Australasian Lichenology Number 47, July 2000

Total Page:16

File Type:pdf, Size:1020Kb

Australasian Lichenology Number 47, July 2000 Australasian Lichenology Number 47, July 2000 ANNOUNCEMENTS AND NEWS .~ 14th meeting ofAustralasian lichenologists, Melbourne, 29-30 April, 2000 .... 2 I Request for fresh specimens ofXanthoria ........................................................... 3 RECENT LITERATURE ON AUSTRALASIAN LICHENS ................................... 4 ARTICLES McCarthy, PM; Kantvilas, G-Trichothelium meridionale (Trichotheliaceae), a new foliicolous lichen from Tasmania ........................................................ 5 Elix, JA; Wardlaw, JH-Four new tridepsides from Parmelinopsis species ..... 8 Lumbsch, H Thorsten; Elix, JA-Lecanora pseudodecorata, a new species from Australia ........ ............... ........ ..... ... .... .. ...... .. ..... ................................................. 14 Malcolm, WM; Garnock-Jones, PJ-Photographing lichens without a camera. 17 ADDITIONAL LICHEN RECORDS FROM OCEANIA McCarthy, PM (5)-Miscellaneous new records .. .. ...... ...................................... 23 McCarthy, PM (6)-Some corti colo us pyrenolichens in Vanuatu .................... 26 ADDITIONAL LICHEN RECORDS FROM NEW ZEALAND Fryday, AM (32)-Epigloea soleiformis Dobbeler and Fuscidea impolita (MuH. Arg.) Hertel ....................................... ......................... .. .. .. ................................ 30 ADDITIONAL LICHEN RECORDS FROM AUSTRALIA Archer, AW (44)-Dictyographa cinerea (C. Knight & Mitt.) Mull. Arg... ........ 32 Kantvilas, G (45)-The lichen family Calycidiaceae discovered in Tasmania .. 33 INFORMATION FOR SUBSCRIBERS AND AUTHORS Australasian Lichenology is published twice a year, in January and July. Each subscription is for 10 issues over a five-year period. The period 1998-2002 began with Volume 43. A subscription mailed to a New Zealand address costs NZ$25, to Australia NZ$30, to North America or East Asia NZ$35, to Europe NZ$40, and to South America, Africa, or Central Asia NZ$45. All mailings outside New Zealand are by first-class air. Ifyou subscribe after the five-year period begins, you will re­ ceive the issues already published in that period (mailed by economy air outside New Zealand). To obtain a subscription, either instruct your bank to transfer New Zealand dollars to the journal's account: Australasian Lichenology, ANZ Postbank, Nelson, NZ, account number 117402-0074987-11, or mail a bank draft or money order for NZ dollars payable to Australasian Lichenology to W.M. Malcolm, Box 320, Nelson, NZ. Alternatively, if you're able to calculate the NZ equivalent of your local currency, you can avoid bank charges by posting a personal or institutional cheque payable to Australasian Lichenology. Australasian Lichenology welcomes newsworthy items on lichenologists who are studying Australasian lichens or who are visiting the region. Research papers must be original and on some aspect of Australasian lichens or allied fungi, and they are refereed. They can be submitted as a single hard-copy to W.M. Malcolm at Box 320, Nelson, NZ (no computer disks, please). See a recent issue for a guide to layout and style. Drawings should be inked originals, and photographs (prints or transparencies) ! should be sharp and clear. Colour plates cost NZ$150 per A5 page. Australasian Lichenology does not ordinarily provide reprints, but reprints of papers with colour . plates can be purchased for NZ$1.50 per copy per A5 plate if they are ordered when the manuscript is accepted for publication. Australasian Lichenology is the official publication of the Australasian Lichen Society, and formerly was named the Australasian Lichenological Newsletter. Its Editorial Board is W.M. Malcolm, J .A. Elix, G. Kantvilas, and P.M. McCarthy. ANNOUNCEMENTSAND NEWS 14thMeetingofAustraJasiaD Lichenologist&-Melbourne,29-30Aprll, 2000 Minutes: Present: Alan Archer, David Eldridge, Jack Elix, Sharon Ford, Bruce Fuhrer, Jim Gardner, Gintaras Kantvilas, Niels Klazenga, Simone Louwhoff, Dorothy Mahler, Tom May, Pina Milne, Martine Paull, Kathleen Ralston, Noel Schleiger, Val Stajsic, Nell and Neville Stevens, with a special welcome to Jennifer Bannister who joined us all the way from Dunedin, New Zealand. Talks: Dr. 'Fom May of the Melbourne Herbarium opened the meeting with a warm welcome, and introductory remarks by Prof. Jack Elix followed. Talks given on Saturday were many and varied and included an examination of "Victorian rainforest lichens" (S. Ford), "Why are lichens coloured?" (J. Elix), "Ramalinas of New Zealand" (J. Bannister) and an historical account of "Australia's pioneer Lichenologist, Rev. F.R.M. Wilson" (K. Ralston). A conservation theme followed, with G. Kantvilas discussing "Conservation ofTasmanian Lichens" and D. Eldridge talking on "A proposal for listing non-vascular plants on the Threatened Species Conservation Act". To finish we saw a slide presentation of new Graphidaceae (A. Archer), and S. Louwhoffbecame the envy of many with an account of her trip to the beautiful and unusual island of New Caledonia-"In search of Parmeliaceae and Croissants in New Caledonia". The meeting that followed included a brief discussion on the forthcoming Flora Those who attended Saturday's meeting, from left at the back: Jennifer Bannister, ofAustralia. Further talk on the Threatened Species Conservation Act (TSCA) Noel Schleiger, Dorothy Mahler, Nell Stevens, Neville Stevens, Alan Archer, Jack was initiated by David, in particular the need to improve the profile ofnon-vascular Elix, Gintaras Kantvilas, Simone Louwhoff, Tom May, Niels Klazenga, and in front: plants in general, and the listing of some threatened lichens under the TSCA in David Eldridge, Val Stajsic, Kathleen Ralston, Sharon Ford and Jim Gardner. N.S.W. A subcommittee was formed comprising Jack Elix (ANU), David Eldridge Photograph by Bruce Fuhrer. (Land and Water Conservation) and Gintaras Kantvilas (Tasmanian Herbarium) to prepare a submission for listing some species under the N.S.W. legislation. It was also hoped that the general profile of non-vascular groups, including lichens, fungi and bryophytes, might be raised to encourage further research. There was Request for fresh specimens ofXanthoria also some discussion on the future direction ofABRS and the potential for grants to be made available for Post-Doctorate projects of a taxonomic nature. Professor Rosmarie Honegger (University of Ziirich) would be very grateful for Dinner: The evening meal was held at the Cotton Lounge on Toorak Road, South fresh specimens ofAustralasianXanthoria (no older than 3-5 months) for culturing Yarra. A lovely meal and enjoyable evening was had by all who attended. and DNA extraction. Her graduate student Sandra Scherrer has already success­ Sunday Field Trip: A total of 20 people joined the Sunday field trip to the fully isolated and characterized a hydrophobin gene from X. parietina and homo­ Brisbane Ranges, western Victoria, despite a rainy start to the day. The rain actually logous sequences coding for hydrophobins in other Xanthoria species, and wishes proved to be a great asset, as the lichens from this dry-sclerophyll forest were to investigate further the population genetics ofthe genus. Ifyou can provide speci­ green and lush in their hydrated state. A number of stops were made throughout mens, air-mail them to Professor Rosmarie Honegger, University ofZiirich, Insti­ the National Park for collection. Kathleen Ralston's list oflichens for the Brisbane tute of Plant Biology, Zollikerstr. 