiella smilacinae gen. nov., sp. nov., an endophytic member of the family Chitinophagaceae isolated from the stem of Smilacina japonica, and emended description of Flavihumibacter petaseus Lei Zhang,1,2 Yang Wang,3 Linfang Wei,1 Yao Wang,1 Xihui Shen1 and Shiqing Li1,2 Correspondence 1State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Xihui Shen Northwest A&F University, Yangling, Shaanxi 712100, PR China [email protected] 2State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Northwest A&F University, Yangling, Shaanxi 712100, PR China 3Hubei Institute for Food and Drug Control, Wuhan 430072, PR China A light-yellow-coloured bacterium, designated strain PTJT-5T, was isolated from the stem of Smilacina japonica A. Gray collected from Taibai Mountain in Shaanxi Province, north-west China, and was subjected to a taxonomic study by using a polyphasic approach. The novel isolate grew optimally at 25–28 6C and pH 6.0–7.0. Flexirubin-type pigments were produced. Cells were Gram-reaction-negative, strictly aerobic, rod-shaped and non-motile. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain PTJT-5T was a member of the phylum Bacteroidetes, exhibiting the highest sequence similarity to Lacibacter cauensis NJ-8T (87.7 %). The major cellular fatty acids were iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 and iso-C17 : 0 3-OH.