Inside Cover.Pmd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review Article a Review on the Medicinal Plant Dalbergia Odorifera Species: Phytochemistry and Biological Activity
Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2017, Article ID 7142370, 27 pages https://doi.org/10.1155/2017/7142370 Review Article A Review on the Medicinal Plant Dalbergia odorifera Species: Phytochemistry and Biological Activity Son Ninh The Department of Bioactive Products, Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam Correspondence should be addressed to Son Ninh The; [email protected] Received 16 August 2017; Accepted 25 October 2017; Published 4 December 2017 Academic Editor: Vincenzo De Feo Copyright © 2017 Son Ninh The. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The crucial medicinal plant Dalbergia odorifera T. Chen species belongs to genus Dalbergia, with interesting secondary metabolites, consisting of main classes of flavonoid, phenol, and sesquiterpene derivatives, as well as several arylbenzofurans, quinones, and fatty acids. Biological studies were carried out on extracts, fractions, and compounds from this species involved in cytotoxic assays; antibacterial, antioxidative, anti-inflammatory, antithrombotic, antiplatelet, antiosteosarcoma, antiosteoporosis, antiangiogenesis, and prostaglandin biosynthetic enzyme inhibition activities; vasorelaxant activities; alpha-glucosidase inhibitory activities; and many other effects. In terms of the valuable resources for natural new drugs development, D. odorifera species are widely used as medicinal drugs in many countries for treatment of cardiovascular diseases, cancer, diabetes, blood disorders, ischemia, swelling, necrosis, or rheumatic pain. Although natural products from this plant have been increasingly playing an important role in drug discovery programs, there is no supportive evidence to provide a general insight into phytochemical studies on D. -
Dalbergia Proposal Guatemala (Rev.2)
CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal Inclusion of the genus Dalbergia in CITES Appendix II with exception to the species included in Appendix I. The UNEP-WCMC assessed the Dalbergia species of Latin America and concluded: “… all populations of Dalbergia spp. from South and Central America appear to meet the criteria for listing in CITES Appendix II” (UNEP-WCMC, 2015). Including the whole genus in Appendix II will be essential for the control of international trade by eliminating the arduous task of enforcement and customs officers of differentiating between the hundreds of Dalbergia species listed and not listed in CITES. The inclusion will help ensure that legal trade does not become a direct cause of the extinction of these highly threatened species and will help curb illegal trade. Considering that CITES Appendix II must include all species, which although not necessarily now threatened with extinction may become so unless trade in specimens of such species is subject to strict regulation in order to avoid utilization incompatible with their survival, it is important to include the genus Dalbergia in CITES Appendix II. a) Resolution Conf. 9.24, Annex 2 a, Criterion A - ”It is known, or can be inferred or projected, that the regulation of trade in the species is necessary to avoid it becoming eligible for inclusion in Appendix I in the near future”. b) Resolution Conf. 9.24, Annex 2 a, Criterion B - ”It is known, or can be inferred or projected, that regulation of trade in the species is required to ensure that the harvest of specimens from the wild is not reducing the wild population to a level at which its survival might be threatened by continued harvesting or other influences”. -
The Role of Medicine in the Construction of a Modern Japanese Identity, 1868-1912 Disse
Science, Nurses, Physicians and Disease: The Role of Medicine in the Construction of a Modern Japanese Identity, 1868-1912 Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Roberto Ramon Padilla II Graduate Program in History The Ohio State University 2009 Dissertation Committee: James Bartholomew, Advisor Cynthia Brokaw Philip Brown Copyright by Roberto Ramon Padilla II 2009 Abstract This is a history of the emergence of a modern Japanese identity in the latter half of the nineteenth century as seen through the lens of scientific medicine. This study makes the argument that Japanese physicians’ construction of a modern identity was a two-fold process that identified Japan in line with Western imperialism and Western fields of knowledge, while conceptually distancing the island nation from nearby Asian neighbors. This perspective, which reflected the growing understanding among Japanese of their country’s emerging place in the world in the Meiji era (1868-1912), occurred within the context of the broad social, political, economic and military reforms that defined this period. Western medicine based on the rational proofs and perceived universality of scientific inquiry, positioned Japanese physicians as agents of modernity. I examine the way scientific medicine informed Japanese modernity in two ways: I begin by looking at how the Japanese Red Cross Society nurse came to be perceived as a national heroine, then I explain the Japanese Army Medical Bureau’s struggle to prevent beriberi, a nutritional deficiency illness in its ranks. These case studies offer a window into the interplay between modern medicine and traditional social values and underscore the reality that a field of knowledge is not adopted, but rather adapted and negotiated. -