107, CH-8008 Ziirich, Switzerland. You can con­ Ranges was increased significantly. Brave lichenologists soldiered on through tact her by phone at +41-1-634-8243, by fax at +41-1-634-8204, and bye-mail drizzle and rain, followed by more drizzle. A late lunch was enjoyed at Anakie at [email protected] Gorge picnic area, and after much chatter and socializing, we headed back to Melbourne...with sunshine all the way! Thanks went to the organisers, Kathleen Ralston and Sharon Ford, and to Mrs. coverillustration Jenny Ford for providing the lovely picnic lunch for the Sunday Field trip. Next Meeting: the next meeting (in 2002) will be organised byAlan Archer and The mainly austral genus Psoroma includes about 50 species, with over halfof David Eldridge in consultation with Jack Elix. The venue, to be confirmed at a them found in New Zealand. The australasian P. caliginosum occurs throughout later date, wiU be in either the Blue Mountains or at Orange, New South Wales. the country on the bark of trees and shrubs to 1500 m elevation. o AUSTRALASlAJ.'l" LICHENOLOGY 47, July 2000 AUSTRALASIAN LICHENOLOGY 47, July 2000 o RECENT LITERATURE ON AUSTRALASIAN LICHENS Trichothelium meridionale (Trichotheliaceae). a new foliicolous lichen from Tasmania Archer, AW; Elix, JA (1999): Three new species in the Australian Graphidaceae P.M. McCarthy with novel chemistries: Phaeographina echinocarpica, Phaeographis necopinata, Australian Biological Resources Study, GPO Box 787, and Phaeographis nornotatica. Mycotaxon 723, 91-96. Canberra, AC.T. 2601, Australia Arup, U; Mayrhofer, H (2000): Caloplaca erecta, a new subfruticose species from I New Zealand. Lichenologist 32, 359-363. G. Kantvilas Elix, JA (1999): Detection andidentification ofsecondary lichen substances: contrib­ Tasmanian Herbarium, GPO Box 252-04, Hobart, utions by the Uppsala school of lichen chemistry. Symbolae Botanicae Upsali­ Tasmania 7001, Australia enses 32, 103-121. Elix, JA(1999): New species ofNeofuscelia (iichenizedAscomycotina, Parmeliaceae) The mainly tropical, foliicolous genus Trichothelium Miill. Arg. (Trichotheliaceae)
Recommended publications
  • Pronectria Rhizocarpicola, a New Lichenicolous Fungus from Switzerland
    Mycosphere 926–928 (2013) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2013 Online Edition Doi 10.5943/mycosphere/4/5/4 Pronectria rhizocarpicola, a new lichenicolous fungus from Switzerland Brackel WV Wolfgang von Brackel, Institut für Vegetationskunde und Landschaftsökologie, Georg-Eger-Str. 1b, D-91334 Hemhofen, Germany. – e-mail: [email protected] Brackel WV 2013 – Pronectria rhizocarpicola, a new lichenicolous fungus from Switzerland. Mycosphere 4(5), 926–928, Doi 10.5943/mycosphere/4/5/4 Abstract Pronectria rhizocarpicola, a new species of Bionectriaceae is described and illustrated. It is growing parasitically on Rhizocarpon geographicum in the Swiss Alps. Key words – Ascomycota – bionectriaceae – hypocreales Introduction The genus Pronectria currently comprises 44 species, including 2 algicolous and 42 lichenicolous species. Most of the lichenicolous species are living on foliose and fruticose lichens (32 species), only a few on squamulose and crustose lichens (10 species). No species of the genus was ever reported from the host genus Rhizocarpon. Materials and methods Morphological and anatomical observations were made using standard microscopic techniques. Microscopic measurements were made on hand-cut sections mounted in water with an accuracy up to 0.5 µm. Measurements of ascospores and asci are recorded as (minimum–) X-σ X – X+σ X (–maximum) followed by the number of measurements. The holotype is deposited in M, one isotype in the private herbarium of the author (hb ivl). Results Pronectria rhizocarpicola Brackel, sp. nov. Figs 1–2 MycoBank 805068 Etymology – pertaining to the host genus Rhizocarpon. Diagnosis – Fungus lichenicola in thallo et ascomatibus lichenis Rhizocarpon geographicum crescens.
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]
  • The Phylogeny of Plant and Animal Pathogens in the Ascomycota
    Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.
