A Statistical Theory for Sampling Species Abundances

Total Page:16

File Type:pdf, Size:1020Kb

A Statistical Theory for Sampling Species Abundances Ecology Letters, (2007) 10: 1037–1045 doi: 10.1111/j.1461-0248.2007.01101.x IDEA AND PERSPECTIVE A statistical theory for sampling species abundances Abstract Jessica L. Green1 and The pattern of species abundances is central to ecology. But direct measurements of Joshua B. Plotkin2* species abundances at ecologically relevant scales are typically unfeasible. This limitation 1Center for Ecology and has motivated a long-standing interest in the relationship between the abundance Evolutionary Biology, University distribution in a large, regional community and the distribution observed in a small of Oregon, Eugene, OR, USA sample from the community. Here, we develop a statistical sampling theory to describe 2 Department of Biology, how observed patterns of species abundances are influenced by the spatial distributions University of Pennsylvania, 433 of populations. For a wide range of regional-scale abundance distributions we derive S. University Ave., Philadelphia, exact expressions for the sampled abundance distributions, as a function of sample size PA 19104, USA *Correspondence: E-mail: and the degree of conspecific spatial aggregation. We show that if populations are [email protected] randomly distributed in space then the sampled and regional-scale species-abundance distribution typically have the same functional form: sampling can be expressed by a simple scaling relationship. In the case of aggregated spatial distributions, however, the shape of a sampled species-abundance distribution diverges from the regional-scale distribution. Conspecific aggregation results in sampled distributions that are skewed towards both rare and common species. We discuss our findings in light of recent results from neutral community theory, and in the context of estimating biodiversity. Keywords Species-abundance distribution, random sampling, negative-binomial sampling, spatial aggregation, biodiversity, community. Ecology Letters (2007) 10: 1037–1045 distribution of a large, regional community and the observed INTRODUCTION abundance distribution when sampling a small proportion The distribution of species abundances is a fundamental of the community. topic in ecological research. Species-abundance distributions Efforts to develop a sampling theory of species abun- have been used to examine the influence of niche dances have utilized several approaches. The most widely differentiation, dispersal, density dependence, speciation utilized approach, which dates back to Fisher et al. (1943) and extinction on the structure and dynamics of ecological assumes that individuals are randomly sampled from an communities (Tokeshi 1993; Hubbell 2001; Chave et al. ecological community. Fisher et al. (1943) sought to 2002; Magurran 2004; McGill et al. in press). In conservation understand patterns of species abundance in butterfly, biology, knowledge of the species-abundance distribution beetle and moth communities sampled throughout the helps one to predict the likelihood of population persistence world. They found that species abundances in random and community stability in face of global change. Despite samples were well described by a logseries distribution, a the theoretical and practical importance of species-abun- distribution they mathematically derived by Poisson sam- dance distributions, it is difficult to directly measure all pling from a gamma distribution. Their analyses laid the speciesÕ abundances at ecologically relevant scales. For foundation of biodiversity sampling theory (May 1975; micro-organisms, this poses a challenge at the scale of a Pielou 1975) and remain at the forefront of literature on single environmental sample (e.g. < 1 g of soil; Prosser et al. species-abundance distributions (Hubbell 2001; Chave 2004; 2007). In plant and animal communities as well, the task of Magurran 2004; McGill et al. in press). exhaustively sampling a full community is typically impos- Engineer and ornithologist Frank Preston (1948) sible. Therefore, ecologists have a long-standing interest in popularized the lognormal species-abundance distribution the relationship between the underlying species-abundance in ecology by demonstrating that the lognormal had Ó 2007 Blackwell Publishing Ltd/CNRS 1038 J. L. Green and J. B. Plotkin Idea and Perspective scale-invariant properties upon random sampling. He In this study, we present a general statistical framework showed by tabulation (Preston 1948) that Poisson sampling for understanding the effect of spatial heterogeneity (or, individuals from a lognormal species-abundance distribution equivalently, heterogeneity in the sampling scheme) on the results in a sample distribution that is approximately species-abundance distribution observed in a sample. Our lognormal with identical variance. Preston (1962, p. 186) sampling framework does not assume a particular type of recognized that Poisson sampling individuals was analogous population aggregation (e.g. fractal theory) or community to Ôa situation in space and time where the individuals, or dynamics (e.g. neutral theory). We begin by analysing the pairs, are distributed at random, not clumped on one hand simple case in which individuals are randomly sampled from or over-regularized on the otherÕ. He noted that contagion, the larger regional community, corresponding to random or conspecific aggregation, would likely to result in a spatial distributions across the landscape. We then examine Ôsomewhat skewedÕ sample distribution (Preston 1962, p. a more realistic scenario of negative-binomial sampling, 203); however, he did not rigorously explore the influence of which models spatial clustering of conspecific individuals. this contagion on his samples. Biodiversity sampling theory We apply our techniques to a wide range of abundance has since predominantly assumed random sampling (e.g. distributions, deriving exact expressions for the sampled Pielou 1975; Dewdney 1998; Gotelli & Colwell 2001; Chao abundance distributions as a function of sample size and the & Bunge 2002), while less is known about the sampling degree of conspecific clustering. We also demonstrate two properties of species-abundance distributions for spatially important, generic properties of how spatial aggregation aggregated populations. affects the sampled species-abundance distribution. Efforts to understand the sampled abundance distribu- tion of aggregated populations have focused primarily on a STATISTICAL FRAMEWORK specific type of aggregation. The assumption of fractal, or self-similar spatial distributions has been leveraged to Species-abundance distributions are measured in the labo- explore how species-abundance distributions scale with ratory or field by counting the number of species in a sampling area (Banavar et al. 1999; Harte et al. 1999). Recent community represented by n individuals. For the purpose of analyses, however, suggest that such fractal models are our analysis, we will characterize species abundances in a biologically unrealistic (Green et al. 2003; Pueyo 2006). An large region using a continuous probability density function alternative statistical model known as the Hypothesis of /(n). The expression /(n)dn represents the fraction of Equal Allocation Probabilities (HEAP) allocates individuals species whose abundanceR falls between n and n + dn. Proper 1 across a landscape according to a set of assembly-rules, normalization requires 0 /ðnÞdn ¼ 1. In reality speciesÕ yielding a scale-dependent species-abundance distribution abundances are discrete. We use continuous distributions to that matches empirical vegetation data relatively well (Harte provide consistency with a sampling theory of b-diversity et al. 2005). Although the HEAP framework allows for a (Plotkin & Muller-Landau 2002). Aside from offering range of aggregation patterns, from random to highly analytical tractability, there is a long-standing precedent clustered, this model has not been utilized to explore how for using continuous distributions to describe species the degree of aggregation influences sampled species- abundances (Pielou 1975). abundance distributions. Our interest lies in the relationship between the species- Neutral community theory (Hubbell 2001) provides a abundance distribution at the regional scale, /(n), and the mechanistic approach for modelling heterogeneity by abundance distribution observed in a sample that constitutes accounting for the effect of dispersal limitation. Alonso & a proportion a of the larger ambient region, denoted /a(y). McKane (2004) applied Poisson sampling to the metacom- Let wa(y|n) denote the probability that a species will be munity multinomial relative-abundance distribution to represented by y individuals in the sample, given that it has derive an analytical expression for the sample distribution abundance n in the larger region. Then, the sampled species- under the assumption of zero dispersal limitation. Etienne & abundance distribution may be expressed as: Alonso (2005) later invoked dispersal limitation by replacing Z1 random sampling with the dispersal-limited binomial / ðyÞ¼ w ðyjnÞ/ðnÞdn ð1Þ (actually, hypergeometric) sampling. This allowed for a a sampling heterogeneity by modelling the probability for a 0 dispersal-limited species to be present in a sample with a Equation 1 provides a general expression for the scaling of given abundance under the assumptions stipulated by the species-abundance distribution with sample size, given neutral community theory. These recent developments, an arbitrary sampling scheme wa(y|n). Equation 1 follows while
Recommended publications
  • Dung Beetle Richness, Abundance, and Biomass Meghan Gabrielle Radtke Louisiana State University and Agricultural and Mechanical College, [email protected]
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2006 Tropical Pyramids: Dung Beetle Richness, Abundance, and Biomass Meghan Gabrielle Radtke Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Radtke, Meghan Gabrielle, "Tropical Pyramids: Dung Beetle Richness, Abundance, and Biomass" (2006). LSU Doctoral Dissertations. 364. https://digitalcommons.lsu.edu/gradschool_dissertations/364 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. TROPICAL PYRAMIDS: DUNG BEETLE RICHNESS, ABUNDANCE, AND BIOMASS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Meghan Gabrielle Radtke B.S., Arizona State University, 2001 May 2007 ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. G. Bruce Williamson, and my committee members, Dr. Chris Carlton, Dr. Jay Geaghan, Dr. Kyle Harms, and Dr. Dorothy Prowell for their help and guidance in my research project. Dr. Claudio Ruy opened his laboratory to me during my stay in Brazil and collaborated with me on my project. Thanks go to my field assistants, Joshua Dyke, Christena Gazave, Jeremy Gerald, Gabriela Lopez, and Fernando Pinto, and to Alejandro Lopera for assisting me with Ecuadorian specimen identifications. I am grateful to Victoria Mosely-Bayless and the Louisiana State Arthropod Museum for allowing me work space and access to specimens.