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade. -
Review of on the Basis of of 2014 CITES Quotas of Species Selected
UNEP-WCMC technical report Review of species selected on the basis of the Analysis of 2014 CITES export quotas Part II (Version edited for public release) Review of species selected on the basis of the Analysis of 2014 CITES export quotas. Part II. Prepared for The European Commission, Directorate General Environment , Directorate E - Global & Regional Challenges, LIFE ENV.E.2. – Global Sustainability, Trade & Multilateral Agreements , Brussels, Belgium Published November 2014 Copyright European Commission 2014 Citation UNEP-WCMC. 2014. Review of species selected on the basis of the Analysis of 2014 CITES export quotas. Part II. UNEP-WCMC, Cambridge. The UNEP World Conservation Monitoring Centre (UNEP-WCMC) is the specialist biodiversity assessment centre of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organization. The Centre has been in operation for over 30 years, combining scientific research with policy advice and the development of decision tools. We are able to provide objective, scientifically rigorous products and services to help decision -makers recognize the value of biodiversity and apply this knowledge to all that they do. To do this, we collate and verify data on biodiversity and ecosystem services that we analyze and interpret in comprehensive assessments, making the results available in ap propriate forms for national and international level decision-makers and businesses. To ensure that our work is both sustainable and equitable we seek to build the capacity of partners where needed, so that they can provide the same services at national and regional scales. The contents of this report do not necessarily reflect the views or policies of UNEP, contributory organisations or editors. -
Falcataria Moluccana Molucca Albizia Fabaceae
Falcataria moluccana Molucca albizia Fabaceae Forest Starr, Kim Starr, and Lloyd Loope United States Geological Survey--Biological Resources Division Haleakala Field Station, Maui, Hawai'i January, 2003 OVERVIEW Falcataria moluccana has been widely planted throughout the world for ornament and reforestation. It was first introduced to Hawai'i in 1917 by Joseph Rock (Little and Skolmen 1989). In Hawai'i, F. moluccana has been planted by the hundreds of thousands for ornament and reforestation. Trees are attractive and the wood is useful for a variety of things from furniture making to canoe building. However, trees are spreading from initial plantings to adjacent pastures, forests, and disturbed areas. Because of its widespread distribution throughout the state coupled with its popularity, perhaps the best approach currently would be to control the tree in certain sites where it is not wanted, such as natural areas, pastures, and farmland. Seeds tend to fall nearby and trees do not disperse over a long distance (miles), except when people move the tree to a new area. If this dispersal trend were to change, such as if a vector to spread the trees further arrived or if it was planted again on a grand scale to new areas, the tree may become a bigger problem. TAXONOMY Family: Fabaceae (pea family) (Wagner et al. 1999). Latin name: Falcataria moluccana (Miq.) Barneby and Grimes (Herbarium Pacificum Staff 1998). Synonyms: Paraserianthes falcataria (L.) I. Nielsen (Wagner et al. 1999), Albizia falcataria (L.) Fosberg, A. falcata (L.) Backer (Little and Skolmen 1989). Common names: Molucca albizia (Little and Skolmen 1989). Taxonomic notes: There seems to be a lot of name changing and rearranging that has occurred within this complex. -
List of Posters Theme 1: Plant-Microbe Interactions and Nutrient Acquisition