    [Show full text]
  • <I> Lecanoromycetes</I> of Lichenicolous Fungi Associated With
    Persoonia 39, 2017: 91–117 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2017.39.05 Phylogenetic placement within Lecanoromycetes of lichenicolous fungi associated with Cladonia and some other genera R. Pino-Bodas1,2, M.P. Zhurbenko3, S. Stenroos1 Key words Abstract Though most of the lichenicolous fungi belong to the Ascomycetes, their phylogenetic placement based on molecular data is lacking for numerous species. In this study the phylogenetic placement of 19 species of cladoniicolous species lichenicolous fungi was determined using four loci (LSU rDNA, SSU rDNA, ITS rDNA and mtSSU). The phylogenetic Pilocarpaceae analyses revealed that the studied lichenicolous fungi are widespread across the phylogeny of Lecanoromycetes. Protothelenellaceae One species is placed in Acarosporales, Sarcogyne sphaerospora; five species in Dactylosporaceae, Dactylo­ Scutula cladoniicola spora ahtii, D. deminuta, D. glaucoides, D. parasitica and Dactylospora sp.; four species belong to Lecanorales, Stictidaceae Lichenosticta alcicorniaria, Epicladonia simplex, E. stenospora and Scutula epiblastematica. The genus Epicladonia Stictis cladoniae is polyphyletic and the type E. sandstedei belongs to Leotiomycetes. Phaeopyxis punctum and Bachmanniomyces uncialicola form a well supported clade in the Ostropomycetidae. Epigloea soleiformis is related to Arthrorhaphis and Anzina. Four species are placed in Ostropales, Corticifraga peltigerae, Cryptodiscus epicladonia, C. galaninae and C. cladoniicola
    [Show full text]
  • A Multigene Phylogenetic Synthesis for the Class Lecanoromycetes (Ascomycota): 1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families
    A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families Miadlikowska, J., Kauff, F., Högnabba, F., Oliver, J. C., Molnár, K., Fraker, E., ... & Stenroos, S. (2014). A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution, 79, 132-168. doi:10.1016/j.ympev.2014.04.003 10.1016/j.ympev.2014.04.003 Elsevier Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10,
    [Show full text]
  • Further Investigations on Rhizocarpon of North-Eastern Iran: R
    Hindawi Publishing Corporation Journal of Mycology Volume 2014, Article ID 528041, 5 pages http://dx.doi.org/10.1155/2014/528041 Research Article Further Investigations on Rhizocarpon of North-Eastern Iran: R. geographicum Mahroo Haji Moniri Department of Biology, Faculty of Sciences, Islamic Azad University, Mashhad Branch, Mashhad 917 56 89 119, Iran Correspondence should be addressed to Mahroo Haji Moniri; h [email protected] Received 15 January 2014; Accepted 7 April 2014; Published 29 April 2014 Academic Editor: Simona Nardoni Copyright © 2014 Mahroo Haji Moniri. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Morphology, anatomy, secondary chemistry, ecology, and distribution of Rhizocarpon geographicum (Rhizocarpaceae, lichenized Ascomycota) in north-eastern Iran are investigated and discussed. 1. Introduction the elevation of the sites ranges from 1340 to 1880 m. Over 537 Rhizocarpon thalli were investigated of which 311 (58%) Iran has an exceptional variety of biomes which has resulted belong to R. geographicum. As a result much new information in an extensive diversity in many organism groups including became available on the species of Rhizocarpon [11–13]. Mor- lichens. The history of lichenological exploration in north- phological and anatomical characteristics of the thalli and eastern Iran is fairly extensive, dating back to the middle fruiting bodies were examined with a stereomicroscope and a of the twentieth century [1, 2]. Since 2004, however, the light microscope. Preparations were made in distilled water, investigations in the present Khorasan provinces have much 10% KOH and KI.
    [Show full text]
  • Lichenometry and the Biology of the Lichen Genus Rhizocarpon
    1 Invited Review 2 3 4 LICHENOMETRIC DATING (LICHENOMETRY) AND THE BIOLOGY OF 5 THE LICHEN GENUS RHIZOCARPON: CHALLENGES AND FUTURE 6 DIRECTIONS 7 8 9 Richard A. Armstrong 10 11 12 13 14 Dept. of Vision Sciences, Aston University, Birmingham B4 7ET, United Kingdom, 15 E-mail: [email protected] 16 1 17 ABSTRACT. Lichenometric dating (lichenometry) involves the use of lichen 18 measurements to estimate the age of exposure of various substrata. Because of low 19 radial growth rates [RaGR] and considerable longevity, species of the crustose lichen 20 genus Rhizocarpon have been the most useful in lichenometry. The primary 21 assumption of lichenometry is that colonization, growth, and mortality of 22 Rhizocarpon are similar on surfaces of known and unknown age so that the largest 23 thalli present on the respective faces are of comparable age. This review describes the 24 current state of knowledge regarding the biology of Rhizocarpon and considers two 25 main questions: (1) to what extent does existing knowledge support this assumption 26 and (2) what further biological observations would be useful both to test its validity 27 and to improve the accuracy of lichenometric dates? A review of the Rhizocarpon 28 literature identified gaps in knowledge regarding early development, the growth 29 rate/size curve, mortality, regeneration, competitive effects, colonization, and 30 succession on rock surfaces. The data suggest that these processes may not be 31 comparable on different rock surfaces, especially in regions where growth rates and 32 thallus turnover are high. In addition, several variables could differ between rock 33 surfaces and influence maximum thallus size including rate and timing of 34 colonization, RaGR, environmental differences, thallus fusion, allelopathy, thallus 35 mortality, colonization, and competition.
