Temperature and Humidity Independent Control (THIC) of Air-Conditioning System

Total Page:16

File Type:pdf, Size:1020Kb

Temperature and Humidity Independent Control (THIC) of Air-Conditioning System Temperature and Humidity Independent Control (THIC) of Air-conditioning System Xiaohua Liu • Yi Jiang • Tao Zhang Temperature and Humidity Independent Control (THIC) of Air-conditioning System Xiaohua Liu Yi Jiang Tao Zhang Department of Building Science Tsinghua University Beijing, People’s Republic of China ISBN 978-3-642-42221-8 ISBN 978-3-642-42222-5 (eBook) DOI 10.1007/978-3-642-42222-5 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2013957558 © Springer-Verlag Berlin Heidelberg 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface In 1995, Dr. James Freihaut from UTRC (United Technologies Research Center, the R&D base for Carrier, OTIS, and other industries) visited Tsinghua University for a meeting with me. The purpose of the meeting was to establish a cooperation project with our group in Tsinghua University for next-generation HVAC (heating, ventilation, and air-conditioning) system. “Do you have any idea on humidity independent control?” I still remember the question from James, and he tried to persuade me to do something for dehumidifying air without change of the air temperature. However, at that time, I had little idea on independent air dehumid- ification handling process. This was the time when I started to think about the concept of “temperature and humidity independent control” (THIC). Thanks to the Yung Wing funding from UTRC in 1996, a cooperation project was set up to develop a new approach for air dehumidification by a special membrane with moisture permeable feature. This was the first step for us toward the temperature and humidity independent control of HVAC system. During the first 10 years since 1996, our major effort was put into new approaches of air dehumidification. We had tried out various ways to achieve this goal, such as using moisture permeable membrane to dehumidify air by heating the air at the sink side, using two rotary desiccant wheels to recover energy from exhaust air to deeply dehumidify the inlet air, using multistage liquid desiccant air handling modules, etc. Fundamental studies were carried out at the same time to understand the real features of humidification/dehumidification process and the ideal minimum energy required for air dehumidification process and where the loss is in each stage of an air dehumidification process. Accompanied by these studies, a feeling has been getting stronger and stronger in our mind: air temperature and moisture in air (i.e., humidity ratio) are really two independent physical concepts, and unless a phase change process occurs such as evaporation or condensation, temperature and water vapor (or moisture) cannot influence each other. We should not take these two processes into account together in the indoor thermal environment control process as what engineers do in conven- tional HVAC design and operation procedures. Although both processes are affected by “heat,” the sensible heat for temperature regulation (heating or cooling) v vi Preface and the latent heat for moisture regulation (humidification or dehumidification), these two types of heat are not the same. They are not freely convertible with each other, and the latent heat only occurs with phase change. However, the misunder- standing between these two kinds of heat, i.e., the temperature regulation and humidity regulation process, may lead to insufficient or unsatisfactory indoor thermal environment in designs as well as in operations of HVAC system. For instance, a fan coil unit (FCU) with a total cooling capacity of 1 kW in conventional air-conditioning system can only provide about 50–70 % cooling if it only deals with sensible heat working under a dry condition with no air dehumid- ification. The cooling capacity for latent heat does not always accompany with that for sensible heat. Another simple example is the set point for supply air state in the all-air system: by setting the enthalpy of the supply air, the total heat removed from the conditioned space can be satisfied. However, either temperature or humidity level may be out of demand, which may result in a hot but dry condition or a cold but humid condition. If there is no condensation or evaporation in the conditioned space, the temper- ature regulation and humidity regulation are two independent processes. Why do we still put these two processes together both in design and operation of an HVAC system? It may be better to deal with these two processes separately in analysis, design, and operation. This was how we started to get into the THIC idea for HVAC system, when it was around year 2000. From then on, with the help of testing and investigating a number of air-conditioning systems in various buildings, it has been found that following the THIC concept, we could get a much clearer understanding and construct a better HVAC system during the design stage. The sensible load consisted of solar radiation, indoor devices, and