List of posters Theme 1: Plant-microbe interactions and nutrient acquisition P1-1 Medicago truncatula Zinc-Iron Permease6 provides zinc to rhizobia-infected nodule cells Isidro Abreu, Ángela Saéz, Rosario Castro-Rodríguez, Viviana Escudero, Benjamín Rodríguez-Haas, Marta Senovilla, Camille Larue, Daniel Grolimund, Manuel Tejada-Jiménez, Juan Imperial, Manuel González-Guerrero P1-2 Pathways to improve nutrient uptake under drying condition by modifying the rhizosphere physical properties Katayoun Ahmadi, Mohsen Zarebanadkouki, Michaela Dippold, Andrea Carminati P1-3 Utilization of γ –Irradiation Technique for Enhancing Biological Nitrogen Fixation of Bradyrhizobium Suad. A. Al-Saedi, Ibrahim B. Razaq, A. Wahbi, G. Dercon P1-4 Changes in organic acid production and malate dehydrogenase gene expression in P-solubilizing bacteria induced by P-deficiency and Al-toxicity Patricio J. Barra, Sharon Viscardi, Milko A. Jorquera, María L. Mora P1-5 Efficiency of Microbial Consortia Improving Early Growth of Maize with Different Levels of N and P Supply Klára Bradáčová, Markus Weinmann, Günter Neumann, Ellen Kandeler, Nils Berger P1-6 Inclusion of caraway in the ryegrass-red clover mixture modifies soil microbial community composition Wen-Feng Cong, Jingying Jing, Karen Søegaard, Jørgen Eriksen P1-7 Soil available phosphorus controls the effect of Penicillium bilaii on maize growth Gómez-Muñoz B., de Neergaard A., Jensen L.S., Richardson AE., Magid J P1-8 Microbial biomass phosphorus difference between rhizosphere and bulk soil of maize caused by -
Genetic Variation and DNA Barcoding of the Endangered
DOI: 10.5152/forestist.2020.20009 2020, 70(2): 85-94 Original Article Genetic variation and DNA barcoding of the endangered agarwood-producing Aquilaria beccariana (Thymelaeaceae) populations from the Malesia Region Malezya Bölgesinde nesli tükenmekte olan Aquilaria beccariana (Thymelaeaceae) popülasyonlarının genetik varyasyonu ve DNA barkodu Yu Cong Pern , Shiou Yih Lee , Norizah Kamarudin , Rozi Mohamed Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia, Selangor, Malaysia ABSTRACT The endangered agarwood-producing Aquilaria beccariana is reportedly secluded in the southern region of the Malay Peninsula (MPen) and more dispersed in the northern and central regions of the Borneo Island (Bor). The two are geographically separated by the South China Sea. Fresh leaf samples from 47 individuals were collected from six natural populations, including Mersing (MERS) of MPen; Upper Baram (BARA1), Marudi (BARA2), and Lawas (LAWA) of Sarawak; Tongod (TONG) of Sabah, and Kalimantan (KALI) of Indonesia, to study their phylogenetic relationship. Seven non-coding chloroplast DNA (cpDNA) regions and the nuclear internal transcribed spacer (ITS) region were amplified and sequenced using polymerase chain reaction (PCR). Several closely related Aquilaria species were included to demonstrate the molecular position of A. beccariana. Phy- logenetic analysis, median-joining (MJ) network, and principal coordinate analysis (PCoA) assembled the six populations into two major clusters, MPen and Bor, when using the combined cpDNA dataset, whereas the Bor populations were further clustered into northern and central populations. DNA barcoding analysis using the combined trnL–trnF+ITS2 loci of 12 Aquilaria species revealed that species discrimination is possible for A. beccariana at both species and population levels. -
Endangered but Genetically Stable—Erythrophleum Fordii Within Feng Shui Woodlands in Suburbanized Villages
Received: 22 February 2019 | Revised: 6 July 2019 | Accepted: 12 July 2019 DOI: 10.1002/ece3.5513 ORIGINAL RESEARCH Endangered but genetically stable—Erythrophleum fordii within Feng Shui woodlands in suburbanized villages Zheng‐Feng Wang1,2 | Hai‐Lin Liu3,4,5 | Se‐Ping Dai6 | Hong‐Lin Cao2 | Rui‐Jiang Wang2 | Zhang‐Ming Wang2 1Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Abstract Guangzhou, China Feng Shui woodlands are naturally or artificially formed green areas in southern 2 Guangdong Provincial Key Laboratory China. They are precious for maintaining ecosystem balance in modern semiurban of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, environments. However, they are generally small and geographically isolated from Guangzhou, China each other, and the status of genetic diversity of the plant species within them has 3Environmental Horticulture Research Institute, Guangdong Academy of been almost neglected. Therefore, we studied the genetic diversity of the endan‐ Agricultural Sciences, Guangzhou, China gered Erythrophleum fordii in eight Feng Shui woodlands (a total of 1,061 individuals) 4 Key Lab of Ornamental Plant Germplasm in Guangzhou, a large city in southern China, using microsatellites. For comparison, Innovation and Utilization, Guangzhou, China one population with 33 individuals sampled in a nature reserve was also studied. 5University of Chinese Academy of Sciences, Although our results indicate that significant demographic declines occurred histori‐ Beijing, China cally in E. fordii, such declines have not resulted in consistent reductions in genetic 6Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China variation over generations in Feng Shui populations in the recent past, and the lev‐ els of genetic variation in these populations were higher than or comparable to the Correspondence Se‐Ping Dai, Guangzhou Institute of genetic variation of the population in the nature reserve. -
De Novo Transcriptome Analysis of Dalbergia Odorifera T