    [Show full text]
  • "Species Richness: Small Scale". In: Encyclopedia of Life Sciences (ELS)
    Species Richness: Small Advanced article Scale Article Contents . Introduction Rebecca L Brown, Eastern Washington University, Cheney, Washington, USA . Factors that Affect Species Richness . Factors Affected by Species Richness Lee Anne Jacobs, University of North Carolina, Chapel Hill, North Carolina, USA . Conclusion Robert K Peet, University of North Carolina, Chapel Hill, North Carolina, USA doi: 10.1002/9780470015902.a0020488 Species richness, defined as the number of species per unit area, is perhaps the simplest measure of biodiversity. Understanding the factors that affect and are affected by small- scale species richness is fundamental to community ecology. Introduction diversity indices of Simpson and Shannon incorporate species abundances in addition to species richness and are The ability to measure biodiversity is critically important, intended to reflect the likelihood that two individuals taken given the soaring rates of species extinction and human at random are of the same species. However, they tend to alteration of natural habitats. Perhaps the simplest and de-emphasize uncommon species. most frequently used measure of biological diversity is Species richness measures are typically separated into species richness, the number of species per unit area. A vast measures of a, b and g diversity (Whittaker, 1972). a Di- amount of ecological research has been undertaken using versity (also referred to as local or site diversity) is nearly species richness as a measure to understand what affects, synonymous with small-scale species richness; it is meas- and what is affected by, biodiversity. At the small scale, ured at the local scale and consists of a count of species species richness is generally used as a measure of diversity within a relatively homogeneous area.
    [Show full text]
  • Community Diversity
    Community Diversity Topics What is biodiversity and why is it important? What are the major drivers of species richness? Habitat heterogeneity Disturbance Species energy theory Metobolic energy theory Dynamic equilibrium hypothesis (interactions among disturbance and energy) Resource ratio theory How does biodiversity influence ecosystem function? Biodiversity and ecosystem function hypothesis Integration of biodiversity theory How might the drivers of species richness and hence levels of species richness differ among biomes? Community Diversity Defined Biodiversity Merriam-Webster - the existence of many different kinds of plants and animals in an environment. Wikipedia - the degree of variation of life forms within a given species, ecosystem, biome, or an entire planet. U.S. Congress Office of Technology Assessment - the variety and variability among living organisms and the ecological complexes in which they occur. Diversity can be defined as the number of different items and their relative frequency. For biological diversity, these items are organized at many levels, ranging from complete ecosystems to the chemical structures that are the molecular basis of heredity. Thus, the term encompasses different ecosystems, species, genes, and their relative abundance." Community Diversity Defined Species richness - Species evenness - Species diversity - Community Diversity Defined Species richness - number of species present in the community (without regard for their abundance). Species evenness - relative abundance of the species that are
    [Show full text]
  • Burning Reduces Nematode Abundance in Reconstructed Prairies
    Burning reduces nematode abundance in reconstructed prairies EVIE KENEPP Biology Department, Grinnell College, PO Box 805, Grinnell, IA 50112, USA Introduction community upon death (Freckman and Baldwin, 1990). Their effect on Nematodes are one of the most plant production is less numerous and diverse groups of conclusive and depends highly on organisms. They have an intricate the interaction between specific relationship with the soil plant and nematode species: some ecosystem (Freckman & Baldwin, plants are resistant to nematode 1990; Ingham, 1994). Nematodes are invasion, while others are microscopic worms that vary in tolerant of high numbers of size, but most are less than 4 mm nematodes feeding in or on their in length (Freckman and Baldwin, roots (Freckman and Baldwin, 1990). There are six 1990). classifications of nematodes, It is important to know the based on their feeding habits: impact of nematodes on prairie endoparasites, ectoparasites, ecosystems so they can be properly microbivores, and fungivores, managed. Smolick (1974) estimated omnivores and predators, which that root-feeding nematodes play a unique role in soil food consumed as much plant material as webs (Freckman and Virginia, 1997; cattle in a Colorado grassland Ingham, 1994). Plant-feeding ecosystem (as cited in Freckman nematodes affect primary plant and Virginia, 1989). Ingham and production by feeding on roots and Detling (1984) found that in seed heads. Other types of grassland ecosystems, nematode nematodes affect nutrient cycling herbivory decreased plant and decomposition by feeding on production from 6-13% (as cited in fungi, bacteria and microfauna. Freckman and Virginia, 1989). A (Freckman & Baldwin, 1990; high population of root-feeding Freckman & Virginia, 1997).