so on varies completely different from the moisture load generated from occupants or other sources. If all the loads are undertaken by the air circulation, the supply air state (temperature and humidity) has to be changed all the time to accommodate to the variances of the sensible and moisture loads in order to maintain both the temper- ature and humidity for the conditioned space. This is quite a hard task. However, if the air circulation system is only used for humidity control and a radiant cooling system (or other cooling system) is adopted for removing the sensible load, things would be much easier. A radiant cooling system can remove sensible load only with little influence on humidity ratio if temperature of the cold water flowing through the radiant cooling device is higher than the indoor air dew-point temperature. In this way, both indoor temperature and humidity can be maintained well regardless of how the sensible and moisture loads change. Furthermore, as the sensible load could be removed by the cold water with a temperature higher than the indoor dew point, e.g., 16–18 C, which is also higher than the chilled water temperature in most conventional air-conditioning systems (e.g., 7 C), chiller’s efficiency will be much higher than that of conventional chiller if the chiller is specially designed to produce high-temperature chilled water for removing only sensible cooling load and regulating indoor temperature. Preface vii This is a new concept for HVAC system, which can provide more comfort thermal environment with less operation energy. This should be the principle and basic design guideline for the air-conditioning system in future. Although the key devices for the THIC system seem to be similar to those for the conventional air-conditioning system, the operating conditions and performances of devices we need in the THIC system are quite different: the air handling processor should be able to dehumidify air to a drier state for removing indoor moisture load but without a too low temperature to be supplied to the conditioned space; the chiller should provide chilled water with a higher temperature (16–18 C) and higher coefficient of performance (COP); if FCU is adopted for indoor temperature control, the FCU should work efficiently with a smaller temperature difference between circulating water and air but without the worry of condensing water; etc. These indicate that the THIC systems do need a complete set of new types of devices, a new generation of HVAC devices! We need different design approaches, we need different system components, we need different control devices with different logics, and we need different ways to operate and manage the THIC systems. To push this THIC system to the real construction market, an association for THIC air-conditioning system has been founded since 2007, with members includ- ing researchers, manufacturers, building developers, as well as operators. Thanks to the huge construction market in China, different types of THIC systems for different building functions have been adopted in many places of China since 2005. So far, there has been more than 20 million m2 of buildings with all sorts of functions designed according to the THIC concept in China.
Recommended publications
  • Temperature & Humidity Control in Surgery Rooms
    This article was published in ASHRAE Journal, June 2006. Copyright 2006 ASHRAE. Posted at www.ashrae.org. This article may not be copied and/or distributed electronically or in paper form without permission of ASHRAE. For more information about ASHRAE Journal, visit www.ashrae.org. Health-Care HVAC Temperature & Humidity Control In Surgery Rooms By John Murphy, Member ASHRAE requirements. This analysis focuses on cooling and dehumidification; heating ccupant comfort, infection control, and drying of mucous and humidification are not addressed. coating are some reasons why temperature and humidity Impact on HVAC System Design O The temperature and humidity control control are important in surgery rooms.1 Temperature and humid- requirements for a surgery room, along with the high air change rate, significantly ity ranges, and minimum air-change rates often are prescribed by impact the design of the HVAC system. Using a rule of thumb (such as 400 local codes or by industry-accepted guidelines (Table 1). cfm/ton [54 L/s per kW]) or a traditional temperature-only design approach often Surgeons also have preferences when in Farmington, Maine, said, “We always leads to a system that is unable to meet it comes to temperature and humidity had problems being able to satisfy the requirements. conditions. Reasons for these prefer- surgeons, who wanted the temperature at The American Institute of Architects ences range from personal comfort while 62°F to 65°F (17°C to 18°C), while the (AIA) design guidelines2 recommend 15 dressed in heavy surgery clothing to the anesthesiologists and other staff wanted air changes per hour (ACH) of supply air perception of superior procedure success higher temperatures.” 4 for a surgery room, and 20% of that sup- rates.