Article De Novo Transcriptome Analysis of Dalbergia odorifera T. Chen (Fabaceae) and Transferability of SSR Markers Developed from the Transcriptome Fu-Mei Liu 1,2 , Zhou Hong 3,*, Zeng-Jiang Yang 3, Ning-Nan Zhang 3, Xiao-Jin Liu 3 and Da-Ping Xu 3 1 State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; [email protected] 2 The Experimental Centre of Tropical Forestry, Chinese Academy of Forestry, Pingxiang 532600, China 3 Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou 510520, China; [email protected] (Z.-J.Y.); [email protected] (N.-N.Z.); [email protected] (X.-J.L.); [email protected] (D.-P.X.) * Correspondence: [email protected]; Tel.: +86-20-8703-1037 Received: 15 December 2018; Accepted: 24 January 2019; Published: 26 January 2019 Abstract: Dalbergia odorifera T. Chen (Fabaceae), indigenous to Hainan Island, is a precious rosewood (Hainan hualimu) in China. However, only limited genomic information is available which has resulted in a lack of molecular markers, limiting the development and utilization of the germplasm resources. In this study, we aim to enrich genomic information of D. odorifera, and develop a series of transferable simple sequence repeat (SSR) markers for Dalbergia species. Therefore, we performed transcriptome sequencing for D. odorifera by pooling leaf tissues from three trees. A dataset of 138,516,418 reads was identified and assembled into 115,292 unigenes. Moreover, 35,774 simple sequence repeats (SSRs) were identified as potential SSR markers. A set of 19 SSR markers was successfully transferred across species of Dalbergia odorifera T. -
Aquilaria Crassna Pierre Ex Lecomte En Guyane : Approches Métagénomique, Biochimique Et Histologique
Présentée et soutenue publiquement le 20 avril 2016 par : Auteur du mémoire Titre du mémoire, v.1.10 Thèse En vue de l’obtention du grade de Docteur de l’université de Guyane Discipline : Sciences agronomiques et écologiques Spécialité : Biologie des organismes, biologies animales, végétales et microbiennes. Présentée et soutenue publiquement le 4 février 2020 par : CLARA ZAREMSKI Pour une production contrôlée d’agarwood d’Aquilaria crassna Pierre ex Lecomte en Guyane : Approches métagénomique, biochimique et histologique. JURY Nadine Amusant Chercheure Co-encadrante de Thèse Amadou Bâ PU, HDR Président du Jury, Rapporteur Jacques Beauchêne Chercheur Examinateur Marc Ducousso DR, HDR Directeur de Thèse Marie Fleury MCF Examinatrice Christine Gérardin PU, HDR Rapporteur Franck Roubaud MCF Membre invité Ecole Doctorale n°587 : Diversités, Santé et développement en Amazonie « Tout ce qui arrive est le résultat d’une confluence. » Dr. Norin Chai « Les idées provocatrices sont légitimes, au moins pour s’assurer que ce n’est pas par habitude mentale qu’on exclut certaines possibilités. » Pr. Thibault Damour « Alba embarqua pour Tahiti le 13 Novembre 1851. » D’après Elizabeth Gilbert, The Signature of All Things. i ii RAPPEL DU TITRE Pour une production contrôlée d’agarwood d’Aquilaria crassna Pierre ex Lecomte en Guyane : Approches métagénomique, biochimique et histologique. iii iv RESUME Aquilaria Lam. est un genre d’arbre tropical de la famille des Thymelaeaceae, origi- naire de l’Asie du Sud-Est. Ce genre compte actuellement vingt et une espèces dont le bois sain est de couleur blanche. Lorsque l’arbre est blessé, en interaction avec des micro-organismes environnementaux, l’arbre produit un bois transformé par sa forte teneur en composés secondaires. -
CONVENTION on INTERNATIONAL TRADE in ENDANGERED SPECIES of WILD FAUNA and FLORA Amendments to Appendices I and II of CITES Thirt
CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA Amendments to Appendices I and II of CITES Thirteenth Meeting of the Conference of the Parties 3-14 October 2004 Bangkok, Thailand A. Proposal Inclusion in Appendix II of agarwood producing species Aquilaria spp. currently not included in the Appendices and Gyrinops spp. The species meet the criterion listed in Resolution Conf. 9.24 (Rev. CoP12), annex 2a paragraph A and paragraph B.i, and additionally, the criterion listed in annex 2b paragraph A and B). B. Proponent The Republic of Indonesia C. Supporting statement 1. Taxonomy 1.1 Class: MAGNOLIOPSIDA 1.2 Order: MYRTALES 1.3 Family: THYMELAEACEAE 1.4 Genus: 1.4.1: Aquilaria 1.4.2: Gyrinops 1.5 Species: See Annex 1. 1.6 Scientific synonyms: See Annex 1. 1.7 Common names: See Annex 1. 1.8 Code numbers: NA 2. Biological parameters 2.1 Distribution Aquilaria species have adapted to live in various habitats, including those that are rocky, sandy or calcareous, well-drained slopes and ridges and land near swamps. They typically grow between altitudes of 0-850 m, and up to 1000 m in locations with average daily temperatures of 20-22° C. A. beccariana van Tiegh. The natural distribution extends from peninsular Malaysia to Sumatra, and common in Borneo. This species found in primary forest from the low land up to 825 m, rarely in swampy forest. 1 A. hirta Ridl. Distributes in Malay Peninsula (Trengganu, Pahang, Johore), Singapore and east Sumatra (Senamaninik), Riau and Lingga islands. This species grows on hill slopes, from the lowland up to 300 m.