    [Show full text]
  • Arboreal Arthropod Predation on Early Instar Douglas-Fir Tussock Moth Redacted for Privacy
    AN ABSTRACT OF THE THESIS OF Becky L. Fichter for the degree of Doctor of Philosophy in Entomologypresented onApril 23, 1984. Title: Arboreal Arthropod Predation on Early Instar Douglas-fir Tussock Moth Redacted for privacy Abstract approved: William P. StOphen Loss of early instar Douglas-fir tussock moth( Orgyia pseudotsugata McDunnough) (DFTM) has been found to constitute 66-92% of intra-generation mortality and to be a key factor in inter-generation population change. This death has been attributed to dispersal and to arthropod predation, two factors previously judged more important to an endemic than an outbreak population. Polyphagous arthropod predators are abundant in the forest canopy but their predaceous habits are difficult to document or quantify. The purpose of the study was to develop and test a serological assay, ELISA or enzyme-linked immunosorbent assay, for use as an indirect test of predation. Development of this assay involved production of an antiserum reactive with DFTM but not reactive with material from any coexisting lepidopteran larvae. Two-dimensional immunoelectrophoresis was used to select a minimally cross-reactive fraction of DFTM hemolymph as the antigen source so that a positive response from a field-collected predator would correlate unambiguously with predation on DFTM. Feeding trials using Podisus maculiventris Say (Hemiptera, Pentatomidae) and representative arboreal spiders established the rate of degredation of DFTM antigens ingested by these predators. An arbitrary threshold for deciding which specimens would be considered positive was established as the 95% confidence interval above the mean of controls. Half of the Podisus retained 0 reactivity for 3 days at a constant 24 C.
    [Show full text]
  • Food Webs, Body Size, and Species Abundance in Ecological Community Description
    Food Webs, Body Size, and Species Abundance in Ecological Community Description TOMAS JONSSON, JOEL E. COHEN, AND STEPHEN R. CARPENTER I. Summary ............................................... 2 A. Trivariate Relationships................................ 2 B. Bivariate Relationships ................................ 3 C. Univariate Relationships . ............................ 4 D. EVect of Food Web Perturbation ........................ 4 II. Introduction . ........................................... 4 A. Definitions .......................................... 7 III. Theory: Integrating the Food Web and the Distributions of Body Size and Abundance . ................................... 9 A. Predicting Community Patterns.......................... 10 B. The Distribution of Body Sizes .......................... 13 C. Rank-Abundance and Food Web Geometry . ............. 15 D. Linking the Food Web to the Relationship Between Body Size and Numerical Abundance . ............................ 16 E. Trophic Pyramids and the Relationship Between Consumer and Resource Abundance Across Trophic Levels ............ 18 IV. Data: Tuesday Lake . ................................... 20 A. The Manipulation . ................................... 21 B. The Data ........................................... 22 V. Results: Patterns and Relationships in the Pelagic Community of Tuesday Lake ........................................... 25 A. Trivariate Distributions: Food Web, Body Size, and Abundance 25 B. Bivariate Distributions. ................................ 29 C.