    [Show full text]
  • GUIDE to INSULATING CHILLED WATER PIPING SYSTEMS with MINERAL FIBER PIPE INSULATION 33°F to 60°F (0.5°C to 15.6°C)
    GUIDE TO INSULATING CHILLED WATER PIPING SYSTEMS WITH MINERAL FIBER PIPE INSULATION 33°F to 60°F (0.5°C to 15.6°C) First Edition Copyright ©2015 NAIMA, ALL RIGHTS RESERVED GUIDE TO INSULATING CHILLED WATER PIPING SYSTEMS WITH MINERAL FIBER PIPE INSULATION 33°F to 60°F (0.5°C to 15.6°C) First Edition, 2015 Guide to Insulating Chilled Water Systems First Edition, 2015 CONTENTS PREFACE APPENDIX A-1 I Mineral Fiber Pipe Insulation . ii I Information Sources and References . A-2 I Vapor Retarder Jacketing Systems . ii I ASHRAE - American Society of Heating, Refrigerating, I Mineral Fiber Pipe Insulation Standards . ii and Air-Conditioning Engineers, Inc. A-2 I How This Guide Was Developed . ii i I ASTM - American Society for Testing and Materials . A-2 I ICC - International Code Council, Inc. A-2 SECTION 1: PERFORMANCE CRITERIA 1-1 I The National Research Council (NRC) . A-2 I I Role of Pipe Insulation . 1-2 NAIMA - North American Insulation Manufacturers Association . A-2 I Role of Pipe Insulation for Chilled Water Systems I 33°F to 60°F (0.5°C to 15.6°C) . 1-2 NFPA - National Fire Protection Association . A-2 I I General Requirements for Mineral Fiber Pipe National Institute of Building Sciences . A-2 Insulation in Chilled Water Applications . 1-2 I National Insulation Association . A-2 I Thermal Conductivity . 1-2 I ASHRAE Standard 90.1 Minimum Pipe Insulation I Standard Specification for Mineral Fiber Pipe Thickness Recommendations . A-3 Insulations (ASTM C547) . 1-3 I IECC Minimum Pipe Insulation Thickness I Specifications, Performance & Test Standards Recommendations .
    [Show full text]
  • Modified Version of High Efficiency Dehumidification System (HEDS) ESTCP Presentation EW-201344
    FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 3-4, 2015 Houston, TX Modified Version of High Efficiency Dehumidification System (HEDS) ESTCP Presentation EW-201344 Hosted by: Original Presentation by: Dahtzen Chu U.S. Army Construction Engineering Research Laboratory Scot Duncan, PE, Retrofit Originality, Inc. Omar Chamma, Trane What We’ll Discuss • This presentation will discuss several different methods that are currently utilized for Relative Humidity (RH) control in DoD facilities and some of their comparative strengths and weaknesses. • The main focus of the discussion will be on the “High Efficiency Dehumidification System” or “HEDS” that is in the process of undergoing testing thru the ESTCP process. • The appendices contain FAQ’s and Psychrometric charts for typical reheat and recuperative designs. Federal Utility Partnership Working Group November 3-4, 2015 Houston, TX Comparative Baselines at DoD and Nationally Baseline for the demonstrated technology comes in several variations. 1. Simplest and most widespread comparative baseline system consists of an AHU with a chilled water or DX refrigerant sourced cooling coil that cools the air down to between 52F and 55F. 1. Removes moisture from the air via condensation, then utilizes a heating coil, either sourced by hot water or an electric reheat coil to raise the supply air temperature to lower the Relative Humidity of the air entering the spaces, drying the spaces out. 2. AHU’s equipped with Run Around coils for reheat duty in various configurations: 1. Upstream of main Cooling Coil (CC) to downstream of main CC, 2. Exhaust air to Supply air, (does not reduce plant energy in this configuration) 3.