    [Show full text]
  • Lichens of the National Forests in Alaska
    Lichens of the National Forests in Alaska United States Forest Service R10-RG-170 Department of Alaska Region August 2006 Agriculture What is a Lichen? You can think of lichens as fungi that have discovered farm- ing. Instead of parasitizing or scavenging other organisms for a living (such as molds, mildews, mushrooms), lichen fungi cultivate tiny algae and/or blue-green bacteria (called cyanobacteria) within the fabric of interwoven fungal threads that form the lichen body (or thallus). The algae and cyano- bacteria produce food for the fungus by converting the sun’s energy into sugars through photosynthesis. Perhaps the most important contribution of the fungus is to provide a protective habitat for the algae or cyanobacteria. Thus, lichens are a combination of two or three organisms that live together inti- mately. The green or blue-green photosynthetic layer is often visible between two white fungal layers if a piece of lichen thallus is torn off. In some cases, the fungus and the photosynthetic partner that together make the lichen may be found living separately in nature. However, many lichen-forming fungi cannot exist by themselves because they have become dependent on their photosynthetic partners for survival. But in all cases, a fungus looks quite different in the lichenized form compared to its free-living form. How do Lichens Reproduce? Lichens sexually reproduce with fruiting bodies of various colors that can look like miniature mushrooms. These are called apothecia (Fig. 1) and contain spores that germinate and grow into the fungus. This fungus must find the right photosynthetic partner in order to become a lichen.
    [Show full text]
  • New Records of <I>Rhizocarpon</I>
    ISSN (print) 0093-4666 © 2013. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/125.217 Volume 125, pp. 217–226 July–September 2013 New records of Rhizocarpon from China Zun-Tian Zhao, Chao Li, Xin Zhao & Lu-Lu Zhang* College of Life Science, Shandong Normal University, Jinan, 250014, P. R. China *Correspondence to: [email protected] Abstract – Four new lichen records are reported from China — Rhizocarpon grande, R. infernulum, R. petraeum, and R. rubescens. Detailed taxonomic descriptions with photos and comments are provided. Key words – Rhizocarpaceae, Asia, taxonomy Introduction De Candolle originally established Rhizocarpon (Rhizocarpaceae) in 1805 (Kirk et al. 2008). The lichen genus, which is predominately distributed in temperate, alpine and polar regions, includes about 200 species worldwide (Feuerer & Timdal 2004; Ihlen 2004; Kirk et al. 2008). The genus is distinguished by its rock dwelling crustose thallus with black lecideine apothecia, branched and anastomosed paraphyses, Rhizocarpon-type asci, and 1-septate to muriform ascospores with a swollen perispore (halonate). Traditionally Rhizocarpon is divided into taxa with a yellow thallus containing rhizocarpic acid (subgenus Rhizocarpon) and taxa with white, gray, or brown thalli lacking rhizocarpic acid (subgenus Phaeothallus) (Thomson 1967). In China, 28 Rhizocarpon species have been reported (Wei 1991; Abbas & Wu 1998; Aptroot 2002; Aptroot & Sparrius 2003). During our study of Rhizocarpon in China, four additional species were found in subgenus Phaeothallus: R. grande, R. infernulum, R. petraeum, and R. rubescens. Materials & methods The examined specimens are preserved in SDNU (Lichen Section of Botanical Herbarium, Shandong Normal University). Their morphological and anatomical characters were examined under a stereomicroscope (COIC XTL7045B2) and a polarizing microscope (Olympus CX41).