    [Show full text]
  • The Benefits of MARINE PROTECTED AREAS © Commonwealth of Australia 2003 ISBN 0 642 54949 4
    TheThe benefitsbenefits ofof MMARINEARINE PROTECTEDPROTECTED AREASAREAS The benefits of MARINE PROTECTED AREAS © Commonwealth of Australia 2003 ISBN 0 642 54949 4 Information contained in this document may be copied for study, research, information or educational purposes, subject to inclusion of acknowledgment of the source. Photography courtesy of the Great Barrier Marine Park Authority. This document has been prepared by the Commonwealth Department of Environment and Heritage from material supplied by Richard Kenchington, Trevor Ward, and Eddie Hegerl. A technical support paper is also included in this resource kit, providing more details on current issues and practice for those who have not yet been involved in the processes of creation and management of marine protected areas. This summary of the benefits of marine protected areas is based on the scientific contributions of numerous authors. We acknowledge these sources, and specific contributions are cited in the accompanying technical support paper. THE BENEFITS OF MARINE PROTECTED AREAS CONTENTS What is a marine protected area? 4 Why do we need marine protected areas? 4 The role of MPAs in protecting marine habitats and biodiversity 5 Conserving biodiversity and ecosystems 6 How do MPAs benefit fisheries? 8 How do MPAs benefit tourism? 13 What are the broader benefits of MPAs? 15 Education, training, heritage and culture 17 MPAs and research 19 3. THE BENEFITS OF MARINE PROTECTED AREAS What is a marine protected area? marine resources for seafood. The global fish catch has been in consistent decline since 1989 and the downward A marine protected area (MPA) is an area of sea especially trend is projected to continue.
    [Show full text]
  • A Shift in the Trophic Structure of Assemblages of Soil Nematodes in a Central European Woodland – an Indication of a Forest Maturing Or Climate Warming?
    Acta Soc. Zool. Bohem. 82: 27–46, 2018 ISSN 1211-376X A shift in the trophic structure of assemblages of soil nematodes in a Central European woodland – an indication of a forest maturing or climate warming? Ladislav Háněl Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, CZ–370 05 České Budějovice, Czech Republic; e-mail: [email protected] Received 24 August 2018; accepted 26 October 2018 Published 27 December 2018 Abstract. Soil nematodes were studied in oak-hornbeam, oak and beech climax forests in the Protected Landscape Area and Biosphere Reserve Křivoklátsko in Central Bohemia, Czech Republic. This study was carried out in the years 1994–1995 (Period 1) and 2006–2007 (Period 2). In Period 1 the mean total precipitation per year was 664.5 mm and mean air temperature 8.4 °C. In Period 2 these values were 449.0 mm and 9.0 °C. The abundance of root-fungal feeders, fungivores (F) and bacterivores (B) were significantly greater in Period 2 than in Period 1. The abundance of plant parasites (PP), omnivores, predators and insect parasites did not differ significantly between the two Periods. Shannon diversity index H’gen significantly decreased as a result of abundant microbivore populations in Period 2. The values of PPI significantly decreased because of a high abundance of Filenchus and some reduction of PP with c-p values greater than 2. (B+F)/PP ratio significantly increased in Period 2 because of a significant increase in the abundance of B and F. No significant differences between the two Periods were found in the values of the Maturity indices, NCR, EI, SI, BI and CI, indicating no deterioration in nematode assemblages.
    [Show full text]
  • Marine Ecosystems and Fisheries
    MARINE ECOSYSTEMS AND FISHERIES Balancing Ecosystem Sustainability and the Socio-Economics of Fisheries This Report Is Part Of The Ocean On The Edge Series Produced By The Aquarium Of The Pacific As Products Of Its National Conference—Ocean On The Edge: Top Ocean Issues, May 2009 2 MARINE ECOSYSTEMS AND FISHERIES Ocean on the Edge: Top Ocean Issues Making Ocean Issues Come Alive for the Public The conference brought together leading marine scientists and engineers, policy-makers, film-makers, exhibit designers, informal science educators, journalists and communicators to develop a portfolio of models for communicating major ocean issues to the public. This report is one of a series of reports from that conference. The reports include: Coastal Hazards, Marine Ecosystems and Fisheries, Pollution in the Ocean, and Critical Condition: Ocean Health and Human Health. There is also a series of briefer reports on film-making, kiosk messaging design, and communicating science to the public. All reports are available at www.aquariumofpacific.org MARINE ECOSYSTEMS AND FISHERIES 3 4 MARINE ECOSYSTEMS AND FISHERIES Acknowledgements Support for the “Ocean on the Edge Confer- and Robert Stickney, PhD. Participants fluctu- ence: Top Ocean Issues” was provided by ated during the various workshop sessions. NOAA, the National Science Foundation, Corinne Monroe and Alexi Holford were Southern California Edison, SAVOR, the Long the rapporteurs. Contributors to this report Beach Convention Center, and the Aquarium who provided editorial comments were Mark of the Pacific. Helvey and Craig Heberer of NOAA and members of his staff. This report was facilitat- We are grateful to the Conference’s National ed by Corinne Monroe with assistance from Advisory Panel that provided valuable guid- Erica Noriega.