    [Show full text]
  • With Chilled Water Systems Get Precise Cooling and Control for Research and Institutional Greenhouse Growing with Chilled Water Cooling Systems
    Control Cooling with Chilled Water Systems Get precise cooling and control for research and institutional greenhouse growing with chilled water cooling systems. Researchers and institutional greenhouse growers need precision, efficiency and reliability in cooling and control. Because this type of growing demands tightly controlled environments, many institutions turn to chilled water cooling. How Greenhouse Chilled Water vs. Cooling Works Evaporative Cooling Hydronics uses water as the heat-transfer medium in Many commercial greenhouses rely on evaporative cooling heating and cooling systems. Large-scale commercial and to cool air to about 10 to 20 degrees below the outside institutional buildings may include both a chilled and heated temperature. These systems lower air temperature using water loop for heating and air conditioning. While boilers mists, sprays, or wetted pads, because they introduce heat the water, chillers and cooling towers are often used water into ventilation air – increasing the relative humidity separately or together to cool the water. while lowering the air temperature. Chilled water cooling is a hydronic process that circulates While this is generally an efficient process, evaporative cooling chilled water through a loop piping system. Circulator is limited by the relative humidity of the outside air introduced pumps force the water through a heat exchanger, and a fan into the greenhouse. Under these conditions, evaporative draws warm air out and cools it as it passes over cold coils. cooling cannot provide effective space temperature control of the greenhouse under all operating conditions. Flexibility and Controlled Climate Growing The Delta T Solutions’ chilled water system uses hydronic cooling to precisely control greenhouse space temperature For flexibility, a chilled water system can be broken up into and humidity.
    [Show full text]
  • HVAC Water Systems
    HVAC Water Systems Dual Temperature Chilled Water Loops Summary Chiller energy can account for 10 to 20% of total cleanroom energy use. The majority of annual chilled water use goes to medium temperature chilled water requirements – 55°F for sensible cooling and 60 to 70°F for process cooling loads. When outside air temperatures are cool and humidity is low (i.e., no low-temperature water is needed for dehumidification), 100% of the chilled water is for medium temperature loop uses. Standard cleanroom chiller plant design provides chilled water at temperatures of 39 to 42°F. While this temperature is needed for dehumidification, the low setpoint imposes an efficiency penalty on the chillers. Typically, heat exchangers and/or mixing loops are used to convert the low temperature, energy intensive chilled water into warmer chilled water temperatures for sensible or process cooling loads. Chiller efficiency is a function of the chilled water supply temperature. All other things equal, higher chilled water temperatures result in improved chiller efficiency. For example, by dedicating a chiller in a dual chiller plant to provide chilled water at 55°F, 20 to 40% of chiller energy and peak power can be saved when compared to both chillers operating at 42°F. Table 1. Chiller Efficiency Chilled Water Supply Efficiency Temperature 42°F 0.49 kW/ton 60°F 0.31 kW/ton 1. The chiller efficiency reported is based on manufacturer’s simulated data of the same chiller. The water-cooled chiller was simulated running at 100% full load and had a condenser water supply temperature 70°F in both cases.
    [Show full text]
  • Solar Heating and Cooling System with Absorption Chiller and Latent Heat Storage - a Research Project Summary
    Available online at www.sciencedirect.com ScienceDirect Energy Procedia 48 ( 2014 ) 837 – 849 SHC 2013, International Conference on Solar Heating and Cooling for Buildings and Industry September 23-25, 2013, Freiburg, Germany Solar heating and cooling system with absorption chiller and latent heat storage - A research project summary - Martin Helm1*, Kilian Hagel1, Werner Pfeffer1, Stefan Hiebler1, Christian Schweigler1 1Bavarian Center for Applied Energy Research (ZAE Bayern), Walther-Meissner-Strasse 6,D-85748 Garching, Germany Abstract A reliable solar thermal cooling and heating system with high solar fraction and seasonal energy efficiency ratio (SEER) is preferable. By now, bulky sensible buffer tanks are used to improve the solar fraction for heating purposes. During summertime when solar heat is converted into useful cold by means of sorption chillers the waste heat dissipation to the ambient is the critical factor. If a dry cooler is installed the performance of the sorption machine suffers from high cooling water temperatures, especially on hot days. In contrast, a wet cooling tower causes expensive water treatment, formation of fog and the risk of legionella and bacterial growth. To overcome these problems a latent heat storage based on a cheap salt hydrate has been developed to support a dry cooler on hot days, whereby a constant low cooling water temperature for the sorption machine is ensured. Therefore the need of a wet cooling tower is avoided and neither make-up water nor maintenance is needed. The same storage serves as additional low temperature heat storage for heating purposes allowing optimal solar yield due to constant low storage temperatures.