    [Show full text]
  • Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two
    (topsheet) Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113. Fieldiana, Botany H. Thorsten Lumbsch Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7881 fax: 312-665-7158 e-mail: [email protected] Sabine M. Huhndorf Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7855 fax: 312-665-7158 e-mail: [email protected] 1 (cover page) FIELDIANA Botany NEW SERIES NO 00 Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 H. Thorsten Lumbsch Sabine M. Huhndorf [Date] Publication 0000 PUBLISHED BY THE FIELD MUSEUM OF NATURAL HISTORY 2 Table of Contents Abstract Part One. Outline of Ascomycota - 2009 Introduction Literature Cited Index to Ascomycota Subphylum Taphrinomycotina Class Neolectomycetes Class Pneumocystidomycetes Class Schizosaccharomycetes Class Taphrinomycetes Subphylum Saccharomycotina Class Saccharomycetes Subphylum Pezizomycotina Class Arthoniomycetes Class Dothideomycetes Subclass Dothideomycetidae Subclass Pleosporomycetidae Dothideomycetes incertae sedis: orders, families, genera Class Eurotiomycetes Subclass Chaetothyriomycetidae Subclass Eurotiomycetidae Subclass Mycocaliciomycetidae Class Geoglossomycetes Class Laboulbeniomycetes Class Lecanoromycetes Subclass Acarosporomycetidae Subclass Lecanoromycetidae Subclass Ostropomycetidae 3 Lecanoromycetes incertae sedis: orders, genera Class Leotiomycetes Leotiomycetes incertae sedis: families, genera Class Lichinomycetes Class Orbiliomycetes Class Pezizomycetes Class Sordariomycetes Subclass Hypocreomycetidae Subclass Sordariomycetidae Subclass Xylariomycetidae Sordariomycetes incertae sedis: orders, families, genera Pezizomycotina incertae sedis: orders, families Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 Introduction Literature Cited 4 Abstract Part One presents the current classification that includes all accepted genera and higher taxa above the generic level in the phylum Ascomycota.
    [Show full text]
  • Lichen Bioindication of Biodiversity, Air Quality, and Climate: Baseline Results from Monitoring in Washington, Oregon, and California
    United States Department of Lichen Bioindication of Biodiversity, Agriculture Forest Service Air Quality, and Climate: Baseline Pacific Northwest Results From Monitoring in Research Station General Technical Washington, Oregon, and California Report PNW-GTR-737 Sarah Jovan March 2008 The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sus- tained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and manage- ment of the national forests and national grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W. Washington, DC 20250-9410, or call (800) 795- 3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Author Sarah Jovan is a research lichenologist, Forestry Sciences Laboratory, 620 SW Main, Suite 400, Portland, OR 97205.
    [Show full text]
  • Lichens of Alaska
    A Genus Key To The LICHENS OF ALASKA By Linda Hasselbach and Peter Neitlich January 1998 National Park Service Gates of the Arctic National Park and Presetve 201 First Avenue Fairbanks, AK 99701 ACKNOWLEDGMENTS We would like to aclmowledge the following individuals for their kind assistance: Jim Riley generously provided lichen photographs, with the exception of three copyrighted photos, Alectoria sannentosa, Peltigera neopolydactyla and P. membran.aceae, which are courtesy of Steve and Sylvia Sharnoff, and Neph­ roma arctica by Shelll Swanson. The line drawing on the cover, as well as those for Psoroma hypnorum and the 'lung-like' illustration, are the work of Alexander Mikulin as found in Uchens of Southeastern Alaska by Geiser, Dillman, Derr, and Stensvold. 'Cyphellae' and 'pseudocyphellae' are also by Alexander Mikulin as appear in MacroUchens of the Pac!ftc Northwest by McCune and Geiser. The Cladonia apothecia drawing is the work of Bruce McCune from Macrolichens of the Northern Rocky MoWltains by McCune and Goward. Drawings of Brodoa oroarctica, Physcia aipolia apothecia, and Peltigera veins are the work of Trevor Goward as found in 1he Uchens of Brittsh Columbia. Part I - FoUose and Squamulose Species by Goward, McCune and Meidinger. And the drawings of Masonhalea and Cetraria ericitorum are the work of Bethia Brehmer as found in Thomson's American Arctic MacroUchens. All photographs and line drawings were used by permission. Chiska Derr, Walter Neitlich, Roger Rosentreter, Thetus Smith, and Shelli Swanson provided valuable editing and draft comments. Thanks to Patty Rost and the staff of Gates of the Arctic National Park and Preserve for making this project possible.
    [Show full text]