    [Show full text]
  • Emergent Niche Structuring Leads to Increased Differences from Neutrality in Species Abundance Distributions
    Emergent niche structuring leads to increased differences from neutrality in species abundance distributions Rosalyn C. Rael, Rafael D'Andrea, György Barabas and Annette Östling The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA): http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-149687 N.B.: When citing this work, cite the original publication. Rael, R. C., D'Andrea, R., Barabas, G., Östling, A., (2018), Emergent niche structuring leads to increased differences from neutrality in species abundance distributions, Ecology, 99(7), 1633-1643. https://doi.org/10.1002/ecy.2238 Original publication available at: https://doi.org/10.1002/ecy.2238 Copyright: Ecological Society of America http://www.esa.org/ Ecology, 99(7), 2018, pp. 1633–1643 © 2018 by the Ecological Society of America Emergent niche structuring leads to increased differences from neutrality in species abundance distributions 1,2,5 1,3 1,4 1 ROSALYN C. RAEL, RAFAEL D’ANDREA, GYORGY€ BARABAS , AND ANNETTE OSTLING 1Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, Michigan 48109-1048 USA Abstract. Species abundance distributions must reflect the dynamic processes involved in commu- nity assembly, but whether and when specific processes lead to distinguishable signals is not well understood. Biodiversity and species abundances may be shaped by a variety of influences, but partic- ular attention has been paid to competition, which can involve neutral dynamics, where competitor abundances are governed only by demographic stochasticity and immigration, and dynamics driven by trait differences that enable stable coexistence through the formation of niches.
    [Show full text]
  • Life History Strategies of Fishes, However Most Have Focused on Growth, Mortality and Reproduction, and Rarely Included Trophic Ecology
    Christian-Albrecht Universität zu Kiel Leibniz Institut für Meereswissenschaften Habilitationsschrift Life-History Strategies of Recent Fishes: a Meta-Analysis vorgelegt von Dr. Rainer Froese Kiel, November 2005 1 Table of Content Abstract ...................................................................................................................................... 4 Introduction ................................................................................................................................ 6 Material and Methods............................................................................................................... 11 Results and Discussion............................................................................................................. 13 Key Components of Life-history Strategies......................................................................... 13 Phylogeny......................................................................................................................... 13 Size................................................................................................................................... 14 Trophic Level ................................................................................................................... 16 Productivity ...................................................................................................................... 17 Relationships between Size, Trophic Level and Productivity.............................................. 22 Available
    [Show full text]
  • Species Abundance Distributions: Moving Beyond Single Prediction Theories to Integration Within an Ecological Framework
    Ecology Letters, (2007) 10: 995–1015 doi: 10.1111/j.1461-0248.2007.01094.x REVIEW AND SYNTHESIS Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework Abstract Brian J. McGill,1* Rampal S. Species abundance distributions (SADs) follow one of ecologyÕs oldest and most Etienne,2 John S. Gray,3 David universal laws – every community shows a hollow curve or hyperbolic shape on a Alonso,4 Marti J. Anderson,5 histogram with many rare species and just a few common species. Here, we review 2 Habtamu Kassa Benecha, Maria theoretical, empirical and statistical developments in the study of SADs. Several key Dornelas,6 Brian J. Enquist,7 8 9 points emerge. (i) Literally dozens of models have been proposed to explain the hollow Jessica L. Green, Fangliang He, curve. Unfortunately, very few models are ever rejected, primarily because few theories Allen H. Hurlbert,10 Anne E. make any predictions beyond the hollow-curve SAD itself. (ii) Interesting work has been Magurran,6 Pablo A. Marquet,10,11,12 Brian A. performed both empirically and theoretically, which goes beyond the hollow-curve Maurer,13 Annette Ostling,4 prediction to provide a rich variety of information about how SADs behave. These Candan U. Soykan,14 Karl I. include the study of SADs along environmental gradients and theories that integrate Ugland3 and Ethan P. White7 SADs with other biodiversity patterns. Central to this body of work is an effort to move beyond treating the SAD in isolation and to integrate the SAD into its ecological context to enable making many predictions.
    [Show full text]