    [Show full text]
  • Solar Assisted Cooling – WP3, Task 3.5 INDUSTRY FEDERATION Contract EIE/04/204/S07.38607
    EUROPEAN Key Issues for Renewable Heat in Europe (K4RES-H) SOLAR THERMAL Solar Assisted Cooling – WP3, Task 3.5 INDUSTRY FEDERATION Contract EIE/04/204/S07.38607 Solar Assisted Cooling – State of the Art – Solar Assisted Cooling – State of the Art –........................................................... 1 Executive Summary ................................................................................................. 3 Barriers to growth ................................................................................................................................. 3 Recommendations ................................................................................................................................ 4 Introduction............................................................................................................... 5 Components of a solar cooling system.................................................................. 5 Technical information on thermally driven chillers ........................................................................... 5 ABSORPTION CHILLERS .................................................................................................................. 7 ADSORPTION CHILLERS.................................................................................................................. 8 Technical information on desiccant cooling systems....................................................................... 9 SOLID DESICCANT COOLING WITH ROTATING WHEELS...........................................................
    [Show full text]
  • ADM-APN014-EN (01/05): Selecting Cooling Towers
    engineers newsletter volume 34–1 ● providing insights for today’s hvac system designer selecting cooling towers for efficiency: Tower selection 101 Range or approach? The thermodynamic realm of cooling towers can be defined by just three temperatures … from the editor … When was the last time you revised It’s tempting to rely on ARI standard your specifications or selection rating conditions for flow rates and parameters for cooling towers? Or do temperature differences when you specify unique parameters for designing chilled water systems. cooling tower selection on every job? But as valuable as these benchmarks Some HVAC designers specify 3 gpm are for verifying performance, they are of cooling water per ton of chiller unlikely to reflect optimal conditions for capacity; others specify less. Still … the “hot” water entering the cooling the entire system … especially as others base their selections on tower, the “cold” water leaving the mechanical efficiencies improve and something other than flow, such as a tower, and the design ambient wet customer requirements change. condenser ∆T of 85/95 in humid bulb of the geographic region where climates or 80/90 in less sultry locales. The same caveat applies to current the tower will be used. rules of thumb, such as a 10°F ∆T 99/85/78 95/85/78 Approach is the temperature across the cooling tower or a 90/80/71 102/83/78 difference between what is being condenser water flow rate of 3 gpm/ produced and the “power source” that ton. Basing the design of the Are your tower selection guidelines creates the product.
    [Show full text]
  • Chilled Water Pump Calculator Guide Table of Contents 1.0 Introduction
    Chilled Water Pump Calculator Guide Table of Contents 1.0 Introduction ............................................................................................................................. 2 1.1 Units .................................................................................................................................... 2 2.0 Disclaimer ............................................................................................................................... 2 3.0 Overall Chilled Water System ................................................................................................. 2 4.0 Chilled Water Pump Calculator - Inputs ............................................................................. 4 4.1 Fluid Information ............................................................................................................. 4 4.2 Pipe Information ............................................................................................................. 5 4.3 Valve & Fitting Information ............................................................................................. 6 4.4 Equipment Information ................................................................................................... 6 4.5 Pipe Expansions & Reductions Information ................................................................... 7 5.0 Chilled Water Pump Calculator - Outputs .......................................................................... 7 5.1 Fluid Velocity .................................................................................................................
    [Show full text]
  • Chiller System Design and Control
    Applications Engineering Manual Chiller System Design and Control November 2011 SYS-APM001-EN Chiller System Design and Control Susanna Hanson, applications engineer Mick Schwedler, applications manager Beth Bakkum, information designer Preface This manual examines chilled-water-system components, configurations, options, and control strategies. The goal is to provide system designers with options they can use to satisfy the building owners’ desires, but this manual is not intended to be a complete chiller-system design manual. System designers may get the most use from this manual by familiarizing themselves with chilled-water-system basics and understanding the benefits of various options. Thereafter, when a specific job will benefit from these advantages, consult appropriate sections of the manual in detail. The Engineers Newsletters that are referenced in this manual are available at: www.trane.com/commercial/library/newsletters.asp Trane, in proposing these system design and application concepts, assumes no responsibility for the performance or desirability of any resulting system design. Design of the HVAC system is the prerogative and responsibility of the engineering professional. “Trane” and the Trane logo are registered trademarks, and TRACE, System Analyzer and TAP are trademarks of Trane, a business of Ingersoll-Rand. © 2009 Trane All rights reserved Chiller System Design and Control SYS-APM001-EN Contents Preface .................................................................................................. i Primary System
    [Show full text]
  • Efficient Space Humidity Control with Active Chilled Beam Systems by Kenneth J
    This article was published in ASHRAE Journal, January 2012. Copyright 2012 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Posted at www.ashrae.org. This article may not be copied and/or distributed electronically or in paper form without permission of ASHRAE. For more information about ASHRAE Journal, visit www.ashrae.org. Efficient Space Humidity Control With Active Chilled Beam Systems By Kenneth J. Loudermilk, P.E., Member ASHRAE and Darren S. Alexander, P.Eng., Member ASHRAE ver the past few years, the use of chilled beams and radiant moisture removal occurs at the central air-handling unit. Ochilled ceilings has increased rapidly in North America due to Although outdoor humidity has some effect on space latent loads, the effect the space and energy savings inherent to air-water systems. Although is minimized in tightly constructed buildings with proper building pres- these systems have been widely used in Europe for more than 20 years, sure control. The 2009 ASHRAE Hand- book—Fundamentals1 classifies build- North American climates and other building design practices often result ing tightness by the leakage rate that in higher space loads and moisture removal requirements than their results from pressurizing the building to 0.3 in. w.c. (75 Pa). Leakage rates less 2 2 European counterparts generally encounter. than 0.1 cfm/ft (0.05 L/s·m ) of outside wall area are generally considered rep- Space humidity control is essen- chilled water temperature is critical to resentative of “tight” buildings. Build- tial for the proper application of any prevent condensation. ings of “average” construction exhibit HVAC system used in humid climates, As with most HVAC systems, mois- leakage rates of around 0.3 cfm/ft2 (0.14 but it is particularly critical for these ture is removed from a mixture of out- L/s·m2) of exterior wall area while leak- air-water systems.
    [Show full text]
  • Heat Transfer Performance and Piping Strategy Study for Chilled Water
    HEAT TRANSFER PERFORMANCE AND PIPING STRATEGY STUDY FOR CHILLED WATER SYSTEMS AT LOW COOLING LOADS A Thesis by NANXI LI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, David E. Claridge Committee Members, Charles H. Culp Michael B. Pate Head of Department, Jerald A. Caton December 2012 Major Subject: Mechanical Engineering Copyright 2012 Nanxi Li ABSTRACT The temperature differential of chilled water is an important factor used for evaluating the performance of a chilled water system. A low delta-T may increase the pumping energy consumption and increase the chiller energy consumption. The system studied in this thesis is the chilled water system at the Dallas/Fort Worth International Airport (DFW Airport). This system has the problem of low delta-T under low cooling loads. When the chilled water flow is much lower than the design conditions at low cooling loads, it may lead to the laminar flow of the chilled water in the cooling coils. The main objective of this thesis is to explain the heat transfer performance of the cooling coils under low cooling loads. The water side and air side heat transfer coefficients at different water and air flow rates are calculated. The coefficients are used to analyze the heat transfer performance of the cooling coils at conditions ranging from very low loads to design conditions. The effectiveness-number of transfer units (NTU) method is utilized to analyze the cooling coil performance under different flow conditions, which also helps to obtain the cooling coil chilled water temperature differential under full load and partial load conditions.
    [Show full text]